|
[1] J. J. Gibson, “Observations on active touch,” Psychological review, vol. 69, no. 6, pp. 477, 1962. [2] K. R. Boff, L. Kaufman, and J. P. Thomas, “Workload assessment methodology,” Handbook of perception and human performance, vol. 2, pp. 42-26, 1986. [3] S. J. Lederman, and R. L. Klatzky, “Hand movements: A window into haptic object recognition,” Cognitive psychology, vol. 19, no. 3, pp. 342-368, 1987. [4] J. M. Loomis, and S. J. Lederman, “Tactual perception,” Handbook of perception and human performance, vol. 2, pp. 31-2, 1986. [5] A. Saig, G. Gordon, E. Assa, A. Arieli, and E. Ahissar, “Motor-sensory confluence in tactile perception,” Journal of Neuroscience, vol. 32, no. 40, pp. 14022-14032, 2012. [6] M. Kawato, “Internal models for motor control and trajectory planning,” Current opinion in neurobiology, vol. 9, no. 6, pp. 718-727, 1999. [7] G. Gordon, and E. Ahissar, “Hierarchical curiosity loops and active sensing,” Neural Networks, vol. 32, pp. 119-129, 2012. [8] M. Barbiero, C. Rousseau, C. Papaxanthis, and O. White, “Coherent multimodal sensory information allows switching between gravitoinertial contexts,” Frontiers in physiology, vol. 8, pp. 290, 2017. [9] N. A. Bernstein, Human motor actions: Bernstein reassessed: North-Holland, 1984. [10] R. Romo, A. Hernández, A. Zainos, and E. Salinas, “Somatosensory discrimination based on cortical microstimulation,” Nature, vol. 392, no. 6674, pp. 387-390, 1998. [11] R. Romo, A. Hernández, A. Zainos, C. D. Brody, and L. Lemus, “Sensing without touching: psychophysical performance based on cortical microstimulation,” Neuron, vol. 26, no. 1, pp. 273-278, 2000. [12] S. K. Talwar, S. Xu, E. S. Hawley, S. A. Weiss, K. A. Moxon, and J. K. Chapin, “Behavioural neuroscience: Rat navigation guided by remote control,” Nature, vol. 417, no. 6884, pp. 37-38, 2002. [13] J. E. O'Doherty, M. A. Lebedev, T. L. Hanson, N. A. Fitzsimmons, and M. A. Nicolelis, “A brain-machine interface instructed by direct intracortical microstimulation,” Frontiers in integrative neuroscience, vol. 3, pp. 20, 2009. [14] S. N. Flesher, J. L. Collinger, S. T. Foldes, J. M. Weiss, J. E. Downey, E. C. Tyler-Kabara, S. J. Bensmaia, A. B. Schwartz, M. L. Boninger, and R. A. Gaunt, “Intracortical microstimulation of human somatosensory cortex,” Science translational medicine, vol. 8, no. 361, pp. 361ra141-361ra141, 2016. [15] M. Semprini, L. Bennicelli, and A. Vato, “A parametric study of intracortical microstimulation in behaving rats for the development of artificial sensory channels,” 2012 Annual International Conference of the IEEE, pp. 799-802, 2012. [16] J. Berg, J. Dammann III, F. Tenore, G. Tabot, J. Boback, L. Manfredi, M. Peterson, K. Katyal, M. Johannes, and A. Makhlin, “Behavioral demonstration of a somatosensory neuroprosthesis,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 21, no. 3, pp. 500-507, 2013. [17] S. Kim, T. Callier, G. A. Tabot, R. A. Gaunt, F. V. Tenore, and S. J. Bensmaia, “Behavioral assessment of sensitivity to intracortical microstimulation of primate somatosensory cortex,” Proceedings of the National Academy of Sciences, vol. 112, no. 49, pp. 15202-15207, 2015. [18] G. A. Tabot, S. S. Kim, J. E. Winberry, and S. J. Bensmaia, “Restoring tactile and proprioceptive sensation through a brain interface,” Neurobiology of disease, vol. 83, pp. 191-198, 2015. [19] C. D. Salzman, K. H. Britten, and W. T. Newsome, “Cortical microstimulation influences perceptual judgements of motion direction,” Nature, vol. 346, no. 6280, pp. 174-177, 1990. [20] R. Romo, A. Hernandez, A. Zainos, and E. Salinas, “Somatosensory discrimination based on cortical microstimulation,” Nature, vol. 392, no. 6674, pp. 387, 1998. [21] S. Butovas, and C. Schwarz, “Detection psychophysics of intracortical microstimulation in rat primary somatosensory cortex,” European Journal of Neuroscience, vol. 25, no. 7, pp. 2161-2169, 2007. [22] G. A. Tabot, J. F. Dammann, J. A. Berg, F. V. Tenore, J. L. Boback, R. J. Vogelstein, and S. J. Bensmaia, “Restoring the sense of touch with a prosthetic hand through a brain interface,” Proceedings of the National Academy of Sciences, vol. 110, no. 45, pp. 18279-18284, 2013. [23] S. Kim, T. Callier, G. A. Tabot, F. V. Tenore, and S. J. Bensmaia, “Sensitivity to microstimulation of somatosensory cortex distributed over multiple electrodes,” Frontiers in systems neuroscience, vol. 9, pp. 47, 2015. [24] J. S. Choi, A. J. Brockmeier, D. B. McNiel, L. M. Von Kraus, J. C. Príncipe, and J. T. Francis, “Eliciting naturalistic cortical responses with a sensory prosthesis via optimized microstimulation,” Journal of neural engineering, vol. 13, no. 5, pp. 056007, 2016. [25] C. R. Holdgraf, J. W. Rieger, C. Micheli, S. Martin, R. T. Knight, and F. E. Theunissen, “Encoding and decoding models in cognitive electrophysiology,” Frontiers in systems neuroscience, vol. 11, pp. 61, 2017. [26] G. Buzsáki, C. A. Anastassiou, and C. Koch, “The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes,” Nature reviews neuroscience, vol. 13, no. 6, pp. 407-420, 2012. [27] L. Li, J. S. Choi, J. T. Francis, J. C. Sanchez, and J. C. Principe, “Decoding stimuli from multi-source neural responses,” 2012 Annual International Conference of the IEEE, pp. 1331-1334, 2012. [28] A. Belitski, S. Panzeri, C. Magri, N. K. Logothetis, and C. Kayser, “Sensory information in local field potentials and spikes from visual and auditory cortices: time scales and frequency bands,” Journal of computational neuroscience, vol. 29, no. 3, pp. 533-545, 2010. [29] J. R. Huxter, T. J. Senior, K. Allen, and J. Csicsvari, “Theta phase–specific codes for two-dimensional position, trajectory and heading in the hippocampus,” Nature neuroscience, vol. 11, no. 5, pp. 587-594, 2008. [30] E. D. Adrian, The basis of sensation: Christophers; London, 22 Berners Steeet, W. 1, 1928. [31] L. Paninski, E. P. Simoncelli, and J. W. Pillow, “Maximum likelihood estimation of a stochastic integrate-and-fire neural model, ” Advances in Neural Information Processing Systems, pp. 1311-1318, 2004. [32] S. S. Kim, A. P. Sripati, and S. J. Bensmaia, “Predicting the timing of spikes evoked by tactile stimulation of the hand,” Journal of neurophysiology, vol. 104, no. 3, pp. 1484-1496, 2010. [33] A.-R. Boloori, R. A. Jenks, G. Desbordes, and G. B. Stanley, “Encoding and decoding cortical representations of tactile features in the vibrissa system,” Journal of Neuroscience, vol. 30, no. 30, pp. 9990-10005, 2010. [34] P. H. Thakur, P. J. Fitzgerald, and S. S. Hsiao, “Second-order receptive fields reveal multidigit interactions in area 3b of the macaque monkey,” Journal of Neurophysiology, vol. 108, no. 1, pp. 243-262, 2012. [35] D. R. Humphrey, and E. M. Schmidt, “Extracellular single-unit recording methods,” Neurophysiological techniques: Applications to neural systems, pp. 1-64, 1990. [36] S.-P. Kim, F. Wood, M. Fellows, J. P. Donoghue, and M. J. Black, “Statistical analysis of the non-stationarity of neural population codes, ” The First IEEE/RAS-EMBS International Conference on, pp. 811-816, 2006. [37] D. Szarowski, M. Andersen, S. Retterer, A. Spence, M. Isaacson, H. Craighead, J. Turner, and W. Shain, “Brain responses to micro-machined silicon devices,” Brain research, vol. 983, no. 1, pp. 23-35, 2003. [38] A. Mazzoni, S. Panzeri, N. K. Logothetis, and N. Brunel, “Encoding of naturalistic stimuli by local field potential spectra in networks of excitatory and inhibitory neurons,” PLoS computational biology, vol. 4, no. 12, pp. e1000239, 2008. [39] U. Mitzdorf, “Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena,” Physiological reviews, vol. 65, no.1, pp. 37-100, 1985. [40] O. Herreras, “Local Field Potentials: Myths and Misunderstandings,” Frontiers in neural circuits, vol. 10, pp. 101, 2016. [41] K. Johnson, “Reconstruction of population response to a vibratory stimulus in quickly adapting mechanoreceptive afferent fiber population innervating glabrous skin of the monkey,” Journal of Neurophysiology, vol. 37, no. 1, pp. 48-72, 1974. [42] S. J. Bensmaia, “Tactile intensity and population codes,” Behavioural brain research, vol. 190, no. 2, pp. 165-173, 2008. [43] L. Li, A. J. Brockmeier, J. S. Choi, J. T. Francis, J. C. Sanchez, and J. C. Príncipe, “A tensor-product-kernel framework for multiscale neural activity decoding and control,” Computational intelligence and neuroscience, vol. 2014, pp. 2, 2014. [44] A. J. Brockmeier, J. S. Choi, E. G. Kriminger, J. T. Francis, and J. C. Principe, “Neural decoding with kernel-based metric learning,” Neural computation, vol. 26, no. 6, pp. 1080-1107, 2014. [45] J. Morissette, and J. M. Bower, “Contribution of somatosensory cortex to responses in the rat cerebellar granule cell layer following peripheral tactile stimulation,” Experimental brain research, vol. 109, no. 2, pp. 240-250, 1996. [46] L. Roggeri, B. Rivieccio, P. Rossi, and E. D'Angelo, “Tactile stimulation evokes long-term synaptic plasticity in the granular layer of cerebellum,” Journal of Neuroscience, vol. 28, no. 25, pp. 6354-6359, 2008. [47] H. Parasuram, B. Nair, G. Naldi, E. D’Angelo, and S. Diwakar, “Understanding Cerebellum Granular Layer Network Computations through Mathematical Reconstructions of Evoked Local Field Potentials,” Annals of Neurosciences, vol. 25, no. 1, pp. 11-24, 2018. [48] I. Hashimoto, T. Gatayama, K. Yoshikawa, and M. Sasaki, “Somatosensory evoked potential correlates of psychophysical magnitude estimations for air-puff stimulation of the face in man,” Experimental brain research, vol. 88, no. 3, pp. 639-644, 1992. [49] R. P. Lesser, R. Koehle, and H. Lueders, “Effect of stimulus intensity on short latency somatosensory evoked potentials,” Electroencephalography and clinical neurophysiology, vol. 47, no. 3, pp. 377-382, 1979. [50] Y. Nakajima, and N. Imamura, “Relationships between attention effects and intensity effects on the cognitive N140 and P300 components of somatosensory ERPs,” Clinical Neurophysiology, vol. 111, no. 10, pp. 1711-1718, 2000. [51] Y. Zhang, and M. Ding, “Detection of a weak somatosensory stimulus: Role of the prestimulus mu rhythm and its top–down modulation,” Journal of cognitive neuroscience, vol. 22, no. 2, pp. 307-322, 2010. [52] J. W. Kuziek, and K. E. Mathewson, “Does viewing nature and urban environments change neuro-cognitive markers of attention?,” PsyArXiv, 2017. [53] J. Friedman, and R. Meares, “Cortical evoked potentials and extraversion,” Psychosomatic Medicine, vol. 41, no. 4, pp. 279-286, 1979. [54] V. Scaioli, M. Brinciotti, M. Di Capua, S. Lori, A. Janes, G. Pastorino, C. Peruzzi, P. Sergi, and A. Suppiej, “A multicentre database for normative brainstem auditory evoked potentials (BAEPs) in children: methodology for data collection and evaluation,” The open neurology journal, vol. 3, pp. 72, 2009. [55] F. Zhang, J. Eliassen, J. Anderson, P. Scheifele, and D. Brown, “The time course of the amplitude and latency in the auditory late response evoked by repeated tone bursts,” Journal of the American Academy of Audiology, vol. 20, no. 4, pp. 239-250, 2009. [56] F. Zhang, C. Benson, D. Murphy, M. Boian, M. Scott, R. Keith, J. Xiang, and P. Abbas, “Neural adaptation and behavioral measures of temporal processing and speech perception in cochlear implant recipients,” PloS one, vol. 8, no. 12, pp. e84631, 2013. [57] J. A. Gottfried, Neurobiology of sensation and reward: CRC Press, 2011. [58] M. G. Mladejovsky, D. K. Eddington, J. R. Evans, and W. H. Dobelle, “A computer-based brain stimulation system to investigate sensory prostheses for the blind and deaf,” IEEE Transactions on Biomedical Engineering, no. 4, pp. 286-296, 1976. [59] R. D. Flint, E. W. Lindberg, L. R. Jordan, L. E. Miller, and M. W. Slutzky, “Accurate decoding of reaching movements from field potentials in the absence of spikes,” Journal of neural engineering, vol. 9, no. 4, pp. 046006, 2012. [60] A. Bar-Hillel, A. Spiro, and E. Stark, “Spike sorting: Bayesian clustering of non-stationary data, ” In Advances in Neural Information Processing Systems, pp. 105-112, 2005. [61] H. G. Rey, C. Pedreira, and R. Q. Quiroga, “Past, present and future of spike sorting techniques,” Brain research bulletin, vol. 119, pp. 106-117, 2015. [62] A. D. Legatt, J. Arezzo, and H. G. Vaughan, “Averaged multiple unit activity as an estimate of phasic changes in local neuronal activity: effects of volume-conducted potentials,” Journal of neuroscience methods, vol. 2, no. 2, pp. 203-217, 1980. [63] J. Kimura, T. Yamada, and D. D. Walker, “Theory of Near-Field and Far-Field Evoked Potentials, ” Advanced Evoked Potentials, pp. 1-28: Springer, 1989. [64] J. Walker, D. Halliday, and R. Resnick, Fundamentals of physics: Hoboken, NJ: Wiley, 2008. [65] I. MathWorks, Curve fitting toolbox: for use with MATLAB®: user's guide: MathWorks, 2002. [66] J. F. Hair, C. M. Ringle, and M. Sarstedt, “PLS-SEM: Indeed a silver bullet,” Journal of Marketing theory and Practice, vol. 19, no. 2, pp. 139-152, 2011. [67] J. F. Hair, C. M. Ringle, and M. Sarstedt, “Partial least squares structural equation modeling: Rigorous applications, better results and higher acceptance,” Long Range Planning, vol. 46, issues 1-2, pp. 1-12, 2013. [68] B. Tutunculer, G. Foffani, B. T. Himes, and K. A. Moxon, “Structure of the Excitatory Receptive Fields of Infragranular Forelimb Neurons in the Rat Primary Somatosensory Cortex Responding To Touch,” Cerebral Cortex, vol. 16, no. 6, pp. 791-810, 2006.
|