跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.19) 您好!臺灣時間:2025/09/04 13:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李冠良
研究生(外文):Guan-Liang Lee
論文名稱:脈衝偏壓應變規量測系統之無線感測器應用
論文名稱(外文):A Pulsed-Biasing Strain Gauge Measurement System for Wireless Sensing Applications
指導教授:陳昭宏陳昭宏引用關係
指導教授(外文):Jau-Horng Chen
口試委員:丁肇隆李坤彥李貫銘
口試日期:2012-07-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:52
中文關鍵詞:應變規無線感測器脈衝偏壓
外文關鍵詞:strain gaugewireless sensorpulsed-biasing
相關次數:
  • 被引用被引用:1
  • 點閱點閱:326
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
應變規廣泛使用在許多精密測量系統,這類應用被部署後不希望更動,所以應變感測器需要有很長的電池壽命。最近,這些感測器可用於監測旋轉設備,例如風車和車輪,提供災難性故障的預警,避免危害公共安全。因為無法使用傳統有線的感測器,無線應變感測器就變成相當的重要。
利用脈衝偏壓的方式在電力資源極少的無線感測器上,達到節省能源、拉長使用時間的效果。此外沒有使用恆定的電流,除了可以減少功率消耗,還可以減少應變計的溫度測量誤差。我們利用此技術實際做出無線感測應變規,並且在此架構中進行驗證,在使用32Hz、40%的工作週期下,量測誤差可視為可忽略,在此條件下有效的延長了約50%的使用時間。此研究應用的領域相當的廣泛,目前已經協助風力發電機組葉片應力變化的量測實驗,未來更可以使用在眾多需要監控應力變化的地方,來協助人民保障生命財產安全。


This paper presents a pulsed-biasing strain gauge measurement system for wireless sensing applications. The use of pulsed-biasing on the strain gauge can reduce the power consumption of the sensor, which is crucial for low-power wireless sensors. Moreover, without using a constant bias current, power dissipated on the resistive bridge that includes the strain gauge can be reduced. Such reduction can also reduce measurement errors from an increased strain gauge temperature. A strain gauge wireless sensor was constructed using commercially available components. Measurement results show that the pulsed-biasing technique can be implemented with a duty cycle down to around 40% with negligible measurement error at a data rate of 32 Hz. The power saved is equivalent to an increased operation time of 50%.

口試委員會審定書 #
誌謝 i
中文摘要 ii
英文摘要 iii
目錄 iv
圖目錄 vii
表目錄 x
第1章 緒論 1
1.1 研究動機 1
1.2 文獻探討 2
1.2.1 電阻式應變規 2
1.2.2 惠斯登電橋 3
1.2.3 脈衝偏壓 4
1.2.4 無線感測器 6
1.3 論文架構 7
第2章 系統元件介紹 9
2.1 電阻式應變規 9
2.1.1 應變係數(Gauge Factor, G.F.) 9
2.1.2 溫度膨脹係數(Linear Expansion Coefficient, ) 10
2.1.3 配合惠斯登電橋的量測方式 11
2.2 類比數位轉換器 15
2.2.1 逐次逼近類比數位轉換器 16
2.2.2 管道模擬類比數位轉換器 16
2.2.3 類比數位轉換器 17
2.3 可編程輯閘陣列 20
2.4 脈衝偏壓 21
第3章 系統架構 23
3.1 應變規與惠斯登電橋配置 24
3.2 電力架構 24
3.3 類比數位轉換器 25
3.4 控制單元 26
3.5 無線收發模組 27
3.6 脈衝偏壓架構的實現 29
3.7 訊號處理 30
3.8 電路板設計 30
第4章 量測與量測結果 33
4.1 量測架構 33
4.2 校正 34
4.3 效率與精準度分析 38
4.4 電力分析 44
4.5 熱分析 45
第5章 結論與未來展望 47
5.1 結論 47
5.2 未來展望 47
5.2.1 增加傳輸距離 48
5.2.2 減少或是修正熱效應 48
5.2.3 組成量測系統 48
5.2.4 應用在非電阻式感測器 48
參考文獻 50
論文著作 52


[1]H. Choi, S. Choi, and H.J. Cha,”Structural Health Monitoring System based on Strain Gauge Enabled Wireless Sensor Nodes,“ Proceedings of the Fifth International Conference on Networked Sensing Systems, p. 211-214, 2008.
[2]J. van Ham, I.E. Naert, and R. Puers, “Design and packaging of a fully autonomous medical monitoring system for dental applications,” IEEE Transactions on Circuits and Systems I-Regular Papers, vol. 54, no. 1, p. 200-208, 2007.
[3]G. Bergmann, F. Graichen, A. Rohlmann, P. Vllesferhoff, B. Heinleln, A. Bender and R. Ehrig, “Design and calibration of load sensing orthopaedic implants,”Biomechanical Engineering-Transactions of the Asme, vol 130, no. 2, 2008.
[4]S. Ćerimović, F. Keplinger, S. Dalola, V. Ferrari, D. Marioli, F. Kohl, and T. Sauter, “Smart Flow Sensor with Combined Frequency, Duty-Cycle, and Amplitude Output,” IEEE Sensors Journal, pp. 580-584, 2010.
[5]A.A.S. Mohammed, W.A. Moussa, and E. Lou, “Development and experimental evaluation of a novel piezoresistive MEMS strain sensor,” IEEE Sensors Journal, vol. 11, no. 10, pp. 2220-2232, 2011.
[6]X.F. Jiang, J. Polastre and D. Culler, “Perpetual environmentally powered sensor networks,” International Symposium on Information Processing in Sensor Networks, pp. 463-468 2005.
[7]R.L. Hannah, S.E. Reed, and Society for Experimental Mechanics (U.S.), “Strain gage users'' handbook,” London, New York and Bethel, CT, USA, Elsevier Applied Science and Society for Experimental Mechanics Press, 1992.
[8]J. Chen and B. Shi, “Pulsed activation: saving power for mixed-signal circuits,” IEEE International Symposium on Circuits and Systems, pp. 407–410, 2001.
[9]J.W. Dally and W.F. Riley, “Experimental stress analysis 3rd Edition,” New York, McGraw-Hill. Press, 1991.
[10]J.S. Shor, L. Bemis, and A.D. Kurtz, “Characterization of monolithic n-type 6H-SiC piezoresistive sensing elements,” IEEE Transactions on Electron Devices, vol. 41, no. 5, pp. 661-665, 1994.
[11]eFunda Inc., “Sensitivity of Strain Gage Wire Materials,” 2012, http://www.efunda.com/designstandards/sensors/strain_gages/strain_gage_sensitivity.cfm.
[12]J.W. Dally, W.F. Riley and K.G. McConnell, “Instrumentation for engineering measurements 2nd Edition,” New York, Wiley Press, 1993.
[13]Kyowa Electronic Instruments Co., “Self-Temperature-Compensation Gages,” http://www.kyowa-ei.co.jp/eng/support/technical/tecnical_info/strain_gages/gages/selcom_gages.html.
[14]M. Gustavsson, W.J. Jacob and N. Tan, “CMOS data converters for communications,” Boston, Kluwer Academic Press, 2000.
[15]“KFRP-5-120-C1 strain gauge” Kyowa Electronic Instruments Co., Ltd., Shinjuku City, Tokyo, 2010.
[16]“AD7797, 16-/24-Bit Sigma-Delta ADC,” Analog Devices Inc., Cambridge, Massachusetts, 2002.
[17]“MAX 3000A Programmable Logic Device Family Data Sheet,” ALTERA, 2002.
[18]“300MHz-to-450MHz Low-Power,Crystal-Based ASK Transmitter,” Maxim, 2010.
[19]“SSM3J01T Power Management Switch,” Toshiba Inc., Minato-ku, Tokyo, 2007.
[20]日本工業規格, “Testing method for tensile properties of glass fiber reinforced plastics”, Japan, JIS K7054, 1995.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top