跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/12 22:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂謙
研究生(外文):Chien Lu
論文名稱:新穎共軛高分子半導體及其側鏈結構探討與有機光電元件應用
論文名稱(外文):Designing Conjugated Polymers through Modification of Side Chains and Application in Optoelectronic Devices
指導教授:陳文章陳文章引用關係
指導教授(外文):Wen-Chang Chen
口試委員:邱文英廖英志鄭如忠郭霽慶李文亞
口試委員(外文):Wen-Yen ChiuYing-Chih LiaoRu-Jong JengChi-Ching KuoWen-Ya Lee
口試日期:2016-01-12
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:266
中文關鍵詞:側鏈結構共軛高分子半導體分子堆疊可拉伸電子元件太陽能電池
外文關鍵詞:side chain engineeringconjugated polymersmolecular packingstretchable electronicsorganic photovoltaics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:214
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
新穎半導體共軛材料因其在有機電子元件,如場效應電晶體、有機太陽能電池與有機記憶體元件之應用性以及其低成本與溶液操作性等優勢受到研究者矚目,在共軛高分子材料發展中,側鏈結構之設計可以調控高分子多向排列結構以及薄膜型態。本論文目標在於開發具備不同共軛側鏈或烷基側鏈修飾於施體受體共軛材料,並探討其光電性質與元件特性,依不同材料結構與應用主要可分為以下三類:

1. 合成二維分支噻吩側鏈共軛高分子於場效應電晶體與有機太陽能電池應用:本論文第二章中開發一系列具二維分支噻吩側鏈(4T)之半導體高分子(P4T2T, P4T2Se, P4TTT, and P4TDTT)並探討其化學結構與光電性質的 關係。與4T共聚共軛基團(2T, 2Se, TT, and DTT)之大小與對稱性可改變共聚之高分子主鏈結構之平面性與分子堆疊結構,依此特性可於P4TDTT高分子得到最佳化載子遷移率0.610 cm2V-1s-1並具有優異的環境穩定性。本論文第三章中將延續探討二維分支噻吩側鏈(4T)之半導體高分子平面性之結果,開發具二維分支噻吩側鏈(4T)和二維延伸分支側鏈噻吩側鏈(8T)之半導體高分子(P4TV與P8TV),其最佳化載子遷移率分別為0.12與0.0018 cm2V-1s-1,同時其最佳高分子/PC71BM異質接面太陽能電池之光電轉換效率分別為4.04與2.69%。P4TV因期限性側鏈結構具有較優異之結晶性與電荷傳輸能力,而P8TV則因其分支側鏈結構有效降低最高佔據分子軌道而具有優異之環境穩定性。

2.含二維分支噻吩側鏈共軛高分子基團之施體受體共軛高分子:本論文第四章探討具有不同受體強度之施體受體共軛高分子(P4T-DTT, P4T-Q, P4T-BT, P4T-DPP, PDTT-DPP)其化學結構與不嵌入電荷儲存層之電晶體式記憶體特性之關聯。受體基團之電子親和力越強共軛高分子半導體之電荷儲存能力越強,P4TDPP與PDTT-DPP高分子可展現高達80V與60V之電荷儲存窗口與30000秒以上之儲存時間,並表現出多級記憶之快閃記憶體特性。為了近一步探討二維分支噻吩側鏈半導體高分子於施體受體結構中之光電特性,本論文中第五章開發具Isoindigo (IIG) 和其衍生物Thienoisoindigo (TIIG)之二維分支噻吩側鏈半導體高分子(PBDT-IIG、PBDT-TIIG),討論其受體分子之共平面性與受體強度對共軛高分子之光電性質與結晶影響,並系統性的研究此類雜芳烴衍生物受表面改質影響之薄膜表面結構於場效應電晶體和有機異質接面太陽能電池之應用,其最佳化載子遷移率分別為0.103與0.071 cm2V-1s-1,同時其最佳高分子/PC71BM異質接面太陽能電池之光電轉換效率分別為5.86與2.55%。

3.分支烷基側鏈於半截經共軛高分子之機械性質與可拉伸性之影響: 近年來,高分子之可撓性與拉伸性被廣泛應用於各類材料上,而具有可撓性與拉伸性之有機電子元件更是未來軟性元件趨勢之一。本論文中第六章主要探討拒辦結晶特性之poly(tetrathienoacene-diketopyrrolopyrrole)之高分子與其不同烷基側鏈衍生物在薄膜狀態下之拉伸特性與斷裂行為,並進一步量測此高分子薄膜於拉伸狀態下之表面結構與電荷傳輸特性變化。其中具分支烷基側鏈之半導體高分子可承受40%之應變而不產生斷裂,並在拉伸至100%之應變時仍可保持其載子遷移率在0.1 cm2V-1s-1,在進一步的分子結晶堆疊結構中可發現,此系列分支烷基側鏈高分子中具edge-on排列特性之高分子較具有edge-on與face-on混和排列結構之高分子可展現出更優異之機械性質與電荷傳輸特性,由於face-on排列之高分子烷基側鏈堆疊方向與拉伸方向平行,而烷基側鏈堆疊相較於主鏈π-π堆疊較弱更亦受應力而變形,使其於拉伸下之薄膜連續性較差,此研究提出設計新穎具有高載子遷移率軟性共軛高分子之概念。

從以上三類材料開發策略中,可成功利用側鏈結構設計並調整共軛高分子半導體之光電特性載子傳輸率太陽能光電轉換效率非揮發性記憶特性與機械性質,充分表現出此類共軛高分子半導體於未來有機電子元件之應用潛力。


The development of novel organic conjugated materials has gained momentum in recent times due to their possible applications in organic photovoltaic (OPV), organic field-effect transistor (OFET) devices, and organic memory devices where their lower cost, light weight, and mechanical flexibility are all attractive properties. The exploration of the structure property relationships of π-conjugated systems provide an important insight for high-mobility, ambient stable, and solution-processable semiconducting polymers. The goal of this thesis is to address the effect of molecule design including side chain engineering and donor-acceptor structure on the optoelectronic properties and electrical characteristics of the conjugated polymers, as shown in following approaches:

1. Synthesis of two-dimensional thiophene-extended conjugated polymers for OFET and OPV application
In chapter 2, the synthesis, morphology, and field-effect transistor characteristics of biaxially extended thiophene-based conjugated copolymers, P4T2T, P4T2Se , P4TTT, and P4TDTT consisting of bithiophene, biselenophene, thieno[3,2-b]thiophene, dithieno[3,2-b:2’,3’-d]thiophene, respectively. The effect of inserted moieties and symmetry on the polymer backbone and their corresponding molecular packing was explored. P4TDTT exhibited a smaller d-spacing and π-π stacking distance due to enhanced interchain interaction and denser molecular packing, showing the highest hole mobility up to 0.610 cm2V-1s-1. Two-dimensional extended 4T- and octithiophene (8T)-vinylene conjugated polymers, P4TV and P8TV were investigated in chapter 3. P4TV and P8TV exhibited smaller energy band gaps of 1.69 and 1.78 eV than that of parent polythiophenes, respectively, due to the reduced conformational backbone distortion by the vinylene linkage. The highest field effect hole mobilities of P4TV and P8TV were 0.12 and 0.0018 cm2V-1s-1, respectively, which could be related to the ordered structure of P4TV. The power conversion efficiency (PCE) of the P4TV/ PC71BM and P8TV/ PC71BM based photovoltaic cells (PV) was 4.04 % and 2.69 %, respectively. However, P8TV had a better environmental stability attributed to its lower-lying HOMO energy level.

2. Biaxially thiophene-extended thiophene-based donor-acceptor copolymers
With the knowledge about biaxially extended thiophene-based polymers, the effects of donor-acceptor chemical structures on the memory characteristics were investigated in chapter 4. The charge storage capability of transistor-type memory devices was found to be related to the electron affinity of the used donor-acceptor copolymers. The 4T-based D-A copolymers with the strong electron-accepting benzothidiazole and diketopyrrolopyrrole exhibited large memory windows (55 and 79 V, respectively). The 4T-based donor-only copolymer and 4T-based D-A copolymer with a weak electron-withdrawing qunioxaline showed smaller memory windows of 7 and 11 V, respectively. This indicates that the strong acceptors may enhance memory behaviors. In addition, the conformational torsion in polymer backbone also enhanced the charge storage ability. The ON and OFF states of the D-A polymer devices can be maintained over 3×104 s with the Ion/Ioff current ratios of 102-105, and the write-read-erase-read (WRER) cycles can be operated over 200 cycles, indicating excellent nonvolatile flash-type memory behaviors. In chapter 5, systematic study on the effects of heteroarenes on the solid state structure and optoelectronic properties of isoindigo analogues, namely PBDT-IIG and PBDT-TIIG, where BDT buliding block also contains thiophene side chains, were explored as the donor(D)-acceptor(A) copolymers. The optical absorption, frontier orbitals, backbone coplanarity, molecular orientation, solubility, film morphology, charge carrier mobility, and solar cell performance are critically influenced by the heteroarenes in the acceptor subunits. PBDT-IIG exhibits good p-type OFET performance with hole mobility up to 1.03 × 10-1 cm2V-1s-1, whereas PBDT-TIIG displays ambipolar mobilities of μh = 7.06 × 10-2 cm2V-1s-1 and μe = 2.81 × 10-4 cm2V-1s-1. PBDT-IIG and PBDT-TIIG blended with PC71BM yield promising power conversion efficiencies (PCEs) of 5.86% and 2.55% , respectively. The differnt electrical transport characteristics could be attributable to the differnt packing orientations of the two polymers.Although PBDT-TIIG could preserve a long-range face-on packing alignment to meliorate its photocurrent in OPV applicaitons, the low open-circuit voltage caused by its high-lying HOMO energy level and greater recombination demonstrates the trade-off between light absorption and solar cell performance. Nevertheless, PBDT-TIIG with a PCE of 2.55% is the highest reported PCE to date for the TIIG-based systems.

3. The mechanical and conformational properties of semi-crystalline conjugated polymers with alkyl side chain engineering
The design of polymer semiconductors possessing high charge transport performance, coupled with good ductility, remains a challenge. Understanding both the distribution and behavior of crystalline domains and amorphous regions in conjugated polymer films, upon an applied stress, should provide general guiding principles to design stretchable organic semiconductors. In chapter 6, structure-property relationships (especially in both side chain and backbone engineering) were investigated for a series of poly(tetrathienoacene-diketopyrrolopyrrole) (PTDPPTFT4) polymers. PTDPPTFT4 incorporated with branched side chains and additional thiophene spacer in the backbone was found to exhibit the best mechanical endurance and, in addition, does not show crack propagation until 40% strain. Furthermore, this polymer exhibited a hole mobility of 0.1 cm2V-1s-1 even at 100% strain, or after recovered from strain, which reveals a prominent continuity and viscoelasticity of the polymer thin film. The molecular packing orientations (either edge-on or face-on) of the studied polymers significantly was also found to affect the mechanical compliance of the polymer films. The improved mechanical property of the polymers was attributed to both the elasticity from the polymer’s amorphous regions and the intrinsic packing arrangement of its crystalline domains.

From these approaches, we successfully designed and tuned the optoelectronic properties, charge mobility, power conversion efficiency, memory volatility, and mechanical ductility of semiconducting polymers in different organic electronic devices. These results showed the potential significance of these semiconducting polymers in the application of future organic electronics.


Table of Contents
Abstract i
中文摘要 v
Table of Contents vii
List of Figures xiii
List of Tables xxi
1. Introduction 1
1.1 Introduction of Organic Semiconducting Materials 1
1.1.1 Organic Semiconducting Small Molecule/Oligomers 2
1.1.2 Conjugated polymers and their Optoelectronic Properties 3
1.2 Introduction of Organic Electronics 3
1.2.1 Field-Effect Transistor 3
1.2.2 Organic Photovoltaic Cells 6
1.3 Side Chain Engineering in Solution-Processable Conjugated Materials 9
1.3.1 General Design Strategy for Conjugated Materials 9
1.3.2 Representative Side Chains Used in Conjugated Materials 11
1.3.3 Conjugated Materials Consisting of Conjugated Side Chains 12
1.4 Molecular Materials for Stretchable Electronics 19
1.4.1 Mechanical Properties of Polymer Semiconductors 19
1.4.2 Effect of Alkyl Side Chain Interdigitation on Tensile Elasticity of Polymer Films 21
1.4.3 Strain-induced Variation in Crystalline Orientation of Polymer Films 21
1.4.4 Application for Stretchable Thin Film Transistor 22
1.5 Research Objectives 24
Table and Figure 26
2. Biaxially Extended Quaterthiophene-based Conjugated Copolymers for High Performance Field Effect Transistors 42
2.1 Background 42
2.2 Experimental Section 44
2.2.1 Materials 44
2.2.1 General procedures for polymerization 44
2.3 Characterization 46
2.3.1 Computational methodology 47
2.3.2 Fabrication and characterization of field effect transistors 47
2.4 Results and Discussion 47
2.4.1 Polymer Structure Characteristics 47
2.4.2 Thermal properties 48
2.4.3 Optical properties 49
2.4.4 Electrochemical Properties 50
2.4.5 Molecular simulation 50
2.4.6 Polymer field-effect transistor (FET) characteristics 51
2.4.7 Molecular packing and surface morphology 52
2.5 Summary 54
Table and Figure 55
3. Biaxially Extended Quaterthiophene and Octithiophene-Vinylene Conjugated Polymers for High Performance Field Effect Transistors and Photovoltaic Cells 67
3.1 Background 67
3.2 Experimental Section 69
3.2.1 Materials 69
3.2.2 General Procedure of Polymerization 69
3.3 Characterization 71
3.3.1 Computational Methodology 72
3.3.2 Fabrication and Characterization of Field-Effect Transistors 72
3.3.3 Fabrication and Characterization of Photovoltaic Cells 73
3.4 Results and Discussion 73
3.4.1 Polymer Structure Characteristics 73
3.4.2 Thermal Properties 74
3.4.3 Optical Properties 74
3.4.3 Electrochemical Properties 76
3.4.4 Morphology Characterization 76
3.4.5 Polymer Field-Effect Transistor Characteristics 77
3.4.6 Polymer Photovoltaic Cell Characteristics 78
3.5 Summary 80
Table and Figure 82
4. Effects of Acceptor Strength of Donor-Acceptor Copolymers on the Nonvolatile Transistor-Type Memory 95
4.1 Background 95
4.2 Experimental Section 98
4.2.1 Materials 98
4.2.2 General Procedure of Polymerization 98
4.3 Characterization 99
4.3.1 Computational Methodology 99
4.3.2 Fabrication and Characterization of Field-Effect Transistors 99
4.4 Results and Discussion 100
4.4.1 Electronic and Electrochemical Properties 100
4.4.2 Field-Effect Transistor Characteristics 101
4.4.3 Memory performance of OFET memory devices 102
4.5 Summary 106
Table and Figures 107
5. Interplay of Molecular Orientation, Film Formation, and Optoelectronic Properties on Isoindigo- and Thienoisoindigo-Based Copolymers for OFET and OPV Applications 123
5.1 Background 123
5.2 Experimental Section 126
5.2.1 Materials 126
5.2.2 General Procedure of Polymerization 126
5.3 Characterization 127
5.3.1 Computational Methodology 128
5.3.1 Fabrication and Characterization of Field-Effect Transistors 128
5.3.2 Fabrication and Characterization of Photovoltaic Cells 129
5.4 Results and Discussion 130
5.4.1 Polymer Structure Characteristics 130
5.4.2 Thermal Properties 130
5.4.3 Optical Properties 131
5.4.4 Electrochemical Properties 132
5.4.5 Polymer Field-Effect Transistor Characteristics 133
5.4.6 Polymer Photovoltaic Cell Characteristics 133
5.4.7 Surface Morphology and Packing Orientation 135
5.5 Summary 139
Table and Figure 140
6. Effects of Molecular Structure and Packing Order on the Stretchability of Semi-Crystalline Conjugated Poly(tetrathienoacene-diketopyrrolopyrrole) Polymers 154
6.1 Background 154
6.2 Experimental Section 156
6.2.1 Materials 156
6.2.2 Preparation and transfer of polymer semiconductor layer 157
6.3 Characterization 157
6.3.1 Transferred Polymer thin film Transistors Morphology Characterization 157
6.3.2 Buckling-Based Method127 158
6.4 Results and Discussion 158
6.4.1 Thermal and mechanical dynamic behaviors of bulk polymers 158
6.4.2 Elastic moduli of polymer thin film 159
6.4.3 Morphology and Field-Effect Transistor Characteristics of polymer thin films 160
6.4.4 The packing orders and their behaviors with applied strain 164
6.5 Summary 169
Table and Figures 171
Conclusion and Future Work 187
References 190
Autobiography 213
Publication List 214
Appendix A. Diketopyrrolopyrrole-Thiophene-Based Acceptor–Donor Acceptor Conjugated Materials for High-Performance Field-Effect Transistors 219
Appendix B. Ambipolar Field-Effect Transistors Using Conjugated Polymers with the Structures of Bilayer, Binary Blends, and Paralleled Nanofibers 243



1.A. J. Heeger, Angew. Chem. Int. Ed. 2001, 40, 2591.
2.J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger and G. C. Bazan, Nat. Mater. 2007, 6, 497.
3.N. Blouin, A. Michaud and M. Leclerc, Adv. Mater. 2007, 19, 2295.
4.H. A. M. van Mullekom, J. A. J. M. Vekemans, E. E. Havinga and E. W. Meijer, Mat Sci Eng R 2001, 32, 1.
5.L.-L. Chua, J. Zaumseil, J.-F. Chang, E. C. W. Ou, P. K. H. Ho, H. Sirringhaus and R. H. Friend, Nature 2005, 434, 194.
6.O. D. Jurchescu, J. Baas and T. T. M. Palstra, Appl. Phys. Lett. 2004, 84, 3061.
7.C. M. Proctor, J. A. Love and T.-Q. Nguyen, Adv. Mater. 2014, 26, 5957.
8.M. Durso, D. Gentili, C. Bettini, A. Zanelli, M. Cavallini, F. De Angelis, M. Grazia Lobello, V. Biondo, M. Muccini, R. Capelli and M. Melucci, Chemical Communications 2013, 49, 4298.
9.A. Facchetti, Chem. Mater. 2011, 23, 733.
10.P. M. Beaujuge and J. M. J. Fréchet, J. Am. Chem. Soc. 2011, 133, 20009.
11.C. Liu, Y. Li, M. V. Lee, A. Kumatani and K. Tsukagoshi, Phys. Chem. Chem. Phys. 2013, 15, 7917.
12.L. L. Chua, P. K. H. Ho, H. Sirringhaus and R. H. Friend, Adv. Mater. 2004, 16, 1609.
13.R. Z. Rogowski, A. Dzwilewski, M. Kemerink and A. A. Darhuber, J. Phys. Chem. C 2011, 115, 11758.
14.D. Khim, H. Han, K.-J. Baeg, J. Kim, S.-W. Kwak, D.-Y. Kim and Y.-Y. Noh, Adv. Mater. 2013, 25, 4302.
15.R. R. Søndergaard, M. Hösel and F. C. Krebs, J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 16.
16.H. A. Becerril, M. E. Roberts, Z. Liu, J. Locklin and Z. Bao, Adv. Mater. 2008, 20, 2588.
17.G. Giri, E. Verploegen, S. C. B. Mannsfeld, S. Atahan-Evrenk, D. H. Kim, S. Y. Lee, H. A. Becerril, A. Aspuru-Guzik, M. F. Toney and Z. Bao, Nature 2011, 480, 504.
18.J. Cornil, D. Beljonne, J. P. Calbert and J. L. Brédas, Adv. Mater. 2001, 13, 1053.
19.P. S. Jo, A. Vailionis, Y. M. Park and A. Salleo, Adv. Mater. 2012, 24, 3269.
20.Z. Zheng, K.-H. Yim, M. S. M. Saifullah, M. E. Welland, R. H. Friend, J.-S. Kim and W. T. S. Huck, Nano Lett. 2007, 7, 987.
21.H. Minemawari, T. Yamada, H. Matsui, J. y. Tsutsumi, S. Haas, R. Chiba, R. Kumai and T. Hasegawa, Nature 2011, 475, 364.
22.Z. Liu, H. A. Becerril, M. E. Roberts, Y. Nishi and Z. Bao, Electron Devices, IEEE Transactions on 2009, 56, 176.
23.Y.-H. Chou, H.-C. Chang, C.-L. Liu and W.-C. Chen, Polym. Chem. 2015, 6, 341.
24.V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey and J.-L. Brédas, Chem. Rev. 2007, 107, 926.
25.C. Wang, H. Dong, W. Hu, Y. Liu and D. Zhu, Chem. Rev. 2012, 112, 2208.
26.J. L. Bredas, J. P. Calbert, D. A. da Silva and J. Cornil, P Natl Acad Sci USA 2002, 99, 5804.
27.D. A. da Silva Filho, E. G. Kim and J. L. Brédas, Adv. Mater. 2005, 17, 1072.
28.G. R. Hutchison, M. A. Ratner and T. J. Marks, J. Am. Chem. Soc. 2005, 127, 2339.
29.S. T. Bromley, M. Mas-Torrent, P. Hadley and C. Rovira, J. Am. Chem. Soc. 2004, 126, 6544.
30.J. Cornil, J. L. Brédas, J. Zaumseil and H. Sirringhaus, Adv. Mater. 2007, 19, 1791.
31.Y. Li, S. P. Singh and P. Sonar, Adv. Mater. 2010, 22, 4862.
32.M. J. Cho, J. Shin, S. H. Yoon, T. W. Lee, M. Kaur and D. H. Choi, Chem. Commun. 2013, 49, 7132.
33.H. Chen, Y. Guo, G. Yu, Y. Zhao, J. Zhang, D. Gao, H. Liu and Y. Liu, Adv. Mater. 2012, 24, 4618.
34.G. Kim, S.-J. Kang, G. K. Dutta, Y.-K. Han, T. J. Shin, Y.-Y. Noh and C. Yang, J. Am. Chem. Soc. 2014, 136, 9477.
35.S. Subramanian, S. K. Park, S. R. Parkin, V. Podzorov, T. N. Jackson and J. E. Anthony, J. Am. Chem. Soc. 2008, 130, 2706.
36.S. Chai, S.-H. Wen, J.-D. Huang and K.-L. Han, J. Comput. Chem. 2011, 32, 3218.
37.A. R. Murphy and J. M. J. Fréchet, Chem. Rev. 2007, 107, 1066.
38.S. Allard, M. Forster, B. Souharce, H. Thiem and U. Scherf, Angew. Chem. Int. Ed. 2008, 47, 4070.
39.A. Mishra, C.-Q. Ma and P. Bäuerle, Chem. Rev. 2009, 109, 1141.
40.Y. Zhang, C. Kim, J. Lin and T.-Q. Nguyen, Adv. Func. Mater. 2012, 22, 97.
41.W. Elsawy, C.-L. Lee, S. Cho, S.-H. Oh, S.-H. Moon, A. Elbarbary and J.-S. Lee, Phys. Chem. Chem. Phys. 2013, 15, 15193.
42.Y. Liu, X. Wan, F. Wang, J. Zhou, G. Long, J. Tian, J. You, Y. Yang and Y. Chen, Adv. Energy Mater. 2011, 1, 771.
43.J. Zhou, X. Wan, Y. Liu, G. Long, F. Wang, Z. Li, Y. Zuo, C. Li and Y. Chen, Chem. Mater. 2011, 23, 4666.
44.Y. Sun, G. C. Welch, W. L. Leong, C. J. Takacs, G. C. Bazan and A. J. Heeger, Nat. Mater. 2012, 11, 44.
45.Y. Liu, L. Zhang, H. Lee, H.-W. Wang, A. Santala, F. Liu, Y. Diao, A. L. Briseno and T. P. Russell, Adv. Energy Mater. 2015, 5, n/a.
46.S. Loser, C. J. Bruns, H. Miyauchi, R. P. Ortiz, A. Facchetti, S. I. Stupp and T. J. Marks, J. Am. Chem. Soc. 2011, 133, 8142.
47.Q. Zhang, B. Kan, F. Liu, G. Long, X. Wan, X. Chen, Y. Zuo, W. Ni, H. Zhang, M. Li, Z. Hu, F. Huang, Y. Cao, Z. Liang, M. Zhang, T. P. Russell and Y. Chen, Nat. Photon. 2015, 9, 35.
48.J. Mei and Z. Bao, Chem. Mater. 2014, 26, 604.
49.C. Shi, Y. Yao, Yang and Q. Pei, J. Am. Chem. Soc. 2006, 128, 8980.
50.X. Guo, J. Quinn, Z. Chen, H. Usta, Y. Zheng, Y. Xia, J. W. Hennek, R. P. Ortiz, T. J. Marks and A. Facchetti, J. Am. Chem. Soc. 2013, 135, 1986.
51.H. Huang, Z. Chen, R. P. Ortiz, C. Newman, H. Usta, S. Lou, J. Youn, Y.-Y. Noh, K.-J. Baeg, L. X. Chen, A. Facchetti and T. Marks, J. Am. Chem. Soc. 2012, 134, 10966.
52.T. Okamoto and Z. Bao, J. Am. Chem. Soc. 2007, 129, 10308.
53.A. P. Monkman, L.-O. Pålsson, R. W. T. Higgins, C. Wang, M. R. Bryce, A. S. Batsanov and J. A. K. Howard, J. Am. Chem. Soc. 2002, 124, 6049.
54.R. Qin, W. Li, C. Li, C. Du, C. Veit, H.-F. Schleiermacher, M. Andersson, Z. Bo, Z. Liu, O. Inganäs, U. Wuerfel and F. Zhang, J. Am. Chem. Soc. 2009, 131, 14612.
55.X. Wu, T.-A. Chen and R. D. Rieke, Macromolecules 1995, 28, 2101.
56.S. Vandeleene, K. Van den Bergh, T. Verbiest and G. Koeckelberghs, Macromolecules 2008, 41, 5123.
57.Q. T. Zhang and J. M. Tour, J. Am. Chem. Soc. 1998, 120, 5355.
58.C. B. Nielsen, E.-H. Sohn, D.-J. Cho, B. C. Schroeder, J. Smith, M. Lee, T. D. Anthopoulos, K. Song and I. McCulloch, ACS Appl. Mater. Inter. 2013, 5, 1806.
59.H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu and G. Li, Nat. Photon. 2009, 3, 649.
60.M. Manceau, E. Bundgaard, J. E. Carle, O. Hagemann, M. Helgesen, R. Sondergaard, M. Jorgensen and F. C. Krebs, J. Mater. Chem. 2011, 21, 4132.
61.M. Banno, T. Yamaguchi, K. Nagai, C. Kaiser, S. Hecht and E. Yashima, J. Am. Chem. Soc. 2012, 134, 8718.
62.J. Hou, L. Huo, C. He, C. Yang and Y. Li, Macromolecules 2006, 39, 594.
63.J. Hou, Z. a. Tan, Y. Yan, Y. He, C. Yang and Y. Li, J. Ame. Chem. Soc. 2006, 128, 4911.
64.J. Hou, C. Yang, C. He and Y. Li, Chem. Commun. 2006, 871.
65.J.-H. Tsai, W.-Y. Lee, W.-C. Chen, C.-Y. Yu, G.-W. Hwang and C. Ting, Chem. Mater. 2010, 22, 3290.
66.Y.-T. Chang, S.-L. Hsu, G.-Y. Chen, M.-H. Su, T. A. Singh, E. W.-G. Diau and K.-H. Wei, Adv. Funct. Mater. 2008, 18, 2356.
67.Y.-T. Chang, S.-L. Hsu, M.-H. Su and K.-H. Wei, Adv. Mater. 2009, 21, 2093.
68.A. K. Tripathi, M. Heinrich, T. Siegrist and J. Pflaum, Adv. Mater. 2007, 19, 2097.
69.K. H. Jung, S. Y. Bae, K. H. Kim, M. J. Cho, K. Lee, Z. H. Kim, D. H. Choi, D. H. Lee, D. S. Chung and C. E. Park, Chem. Commun. 2009, 5290.
70.Q. Miao, X. Chi, S. Xiao, R. Zeis, M. Lefenfeld, T. Siegrist, M. L. Steigerwald and C. Nuckolls, J. Ame. Chem. Soc. 2006, 128, 1340.
71.Y. Li, Y. Wu, P. Liu, Z. Prostran, S. Gardner and B. S. Ong, Chem. Mater. 2007, 19, 418.
72.K. A. McGarry, W. Xie, C. Sutton, C. Risko, Y. Wu, V. G. Young, J.-L. Brédas, C. D. Frisbie and C. J. Douglas, Chem. Mater. 2013, 25, 2254.
73.V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson and J. A. Rogers, Science 2004, 303, 1644.
74.F. Garnier, G. Horowitz, X. Peng and D. Fichou, Adv. Mater. 1990, 2, 592.
75.G. Horowitz, D. Fichou, X. Peng, Z. Xu and F. Garnier, Solid State Commun. 1989, 72, 381.
76.X. B. Sun, Y. Q. Liu, S. Y. Chen, W. F. Qiu, G. Yu, Y. Q. Ma, T. Qi, H. J. Zhang, X. J. Xu and D. B. Zhu, Adv. Funct. Mater. 2006, 16, 917.
77.X. Sun, Y. Zhou, W. Wu, Y. Liu, W. Tian, G. Yu, W. Qiu, S. Chen and D. Zhu, J. Phys. Chem. B 2006, 110, 7702.
78.H. Shang, H. Fan, Y. Liu, W. Hu, Y. Li and X. Zhan, J. Mater. Chem. 2011, 21, 9667.
79.A. Zen, A. Bilge, F. Galbrecht, R. Alle, K. Meerholz, J. Grenzer, D. Neher, U. Scherf and T. Farrell, J. Am. Chem. Soc. 2006, 128, 3914.
80.F. Garnier, A. Yassar, R. Hajlaoui, G. Horowitz, F. Deloffre, B. Servet, S. Ries and P. Alnot, J. Am. Chem. Soc. 1993, 115, 8716.
81.M. Moret, M. Campione, A. Borghesi, L. Miozzo, A. Sassella, S. Trabattoni, B. Lotz and A. Thierry, J. Mater. Chem. 2005, 15, 2444.
82.H.-C. Wu, W.-Y. Lee, C.-J. Lin and W.-C. Chen, Mater. Chem. Phys. 2013, 138, 542.
83.L. Zhang, L. Tan, Z. Wang, W. Hu and D. Zhu, Chem. Mater. 2009, 21, 1993.
84.L. Zhang, L. Tan, W. Hu and Z. Wang, J. Mater. Chem. 2009, 19, 8216.
85.L. Tan, L. Zhang, X. Jiang, X. Yang, L. Wang, Z. Wang, L. Li, W. Hu, Z. Shuai, L. Li and D. Zhu, Adv. Funct. Mater. 2009, 19, 272.
86.S. Roquet, A. Cravino, P. Leriche, O. Alévêque, P. Frère and J. Roncali, J. Am. Chem. Soc. 2006, 128, 3459.
87.C. He, Q. He, Y. Yi, G. Wu, F. Bai, Z. Shuai and Y. Li, J. Mater. Chem. 2008, 18, 4085.
88.L. Zheng, R. C. Urian, Y. Liu, A. K. Y. Jen and L. Pu, Chem. Mater. 2000, 12, 13.
89.J. Zhang, D. Deng, C. He, Y. He, M. Zhang, Z.-G. Zhang, Z. Zhang and Y. Li, Chem. Mater. 2011, 23, 817.
90.W. Li, C. Du, F. Li, Y. Zhou, M. Fahlman, Z. Bo and F. Zhang, Chem. Mater. 2009, 21, 5327.
91.H. Fan, H. Shang, Y. Li and X. Zhan, Appl. Phys. Lett. 2010, 97, 133302.
92.F. Lincker, N. Delbosc, S. Bailly, R. De Bettignies, M. Billon, A. Pron and R. Demadrille, Adv. Funct. Mater. 2008, 18, 3444.
93.A. B. Tamayo, X.-D. Dang, B. Walker, J. Seo, T. Kent and T.-Q. Nguyen, Appl. Phys. Lett. 2009, 94, 103301.
94.B. Walker, A. B. Tamayo, X.-D. Dang, P. Zalar, J. H. Seo, A. Garcia, M. Tantiwiwat and T.-Q. Nguyen, Adv. Funct. Mater. 2009, 19, 3063.
95.W. Zhang, S. C. Tse, J. Lu, Y. Tao and M. S. Wong, J. Mater. Chem. 2010, 20, 2182.
96.X. Zhao, C. Piliego, B. Kim, D. A. Poulsen, B. Ma, D. A. Unruh and J. M. J. Fréchet, Chem. Mater. 2010, 22, 2325.
97.K. N. Winzenberg, P. Kemppinen, G. Fanchini, M. Bown, G. E. Collis, C. M. Forsyth, K. Hegedus, T. B. Singh and S. E. Watkins, Chem. Mater. 2009, 21, 5701.
98.G. Wei, S. Wang, K. Renshaw, M. E. Thompson and S. R. Forrest, ACS Nano 2010, 4, 1927.
99.T. Rousseau, A. Cravino, E. Ripaud, P. Leriche, S. Rihn, A. De Nicola, R. Ziessel and J. Roncali, Chem. Commun. 2010, 46, 5082.
100.H. Burckstummer, N. M. Kronenberg, M. Gsanger, M. Stolte, K. Meerholz and F. Wurthner, J. Mater. Chem. 2010, 20, 240.
101.H. Wang, T. Fukumatsu, Y. Liu, W. Hu, S. Seki and X. Zhan, J. Mater. Chem. C 2013, 1, 414.
102.P.-L. T. Boudreault, J. W. Hennek, S. Loser, R. P. Ortiz, B. J. Eckstein, A. Facchetti and T. J. Marks, Chem. Mater. 2012, 24, 2929.
103.C. Cui, J. Min, C.-L. Ho, T. Ameri, P. Yang, J. Zhao, C. J. Brabec and W.-Y. Wong, Chem. Commun. 2013, 49, 4409.
104.W. Tang, D. Huang, C. He, Y. Yi, J. Zhang, C. Di, Z. Zhang and Y. Li, Org. Electron. 2014, 15, 1155.
105.Y. Li and Y. Zou, Adv. Mater. 2008, 20, 2952.
106.E. Zhou, Z. a. Tan, L. Huo, Y. He, C. Yang and Y. Li, J. Phys. Chem. B 2006, 110, 26062.
107.L. Han, X. Bao, T. Hu, Z. Du, W. Chen, D. Zhu, Q. Liu, M. Sun and R. Yang, Macromol. Rapid Commun. 2014, 35, 1153.
108.J.-H. Kim, M. Lee, H. Yang and D.-H. Hwang, J. Mater. Chem. A 2014, 2, 6348.
109.M. Zhang, X. Guo, W. Ma, S. Zhang, L. Huo, H. Ade and J. Hou, Adv. Mater. 2014, 26, 2089.
110.J. Warnan, C. Cabanetos, R. Bude, A. El Labban, L. Li and P. M. Beaujuge, Chem. Mater. 2014, 26, 2829.
111.M. Zhang, Y. Gu, X. Guo, F. Liu, S. Zhang, L. Huo, T. P. Russell and J. Hou, Adv. Mater. 2013, 25, 4944.
112.C. Cui, W.-Y. Wong and Y. Li, Energy Environ. Sci. 2014, 7, 2276.
113.L. Ye, S. Zhang, W. Zhao, H. Yao and J. Hou, Chem. Mater. 2014, 26, 3603.
114.H.-S. Chung, W.-H. Lee, C. E. Song, Y. Shin, J. Kim, S. K. Lee, W. S. Shin, S.-J. Moon and I.-N. Kang, Macromolecules 2014, 47, 97.
115.L. Dou, W.-H. Chang, J. Gao, C.-C. Chen, J. You and Y. Yang, Adv. Mater. 2013, 25, 825.
116.M. Wang, D. Ma, K. Shi, S. Shi, S. Chen, C. Huang, Z. Qiao, Z.-G. Zhang, Y. Li, X. Li and H. Wang, J. Mater. Chem. A 2015, 3, 2802.
117.N. Wang, Z. Chen, W. Wei and Z. Jiang, J. Am. Chem. Soc. 2013, 135, 17060.
118.C. Y. Yu, B. T. Ko, C. Ting and C. P. Chen, Sol. Energy Mater. Sol. Cells 2009, 93, 613.
119.H.-W. Lin, W.-Y. Lee, C. Lu, C.-J. Lin, H.-C. Wu, Y.-W. Lin, B. Ahn, Y. Rho, M. Ree and W.-C. Chen, Poly. Chem. 2012, 3, 767.
120.P. Shen, H. Bin, X. Chen and Y. Li, Org. Electron. 2013, 14, 3152.
121.P. Zhou, D. Dang, J. Fan, W. Xiong, C. Yang, H. Tan, Y. Wang, Y. Liu and W. Zhu, Dyes Pigm. 2015, 112, 99.
122.M. Kaltenbrunner, M. S. White, E. D. Głowacki, T. Sekitani, T. Someya, N. S. Sariciftci and S. Bauer, Nat. Commun. 2012, 3, 770.
123.G. Li, R. Zhu and Y. Yang, Nat. Photon. 2012, 6, 153.
124.V. Brand, C. Bruner and R. H. Dauskardt, Sol. Energy Mater. Sol. Cells 2012, 99, 182.
125.S. R. Dupont, M. Oliver, F. C. Krebs and R. H. Dauskardt, Sol. Energy Mater. Sol. Cells 2012, 97, 171.
126.Z. Suo, E. Y. Ma, H. Gleskova and S. Wagner, Appl. Phys. Lett. 1999, 74, 1177.
127.D. Tahk, H. H. Lee and D.-Y. Khang, Macromolecules 2009, 42, 7079.
128.B. O’Connor, E. P. Chan, C. Chan, B. R. Conrad, L. J. Richter, R. J. Kline, M. Heeney, I. McCulloch, C. L. Soles and D. M. DeLongchamp, ACS Nano 2010, 4, 7538.
129.D. J. Lipomi, H. Chong, M. Vosgueritchian, J. Mei and Z. Bao, Sol. Energy Mater. Sol. Cells 2012, 107, 355.
130.A. D. Printz, S. Savagatrup, D. J. Burke, T. N. Purdy and D. J. Lipomi, RSC Adv. 2014, 4, 13635.
131.S. Savagatrup, A. S. Makaram, D. J. Burke and D. J. Lipomi, Adv. Funct. Mater. 2014, 24, 1169.
132.T. F. O''Connor, A. V. Zaretski, B. A. Shiravi, S. Savagatrup, A. D. Printz, M. I. Diaz and D. J. Lipomi, Energy Environ. Sci. 2014, 7, 370.
133.O. Awartani, B. I. Lemanski, H. W. Ro, L. J. Richter, D. M. DeLongchamp and B. T. O''Connor, Adv. Energy Mater. 2013, 3, 399.
134.V. Causin, C. Marega, A. Marigo, L. Valentini and J. M. Kenny, Macromolecules 2005, 38, 409.
135.S. Malik and A. K. Nandi, J. Polym. Sci., Part B: Polym. Phys. 2002, 40, 2073.
136.S. L. Liu and T. S. Chung, Polymer 2000, 41, 2781.
137.C. Kanimozhi, N. Yaacobi-Gross, E. K. Burnett, A. L. Briseno, T. D. Anthopoulos, U. Salzner and S. Patil, Phys. Chem. Chem. Phys. 2014, 16, 17253.
138.M. Nofar, W. Zhu, C. B. Park and J. Randall, Ind. Eng. Chem. Res. 2011, 50, 13789.
139.G. Lieser, M. Oda, T. Miteva, A. Meisel, H.-G. Nothofer, U. Scherf and D. Neher, Macromolecules 2000, 33, 4490.
140.Y.-J. Jin, J.-E. Bae, K.-S. Cho, W.-E. Lee, D.-Y. Hwang and G. Kwak, Adv. Funct. Mater. 2014, 24, 1928.
141.B. O''Connor, R. J. Kline, B. R. Conrad, L. J. Richter, D. Gundlach, M. F. Toney and D. M. DeLongchamp, Adv. Funct. Mater. 2011, 21, 3697.
142.D. Gargi, R. J. Kline, D. M. DeLongchamp, D. A. Fischer, M. F. Toney and B. T. O’Connor, J. Phys. Chem. C 2013, 117, 17421.
143.R. J. Kline, D. M. DeLongchamp, D. A. Fischer, E. K. Lin, L. J. Richter, M. L. Chabinyc, M. F. Toney, M. Heeney and I. McCulloch, Macromolecules 2007, 40, 7960.
144.J. A. Rogers, T. Someya and Y. G. Huang, Science 2010, 327, 1603.
145.J. Vanfleteren, M. Gonzalez, F. Bossuyt, Y. Y. Hsu, T. Vervust, I. De Wolf and M. Jablonski, MRS Bull. 2012, 37, 254.
146.D. J. Lipomi, B. C. K. Tee, M. Vosgueritchian and Z. Bao, Adv. Mater. 2011, 23, 1771.
147.T. Sekitani, U. Zschieschang, H. Klauk and T. Someya, Nat. Mater. 2010, 9, 1015.
148.S. H. Chae, W. J. Yu, J. J. Bae, D. L. Duong, D. Perello, H. Y. Jeong, Q. H. Ta, T. H. Ly, Q. A. Vu, M. Yun, X. Duan and Y. H. Lee, Nat. Mater. 2013, 12, 403.
149.M. Shin, J. H. Song, G.-H. Lim, B. Lim, J.-J. Park and U. Jeong, Adv. Mater. 2014, 26, 3706.
150.A. Chortos, J. Lim, J. W. F. To, M. Vosgueritchian, T. J. Dusseault, T.-H. Kim, S. Hwang and Z. Bao, Adv. Mater. 2014, 26, 4253.
151.A. Chortos, G. I. Koleilat, R. Pfattner, D. Kong, P. Lin, R. Nur, T. Lei, H. Wang, N. Liu, Y.-C. Lai, M.-G. Kim, J. W. Chung, S. Lee and Z. Bao, Adv. Mater. 2015, n/a.
152.A. Facchetti, M. H. Yoon and T. J. Marks, Adv. Mater. 2005, 17, 1705.
153.J. Zaumseil and H. Sirringhaus, Chem. Rev. 2007, 107, 1296.
154.A. Facchetti, Mater. Today 2007, 10, 28.
155.Y. Diao, L. Shaw, Z. Bao and S. C. B. Mannsfeld, Energy Environ. Sci. 2014, 7, 2145.
156.L. Dou, J. You, Z. Hong, Z. Xu, G. Li, R. A. Street and Y. Yang, Adv. Mater. 2013, 25, 6642.
157.A. C. Arias, J. D. MacKenzie, I. McCulloch, J. Rivnay and A. Salleo, Chem. Rev. 2010, 110, 3.
158.Y. Guo, G. Yu and Y. Liu, Adv. Mater. 2010, 22, 4427.
159.H. Klauk, Chem. Soc. Rev. 2010, 39, 2643.
160.J. Sun, B. Zhang and H. E. Katz, Adv. Funct. Mater. 2011, 21, 29.
161.Y. Wen, Y. Liu, Y. Guo, G. Yu and W. Hu, Chem. Rev. 2011, 111, 3358.
162.H. Yan, Z. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dotz, M. Kastler and A. Facchetti, Nature 2009, 457, 679.
163.Z. Bao, A. J. Lovinger and A. Dodabalapur, Appl. Phys. Lett. 1996, 69, 3066.
164.H. Sirringhaus, N. Tessler and R. H. Friend, Science 1998, 280, 1741.
165.H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig and D. M. de Leeuw, Nature 1999, 401, 685.
166.J. Schafferhans, A. Baumann, C. Deibel and V. Dyakonov, Appl. Phys. Lett. 2008, 93, 093303.
167.K. Asadi, F. Gholamrezaie, E. C. P. Smits, P. W. M. Blom and B. d. Boer, J. Mater. Chem. 2007, 17, 1947.
168.B. S. Ong, Y. Wu, P. Liu and S. Gardner, J. Am. Chem. Soc. 2004, 126, 3378.
169.W. Zhang, J. Smith, S. E. Watkins, R. Gysel, M. McGehee, A. Salleo, J. Kirkpatrick, S. Ashraf, T. Anthopoulos, M. Heeney and I. McCulloch, J. Am. Chem. Soc. 2010, 132, 11437.
170.A. R. Murphy, J. Liu, C. Luscombe, D. Kavulak, J. M. J. Fréchet, R. J. Kline and M. D. McGehee, Chem. Mater. 2005, 17, 4892.
171.J. W. Park, D. H. Lee, D. S. Chung, D.-M. Kang, Y.-H. Kim, C. E. Park and S.-K. Kwon, Macromolecules 2010, 43, 2118.
172.E. Lim, S. Lee and K. K. Lee, Mol. Cryst. Liq. Cryst. 2011, 538, 157.
173.Y. Li, Y. Wu, P. Liu, M. Birau, H. Pan and B. S. Ong, Adv. Mater. 2006, 18, 3029.
174.J.-M. Zhuo, L.-H. Zhao, R.-Q. Png, L.-Y. Wong, P.-J. Chia, J.-C. Tang, S. Sivaramakrishnan, M. Zhou, E. C. W. Ou, S.-J. Chua, W.-S. Sim, L.-L. Chua and P. K. H. Ho, Adv. Mater. 2009, 21, 4747.
175.D. M. DeLongchamp, R. J. Kline, Y. Jung, E. K. Lin, D. A. Fischer, D. J. Gundlach, S. K. Cotts, A. J. Moad, L. J. Richter, M. F. Toney, M. Heeney and I. McCulloch, Macromolecules 2008, 41, 5709.
176.M. C. Gather, M. Heeney, W. Zhang, K. S. Whitehead, D. D. C. Bradley, I. McCulloch and A. J. Campbell, Chem. Commun. 2008, 1079.
177.C.-a. Di, K. Lu, L. Zhang, Y. Liu, Y. Guo, X. Sun, Y. Wen, G. Yu and D. Zhu, Adv. Mater. 2010, 22, 1273.
178.M. He, J. Li, M. L. Sorensen, F. Zhang, R. R. Hancock, H. H. Fong, V. A. Pozdin, D.-M. Smilgies and G. G. Malliaras, J. Am. Chem. Soc. 2009, 131, 11930.
179.Y. He, W. Wu, G. Zhao, Y. Liu and Y. Li, Macromolecules 2008, 41, 9760.
180.M. Heeney, C. Bailey, K. Genevicius, M. Shkunov, D. Sparrowe, S. Tierney and I. McCulloch, J. Ame. Chem. Soc. 2005, 127, 1078.
181.I.-W. Hwang, J. Young Kim, S. Cho, J. Yuen, N. Coates, K. Lee, M. Heeney, I. McCulloch, D. Moses and A. J. Heeger, J. Phys. Chem. C 2008, 112, 7853.
182.H. Kong, D. H. Lee, I.-N. Kang, E. Lim, Y. K. Jung, J.-H. Park, T. Ahn, M. H. Yi, C. E. Park and H.-K. Shim, J. Mater. Chem. 2008, 18, 1895.
183.L. Biniek, S. Fall, C. L. Chochos, D. V. Anokhin, D. A. Ivanov, N. Leclerc, P. Lévêque and T. Heiser, Macromolecules 2010, 43, 9779.
184.J. Li, F. Qin, C. M. Li, Q. Bao, M. B. Chan-Park, W. Zhang, J. Qin and B. S. Ong, Chem. Mater. 2008, 20, 2057.
185.J. Li, H.-S. Tan, Z.-K. Chen, W.-P. Goh, H.-K. Wong, K.-H. Ong, W. Liu, C. M. Li and B. S. Ong, Macromolecules 2011, 44, 690.
186.Y. Liu, Y. Liu and X. Zhan, Macromol. Chem. Phys. 2011, 212, 428.
187.M. Mas-Torrent and C. Rovira, Chem. Soc. Rev. 2008, 37, 827.
188.I. McCulloch, M. Heeney, C. Bailey, K. Genevicius, I. MacDonald, M. Shkunov, D. Sparrowe, S. Tierney, R. Wagner, W. Zhang, M. L. Chabinyc, R. J. Kline, M. D. McGehee and M. F. Toney, Nat. Mater. 2006, 5, 328.
189.I. McCulloch, M. Heeney, M. L. Chabinyc, D. DeLongchamp, R. J. Kline, M. Cölle, W. Duffy, D. Fischer, D. Gundlach, B. Hamadani, R. Hamilton, L. Richter, A. Salleo, M. Shkunov, D. Sparrowe, S. Tierney and W. Zhang, Adv. Mater. 2009, 21, 1091.
190.L. San Miguel and A. J. Matzger, Macromolecules 2007, 40, 9233.
191.B. Milián Medina, A. Van Vooren, P. Brocorens, J. Gierschner, M. Shkunov, M. Heeney, I. McCulloch, R. Lazzaroni and J. Cornil, Chem. Mater. 2007, 19, 4949.
192.A. Pron, P. Gawrys, M. Zagorska, D. Djurado and R. Demadrille, Chem. Soc. Rev. 2010, 39, 2577.
193.Q. Sun, K. Park and L. Dai, J. Phys. Chem. C 2009, 113, 7892.
194.W. Tang, L. Ke, L. Tan, T. Lin, T. Kietzke and Z.-K. Chen, Macromolecules 2007, 40, 6164.
195.W. Wu, Y. Liu and D. Zhu, Chem. Soc. Rev. 2010, 39, 1489.
196.X. Zhang, S. D. Hudson, D. M. DeLongchamp, D. J. Gundlach, M. Heeney and I. McCulloch, Adv. Funct. Mater. 2010, 20, 4098.
197.K. H. Kim, D. S. Chung, C. E. Park and D. H. Choi, J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 55.
198.J. S. Ha, K. H. Kim and D. H. Choi, J. Am. Chem. Soc. 2011, 133, 10364.
199.D. S. Chung, H. Kong, W. M. Yun, H. Cha, H.-K. Shim, Y.-H. Kim and C. E. Park, Org. Electron. 2010, 11, 899.
200.S. Mohapatra, B. T. Holmes, C. R. Newman, C. F. Prendergast, C. D. Frisbie and M. D. Ward, Adv. Func. Mater. 2004, 14, 605.
201.Y. M. Kim, E. Lim, I.-N. Kang, B.-J. Jung, J. Lee, B. W. Koo, L.-M. Do and H.-K. Shim, Macromolecules 2006, 39, 4081.
202.J. Frey, A. D. Bond and A. B. Holmes, Chem. Comm. 2002, 2424.
203.X. Zhan, Z. a. Tan, B. Domercq, Z. An, X. Zhang, S. Barlow, Y. Li, D. Zhu, B. Kippelen and S. R. Marder, J. Am. Chem. Soc. 2007, 129, 7246.
204.M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople; Gaussian, Inc.: 2004.
205.I. H. Jung, Y. K. Jung, J. Lee, J.-H. Park, H. Y. Woo, J.-I. Lee, H. Y. Chu and H.-K. Shim, J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 7148.
206.B. L. Lee, K. M. Han, E. K. Lee, I. N. Kang, D. H. Kim and S. Lee, Synth. Met. 2009, 159, 132.
207.S. Paek, J. Lee, H. S. Lim, J. Lim, J. Y. Lee and C. Lee, Synth. Met. 2010, 160, 2273.
208.Y. Zhu, R. D. Champion and S. A. Jenekhe, Macromolecules 2006, 39, 8712.
209.J.-F. Chang, B. Sun, D. W. Breiby, M. M. Nielsen, T. I. Sölling, M. Giles, I. McCulloch and H. Sirringhaus, Chem. Mater. 2004, 16, 4772.
210.H. N. Tsao, D. M. Cho, I. Park, M. R. Hansen, A. Mavrinskiy, D. Y. Yoon, R. Graf, W. Pisula, H. W. Spiess and K. Müllen, J. Am. Chem. Soc. 2011, 133, 2605.
211.D. H. Kim, Y. Jang, Y. D. Park and K. Cho, J. Phys. Chem. B 2006, 110, 15763.
212.L. Qiu, W. H. Lee, X. Wang, J. S. Kim, J. A. Lim, D. Kwak, S. Lee and K. Cho, Adv. Mater. 2009, 21, 1349.
213.A. C. Grimsdale, K. Leok Chan, R. E. Martin, P. G. Jokisz and A. B. Holmes, Chem. Rev. 2009, 109, 897.
214.W.-C. Wu, C.-L. Liu and W.-C. Chen, Polymer 2006, 47, 527.
215.B. S. Ong, Y. Wu, P. Liu and S. Gardner, Adv. Mater. 2005, 17, 1141.
216.Y. Wu, Y. Li, B. S. Ong, P. Liu, S. Gardner and B. Chiang, Adv. Mater. 2005, 17, 184.
217.I. Osaka and R. D. McCullough, Acc. Chem. Res. 2008, 41, 1202.
218.G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery and Y. Yang, Nat. Mater. 2005, 4, 864.
219.C.-L. Liu, J.-H. Tsai, W.-Y. Lee, W.-C. Chen and S. A. Jenekhe, Macromolecules 2008, 41, 6952.
220.B. C. Thompson and J. M. J. Fréchet, Angew. Chem. Int. Ed. 2008, 47, 58.
221.M.-H. Lai, C.-C. Chueh, W.-C. Chen, J.-L. Wu and F.-C. Chen, J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 973.
222.S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee and A. J. Heeger, Nat. Photon. 2009, 3, 297.
223.J.-H. Tsai, C.-C. Chueh, M.-H. Lai, C.-F. Wang, W.-C. Chen, B.-T. Ko and C. Ting, Macromolecules 2009, 42, 1897.
224.Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray and L. Yu, Adv. Mater. 2010, 22, E135.
225.J.-H. Tsai, C.-C. Chueh, W.-C. Chen, C.-Y. Yu, G.-W. Hwang, C. Ting, E.-C. Chen and H.-F. Meng, J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 2351.
226.C. J. Brabec, M. Heeney, I. McCulloch and J. Nelson, Chem. Soc. Rev. 2011, 40, 1185.
227.Q.-D. Ling, D.-J. Liaw, C. Zhu, D. S.-H. Chan, E.-T. Kang and K.-G. Neoh, Prog. Polym. Sci. 2008, 33, 917.
228.Y.-K. Fang, C.-L. Liu, C. Li, C.-J. Lin, R. Mezzenga and W.-C. Chen, Adv. Funct. Mater. 2010, 20, 3012.
229.C.-L. Liu and W.-C. Chen, Polym. Chem. 2011, 2, 2169.
230.R. Ikegami, A. Koresawa, T. Shibata and K. Takagi, J. Org. Chem. 2003, 68, 2195.
231.G. Wang, J. Swensen, D. Moses and A. J. Heeger, J. Appl. Phys. 2003, 93, 6137.
232.Z. Bao, A. Dodabalapur and A. J. Lovinger, Appl. Phys. Lett. 1996, 69, 4108.
233.G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang and Y. Yang, Adv. Funct. Mater. 2007, 17, 1636.
234.J.-H. Tsai, Y.-C. Lai, T. Higashihara, C.-J. Lin, M. Ueda and W.-C. Chen, Macromolecules 2010, 43, 6085.
235.X. Yang, J. Loos, S. C. Veenstra, W. J. H. Verhees, M. M. Wienk, J. M. Kroon, M. A. J. Michels and R. A. J. Janssen, Nano Lett. 2005, 5, 579.
236.H. Eckhardt, L. W. Shacklette, K. Y. Jen and R. L. Elsenbaumer, J. Chem. Phys. 1989, 91, 1303.
237.A. Henckens, M. Knipper, I. Polec, J. Manca, L. Lutsen and D. Vanderzande, Thin Solid Films 2004, 451, 572.
238.B. Lim, K.-J. Baeg, H.-G. Jeong, J. Jo, H. Kim, J.-W. Park, Y.-Y. Noh, D. Vak, J.-H. Park, J.-W. Park and D.-Y. Kim, Adv. Mater. 2009, 21, 2808.
239.S.-Y. Jang, B. Lim, B.-K. Yu, J. Kim, K.-J. Baeg, D. Khim and D.-Y. Kim, J. Mater. Chem. 2011, 21, 11822.
240.P.-T. Wu, F. S. Kim and S. A. Jenekhe, Chem. Mater. 2011, 23, 4618.
241.C. C. Chueh, M. H. Lai, J. H. Tsai, C. F. Wang and W. C. Chen, J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 74.
242.J. Kim, B. Lim, K.-J. Baeg, Y.-Y. Noh, D. Khim, H.-G. Jeong, J.-M. Yun and D.-Y. Kim, Chem. Mater. 2011, 23, 4663.
243.A. P. Smith, R. R. Smith, B. E. Taylor and M. F. Durstock, Chem. Mater. 2004, 16, 4687.
244.C.-J. Lin, W.-Y. Lee, C. Lu, H.-W. Lin and W.-C. Chen, Macromolecules 2011, 44, 9565.
245.Y. Zou, W. Wu, G. Sang, Y. Yang, Y. Liu and Y. Li, Macromolecules 2007, 40, 7231.
246.A. L. Kanibolotsky, I. F. Perepichka and P. J. Skabara, Chem. Soc. Rev. 2010, 39, 2695.
247.W. L. Rance, B. L. Rupert, W. J. Mitchell, M. E. Köse, D. S. Ginley, S. E. Shaheen, G. Rumbles and N. Kopidakis, J. Phys. Chem. C 2010, 114, 22269.
248.C.-Q. Ma, M. Fonrodona, M. C. Schikora, M. M. Wienk, R. A. J. Janssen and P. Bäuerle, Adv. Funct. Mater. 2008, 18, 3323.
249.A. Operamolla and G. M. Farinola, Eur. J. Org. Chem. 2011, 2011, 423.
250.C.-Y. Yu, C.-P. Chen, S.-H. Chan, G.-W. Hwang and C. Ting, Chem. Mater. 2009, 21, 3262.
251.H. Yang, T. J. Shin, L. Yang, K. Cho, C. Y. Ryu and Z. Bao, Adv. Funct. Mater. 2005, 15, 671.
252.J. Schafferhans, A. Baumann, C. Deibel and V. Dyakonov, Appl. Phys. Lett. 2008, 93.
253.A. Gadisa, M. Svensson, M. R. Andersson and O. Inganäs, Appl. Phys. Lett. 2004, 84, 1609.
254.Y. Yang, J. Ouyang, L. Ma, R. J. H. Tseng and C. W. Chu, Adv. Funct. Mater. 2006, 16, 1001.
255.B. Cho, S. Song, Y. Ji, T.-W. Kim and T. Lee, Adv. Funct. Mater. 2011, 21, 2806.
256.T. Sekitani, T. Yokota, U. Zschieschang, H. Klauk, S. Bauer, K. Takeuchi, M. Takamiya, T. Sakurai and T. Someya, Science 2009, 326, 1516.
257.J. Ouyang, C.-W. Chu, C. R. Szmanda, L. Ma and Y. Yang, Nat. Mater. 2004, 3, 918.
258.X.-D. Zhuang, Y. Chen, G. Liu, P.-P. Li, C.-X. Zhu, E.-T. Kang, K.-G. Noeh, B. Zhang, J.-H. Zhu and Y.-X. Li, Adv. Mater. 2010, 22, 1731.
259.M. Mushrush, A. Facchetti, M. Lefenfeld, H. E. Katz and T. J. Marks, J. Am. Chem. Soc. 2003, 125, 9414.
260.Y. Guo, C.-a. Di, S. Ye, X. Sun, J. Zheng, Y. Wen, W. Wu, G. Yu and Y. Liu, Adv. Mater. 2009, 21, 1954.
261.W. J. Yu, B. R. Kang, I. H. Lee, Y.-S. Min and Y. H. Lee, Adv. Mater. 2009, 21, 4821.
262.H. Wang, Y. Q. Peng, Z. Y. Ji, M. Liu, L. W. Shang and X. H. Liu, Chin. Sci. Bull. 2011, 56, 1325.
263.J.-C. Hsu, W.-Y. Lee, H.-C. Wu, K. Sugiyama, A. Hirao and W.-C. Chen, J. Mater. Chem. 2012, 22, 5820.
264.T. B. Singh, N. Marjanović, G. J. Matt, N. S. Sariciftci, R. Schwödiauer and S. Bauer, Appl. Phys. Lett. 2004, 85, 5409.
265.S. Myung, J. Park, H. Lee, K. S. Kim and S. Hong, Adv. Mater. 2010, 22, 2045.
266.H.-C. Chang, C. Lu, C.-L. Liu and W.-C. Chen, Adv. Mater. 2015, 27, 27.
267.M. Kang, D. Khim, W. T. Park, J. Kim, J. Kim, Y. Y. Noh, K. J. Baeg and D. Y. Kim, Sci. Rep. 2015, 5.
268.B. Park, S. Choi, S. Graham and E. Reichmanis, J. Phys. Chem. C 2012, 116, 9390.
269.R. C. G. Naber, C. Tanase, P. W. M. Blom, G. H. Gelinck, A. W. Marsman, F. J. Touwslager, S. Setayesh and D. M. de Leeuw, Nat. Mater. 2005, 4, 243.
270.S. J. Kang, I. Bae, Y. J. Shin, Y. J. Park, J. Huh, S.-M. Park, H.-C. Kim and C. Park, Nano Lett. 2011, 11, 138.
271.M. A. Khan, U. S. Bhansali and H. N. Alshareef, Adv. Mater. 2012, 24, 2165.
272.L. Bürgi, M. Turbiez, R. Pfeiffer, F. Bienewald, H.-J. Kirner and C. Winnewisser, Adv. Mater. 2008, 20, 2217.
273.J. Fan, J. D. Yuen, M. Wang, J. Seifter, J.-H. Seo, A. R. Mohebbi, D. Zakhidov, A. Heeger and F. Wudl, Adv. Mater. 2012, 24, 2186.
274.F. S. Kim, X. Guo, M. D. Watson and S. A. Jenekhe, Adv. Mater. 2010, 22, 478.
275.H.-W. Lin, W.-Y. Lee and W.-C. Chen, J. Mater. Chem. 2012, 22, 2120.
276.K. Lee and S. Im, Phys. Status Solidi 2014, 211, 2886.
277.M. Irimia-Vladu, Chem. Soc. Rev. 2014, 43, 6470.
278.Y. Zhou, S. T. Han, Y. Yan, L. Zhou, L. B. Huang, J. Q. Zhuang, P. Sonar and V. A. L. Roy, Sci. Rep. 2015, 5.
279.W. Elsawy, M. Son, J. Jang, M. J. Kim, Y. Ji, T.-W. Kim, H. C. Ko, A. Elbarbary, M.-H. Ham and J.-S. Lee, Acs Macro. Lett. 2015, 4, 322.
280.M. Shahid, R. S. Ashraf, Z. Huang, A. J. Kronemeijer, T. McCarthy-Ward, I. McCulloch, J. R. Durrant, H. Sirringhaus and M. Heeney, J. Mater. Chem. 2012, 22, 12817.
281.J. W. Jung, F. Liu, T. P. Russell and W. H. Jo, Energy Environ. Sci. 2012, 5, 6857.
282.W. J. Hehre, R. Ditchfield and J. A. Pople, J. Chem. Phys 1972, 56, 2257.
283.P. Heremans, G. H. Gelinck, R. Müller, K.-J. Baeg, D.-Y. Kim and Y.-Y. Noh, Chem. Mater. 2011, 23, 341.
284.S. G. J. Mathijssen, M. Cölle, H. Gomes, E. C. P. Smits, B. de Boer, I. McCulloch, P. A. Bobbert and D. M. de Leeuw, Adv. Mater. 2007, 19, 2785.
285.M. Tello, M. Chiesa, C. M. Duffy and H. Sirringhaus, Adv. Funct. Mater. 2008, 18, 3907.
286.H.-J. Yun, S.-J. Kang, Y. Xu, S. O. Kim, Y.-H. Kim, Y.-Y. Noh and S.-K. Kwon, Adv. Mater. 2014, 26, 7300.
287.M. Debucquoy, M. Rockelé, J. Genoe, G. H. Gelinck and P. Heremans, Org. Electron. 2009, 10, 1252.
288.S. Myung, S. Woo, J. Im, H. Lee, Y. S. Min, Y. K. Kwon and S. Hong, Nanotechnology 2010, 21.
289.B. N. Pal, P. Trottman, J. Sun and H. E. Katz, Adv. Funct. Mater. 2008, 18, 1832.
290.S. Chun-Hsing and L. Ji-Ting, Electron Devices, IEEE Transactions on 2010, 57, 1774.
291.G. Casalbore-Miceli, M. C. Gallazzi, S. Zecchin, N. Camaioni, A. Geri and C. Bertarelli, Adv. Funct. Mater. 2003, 13, 307.
292.D. S. Chung, I. Kang, Y.-H. Kim and S.-K. Kwon, Phys. Chem. Chem. Phys. 2013, 15, 14777.
293.J. I. Sohn, S. S. Choi, S. M. Morris, J. S. Bendall, H. J. Coles, W.-K. Hong, G. Jo, T. Lee and M. E. Welland, Nano Lett. 2010, 10, 4316.
294.Y.-C. Chiu, C.-L. Liu, W.-Y. Lee, Y. Chen, T. Kakuchi and W.-C. Chen, Npg Asia Mater. 2013, 5, e35.
295.B. C. Schroeder, Z. Huang, R. S. Ashraf, J. Smith, P. D''Angelo, S. E. Watkins, T. D. Anthopoulos, J. R. Durrant and I. McCulloch, Adv. Funct. Mater. 2012, 22, 1663.
296.X. Zhu, J. Fang, K. Lu, J. Zhang, L. Zhu, Y. Zhao, Z. Shuai and Z. Wei, Chem. Mater. 2014, 26, 6947.
297.M. J. Zhang, X. Guo, W. Ma, S. Q. Zhang, L. J. Huo, H. Ade and J. H. Hou, Adv. Mater. 2014, 26, 2089.
298.H. X. Zhou, L. Q. Yang and W. You, Macromolecules 2012, 45, 607.
299.J. H. Kim, J. B. Park, F. Xu, D. Kim, J. Kwak, A. C. Grimsdale and D. H. Hwang, Energy Environ. Sci. 2014, 7, 4118.
300.A. C. Stuart, J. R. Tumbleston, H. X. Zhou, W. T. Li, S. B. Liu, H. Ade and W. You, J. Am. Chem. Soc. 2013, 135, 1806.
301.H.-C. Chen, Y.-H. Chen, C.-H. Liu, Y.-H. Hsu, Y.-C. Chien, W.-T. Chuang, C.-Y. Cheng, C.-L. Liu, S.-W. Chou, S.-H. Tung and P.-T. Chou, Polym. Chem. 2013, 4, 3411.
302.J. G. Mei, D. H. Kim, A. L. Ayzner, M. F. Toney and Z. A. Bao, J. Am. Chem. Soc. 2011, 133, 20130.
303.Y. Zhou, T. Kurosawa, W. Ma, Y. K. Guo, L. Fang, K. Vandewal, Y. Diao, C. G. Wang, Q. F. Yan, J. Reinspach, J. G. Mei, A. L. Appleton, G. I. Koleilat, Y. L. Gao, S. C. B. Mannsfeld, A. Salleo, H. Ade, D. H. Zhao and Z. N. Bao, Adv. Mater. 2014, 26, 3767.
304.J. R. Matthews, W. J. Niu, A. Tandia, A. L. Wallace, J. Y. Hu, W. Y. Lee, G. Giri, S. C. B. Mannsfeld, Y. T. Xie, S. C. Cai, H. H. Fong, Z. N. Bao and M. Q. He, Chem. Mater. 2013, 25, 782.
305.H. C. Chen, Y. H. Chen, C. C. Liu, Y. C. Chien, S. W. Chou and P. T. Chou, Chem. Mater. 2012, 24, 4766.
306.M. J. Zhang, Y. Gu, X. Guo, F. Liu, S. Q. Zhang, L. J. Huo, T. P. Russell and J. H. Hou, Adv. Mater. 2013, 25, 4944.
307.I. Osaka, T. Kakara, N. Takemura, T. Koganezawa and K. Takimiya, J. Am. Chem. Soc. 2013, 135, 8834.
308.M. J. Zhang, X. Guo, S. Q. Zhang and J. H. Hou, Adv. Mater. 2014, 26, 1118.
309.C. Z. Li, C. Y. Chang, Y. Zang, H. X. Ju, C. C. Chueh, P. W. Liang, N. Cho, D. S. Ginger and A. K. Y. Jen, Adv. Mater. 2014, 26, 6262.
310.Z. C. He, C. M. Zhong, X. Huang, W. Y. Wong, H. B. Wu, L. W. Chen, S. J. Su and Y. Cao, Adv. Mater. 2011, 23, 4636.
311.X. H. Li, W. C. H. Choy, L. J. Huo, F. X. Xie, W. E. I. Sha, B. F. Ding, X. Guo, Y. F. Li, J. H. Hou, J. B. You and Y. Yang, Adv. Mater. 2012, 24, 3046.
312.Z. G. Zhang, B. Y. Qi, Z. W. Jin, D. Chi, Z. Qi, Y. F. Li and J. Z. Wang, Energy Environ. Sci. 2014, 7, 1966.
313.Z. Y. Zhang, F. Lin, H. C. Chen, H. C. Wu, C. L. Chung, C. Lu, S. H. Liu, S. H. Tung, W. C. Chen, K. T. Wong and P. T. Chou, Energy Environ. Sci. 2015, 8, 552.
314.N. E. Jackson, B. M. Savoie, K. L. Kohlstedt, M. O. de la Cruz, G. C. Schatz, L. X. Chen and M. A. Ratner, J. Am. Chem. Soc. 2013, 135, 10475.
315.R. S. Ashraf, A. J. Kronemeijer, D. I. James, H. Sirringhaus and I. McCulloch, Chem. Commun. 2012, 48, 3939.
316.P. Deng and Q. Zhang, Polym. Chem. 2014, 5, 3298.
317.O. Vybornyi, Y. Jiang, F. Baert, D. Demeter, J. Roncali, P. Blanchard and C. Cabanetos, Dyes Pigm. 2015, 115, 17.
318.Z. F. Ma, E. G. Wang, M. E. Jarvid, P. Henriksson, O. Inganas, F. L. Zhang and M. R. Andersson, J. Mater. Chem. 2012, 22, 2306.
319.Z. F. Ma, D. F. Dang, Z. Tang, D. Gedefaw, J. Bergqvist, W. G. Zhu, W. Mammo, M. R. Andersson, O. Inganas, F. L. Zhang and E. G. Wang, Adv. Energy Mater. 2014, 4.
320.K. C. Cao, Z. W. Wu, S. G. Li, B. Q. Sun, G. B. Zhang and Q. Zhang, J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 94.
321.L. Huo, S. Zhang, X. Guo, F. Xu, Y. Li and J. Hou, Angew. Chem. Int. Ed. 2011, 50, 9697.
322.J. Mei, K. R. Graham, R. Stalder and J. R. Reynolds, Org. Lett. 2010, 12, 660.
323.W. J. Hehre, Ditchfie.R and J. A. Pople, J. Chem. Phys. 1972, 56, 2257.
324.Y. Wang and M. Lieberman, Langmuir 2003, 19, 1159.
325.R. C. Coffin, J. Peet, J. Rogers and G. C. Bazan, Nat. Chem. 2009, 1, 657.
326.Y. Koizumi, M. Ide, A. Saeki, C. Vijayakumar, B. Balan, M. Kawamoto and S. Seki, Polym. Chem. 2013, 4, 484.
327.H. C. Liao, C. C. Ho, C. Y. Chang, M. H. Jao, S. B. Darling and W. F. Su, Mater. Today 2013, 16, 326.
328.T. Earmme, Y. J. Hwang, N. M. Murari, S. Subramaniyan and S. A. Jenekhe, J. Am. Chem. Soc. 2013, 135, 14960.
329.H. Y. Li, Y. J. Hwang, T. Earmme, R. C. Huber, B. A. E. Courtright, C. O''Brien, S. H. Tolbert and S. A. Jenekhe, Macromolecules 2015, 48, 1759.
330.M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger and C. J. Brabec, Adv. Mater. 2006, 18, 789.
331.M. S. Chen, J. R. Niskala, D. A. Unruh, C. K. Chu, O. P. Lee and J. M. J. Frechet, Chem. Mater. 2013, 25, 4088.
332.X. R. Zhang, L. J. Richter, D. M. DeLongchamp, R. J. Kline, M. R. Hammond, I. McCulloch, M. Heeney, R. S. Ashraf, J. N. Smith, T. D. Anthopoulos, B. Schroeder, Y. H. Geerts, D. A. Fischer and M. F. Toney, J. Am. Chem. Soc. 2011, 133, 15073.
333.A. El Labban, J. Warnan, C. Cabanetos, O. Ratel, C. Tassone, M. F. Toney and P. M. Beaujuge, ACS Appl. Mater. Inter. 2014, 6, 19477.
334.T. Schuettfort, L. Thomsen and C. R. McNeill, J. Am. Chem. Soc. 2013, 135, 1092.
335.W. L. Leong, S. R. Cowan and A. J. Heeger, Adv. Energy Mater. 2011, 1, 517.
336.A. Baumann, T. J. Savenije, D. H. K. Murthy, M. Heeney, V. Dyakonov and C. Deibel, Adv. Funct. Mater. 2011, 21, 1687.
337.H. Zang, Y. Liang, L. Yu and B. Hu, Adv. Energy Mater. 2011, 1, 923.
338.R. A. J. Janssen and J. Nelson, Adv. Mater. 2013, 25, 1847.
339.S. Savagatrup, A. D. Printz, T. F. O’Connor, A. V. Zaretski and D. J. Lipomi, Chem. Mater. 2014, 26, 3028.
340.M. Shin, J. Y. Oh, K. E. Byun, Y. J. Lee, B. Kim, H. K. Baik, J. J. Park and U. Jeong, Adv. Mater. 2015, 27, 1255.
341.S. Savagatrup, A. S. Makaram, D. J. Burke and D. J. Lipomi, Adv. Funct. Mater. 2014, 24, 2264.
342.T. Sekitani and T. Someya, Adv. Mater. 2010, 22, 2228.
343.V. Pistor, D. de Conto, F. G. Ornaghi and A. J. Zattera, J. Nanomater. 2012.
344.H. Schönherr, W. Wiyatno, J. Pople, C. W. Frank, G. G. Fuller, A. P. Gast and R. M. Waymouth, Macromolecules 2002, 35, 2654.
345.B. Fu, J. Baltazar, A. R. Sankar, P.-H. Chu, S. Zhang, D. M. Collard and E. Reichmanis, Adv. Funct. Mater. 2014, 24, 3734.
346.N. A. Dotson, T. Diekmann, C. W. Macosko and M. Tirrell, Macromolecules 1992, 25, 4490.
347.S. Savagatrup, A. D. Printz, D. Rodriquez and D. J. Lipomi, Macromolecules 2014, 47, 1981.
348.B. T. O''Connor, O. G. Reid, X. Zhang, R. J. Kline, L. J. Richter, D. J. Gundlach, D. M. DeLongchamp, M. F. Toney, N. Kopidakis and G. Rumbles, Adv. Funct. Mater. 2014, 24, 3422.
349.M. S. Chen, J. R. Niskala, D. A. Unruh, C. K. Chu, O. P. Lee and J. M. J. Fréchet, Chem. Mater. 2013, 25, 4088.
350.X. Zhang, L. J. Richter, D. M. DeLongchamp, R. J. Kline, M. R. Hammond, I. McCulloch, M. Heeney, R. S. Ashraf, J. N. Smith, T. D. Anthopoulos, B. Schroeder, Y. H. Geerts, D. A. Fischer and M. F. Toney, J. Am. Chem. Soc. 2011, 133, 15073.
351.J. R. Matthews, W. Niu, A. Tandia, A. L. Wallace, J. Hu, W.-Y. Lee, G. Giri, S. C. B. Mannsfeld, Y. Xie, S. Cai, H. H. Fong, Z. Bao and M. He, Chem. Mater. 2013, 25, 782.
352.J. S. Lee, S. K. Son, S. Song, H. Kim, D. R. Lee, K. Kim, M. J. Ko, D. H. Choi, B. Kim and J. H. Cho, Chem. Mater. 2012, 24, 1316.
353.L. A. Perez, P. Zalar, L. Ying, K. Schmidt, M. F. Toney, T.-Q. Nguyen, G. C. Bazan and E. J. Kramer, Macromolecules 2014, 47, 1403.
354.W.-Y. Lee, G. Giri, Y. Diao, C. J. Tassone, J. R. Matthews, M. L. Sorensen, S. C. B. Mannsfeld, W.-C. Chen, H. H. Fong, J. B. H. Tok, M. F. Toney, M. He and Z. Bao, Adv. Funct. Mater. 2014, 24, 3524.
355.A. Virkar, S. Mannsfeld, J. H. Oh, M. F. Toney, Y. H. Tan, G.-y. Liu, J. C. Scott, R. Miller and Z. Bao, Adv. Funct. Mater. 2009, 19, 1962.
356.Y. Ito, A. A. Virkar, S. Mannsfeld, J. H. Oh, M. Toney, J. Locklin and Z. Bao, J. Am. Chem. Soc. 2009, 131, 9396.
357.S. C. B. Mannsfeld, M. L. Tang and Z. Bao, Adv. Mater. 2011, 23, 127.
358.K.-i. Akabori, K. Tanaka, T. Nagamura, A. Takahara and T. Kajiyama, Macromolecules 2005, 38, 9735.
359.D. R. Breese and G. Beaucage, J. Polym. Sci., Part B: Polym. Phys. 2008, 46, 607.
360.M. Tosaka, Polym. J 2007, 39, 1207.
361.J. Rivnay, R. Noriega, R. J. Kline, A. Salleo and M. F. Toney, Phys Rev B 2011, 84, 045203.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top