跳到主要內容

臺灣博碩士論文加值系統

訪客IP:216.73.216.19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周明宇
研究生(外文):Chou, Ming-Yu
論文名稱:黃耆對抗疲勞及延緩衰老之研究
論文名稱(外文):The Effect of Astragalus on Ameliorate Fatigue and Delaying Aging
指導教授:王銘富王銘富引用關係郭俊巖郭俊巖引用關係
指導教授(外文):Wang, Ming-FuKuo, Chun-Yen
口試委員:謝明哲黃克峯何若瑄
口試委員(外文):Hsieh, Ming-JerHuang, Keh-FengHo, Jou-Hsuan
口試日期:2020-03-13
學位類別:博士
校院名稱:靜宜大學
系所名稱:食品營養學系
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:120
中文關鍵詞:黃耆老化促進小鼠運動能力學習記憶能力延緩衰老
外文關鍵詞:AstragalusSenescence-accelerated miceSports performanceLearning and memoryAnti-aging
相關次數:
  • 被引用被引用:0
  • 點閱點閱:865
  • 評分評分:
  • 下載下載:104
  • 收藏至我的研究室書目清單書目收藏:0
黃耆為中醫廣泛使用的藥材,具有免疫調節、抗氧化等功效,本研究目的為探討黃耆對提升運動表現及延緩衰老之功效性。實驗分兩部分,實驗一以雄性4月齡SAMP8 (senescence-accelerated mouse prone-8;SAMP8)小鼠為實驗對象,分為對照組及低(410mg/ kg BW /day)、中(1230mg/ kg BW /day)、高劑量試驗組(4100mg/ kg BW /day),對照組給予ddH2O,連續管灌餵食8週。結果顯示,補充黃耆組皆能降低運動測試中第2、4及6週之電擊次數(p<0.05);在游泳力竭時間上高劑量組之力竭時間明顯較對照組長 (p<0.05)。在血液分析結果顯示中、高劑量組之血尿素氮及血乳酸濃度顯著低於對照組(p<0.05),其餘生化值皆無差異。
實驗二選用3月齡SAMP8雄性及雌性小鼠,隨機分成對照組、實驗組A (黃耆原料,820mg /kg BW/day)及實驗組B(黃耆複方,6.2 ml/kg BW/day),實驗為期8週。結果顯示,實驗組皆具較佳之學習記憶能力 (p<0.05)。老化指數部分,實驗B組小鼠老化指數總分顯著低於對照組 (p<0.05)。腦部及肝臟組織老化之生物活性指標結果發現,實驗組皆能顯著降低腦部及肝臟TBARS含量(p<0.05)。在抗氧化分析結果中,實驗組之SOD(superoxide dismutase)、Catalase活性均顯著高於對照組(p<0.05),其中又以實驗B組的效果較佳。
綜合以上兩實驗結果,小鼠補充黃耆可有效地提升運動能力表現,增加小鼠體內抗氧化能力,減少腦部及肝臟之氧化損傷,進而達到抗疲勞及延緩衰老之效果。

Astragalus is a widely used medical material in Chinese medicine, which has immunosmodulatory and antioxidant effects. The purpose of this study was to investigate the effects of Astragalus on improving sports performance and anti-aging senescence accelerated mice(SAMP8). The experiment divided to two parts, the first experiment was used 4-month-old male SAMP8 mice. The forty mice were randomly divided into control group, low dose group (410 mg / kg BW / day), medium dose group (1230 mg / kg BW / day) and high dose group (4100 mg / kg BW / day). In the exercise test, the retention frequencies of 2nd, 4th and 6th week of experimental groups were significantly lower than control group (p<0.05). The swimming exhaustion time of the experimental groups were significantly longer than control group (p<0.05). Analysis of blood lactic acid and blood urea nitrogen concentration showed that medium dose and high dose groups were significantly lower than control group ( p<0.05).
In the second experiment, 3-month-old male and female SAMP8 mice were divided into three groups, including control group, groupA (astragalus, 820mg/kgBW/day) and group B (astragaluscomplex, 6.2ml/kgBW/day). The experimental period lasted for 8 weeks. The results showed that there was no significant difference in food intakes, water consumption and body weight among groups. The single-trial passive avoidance test and active shuttle avoidance test results showed that the learning and memory ability of the group A and group B were better than control group (p<0.05). The total aging score of group B was significantly lower than other groups (p<0.05). Analysis of tissue biochemical indicators showed that group A and group B could decrease TBARS contents in brain and liver (p<0.05). The analysis of antioxidant capacity, the experimental groups increased activity level of superoxide dismutase (SOD) and catalase (p<0.05).
In summary, the supplement of astragalus could improve sports performance, increase the antioxidant capacity, reduce oxidative damage and then delaying aging.

摘要I
目錄V
表目錄IX
圖目錄XII
第一章 前言1
第二章 文獻回顧5
第一節 黃耆5
一、黃耆簡介5
二、黃耆選材與分類7
三、黃耆的生理功能10
四、黃耆多醣與黃耆皂苷之功效12
第二節 運動與疲勞13
第三節 老化17
一、老化現象17
二、老化與自由基20
第四節 老化促進小鼠25
一、老化促進小鼠品系25
二、老化促進小鼠之特徵25
三、老化指數評估28
第三章 材料與方法31
【實驗一】
第一節 實驗動物31
第二節 實驗材料與劑量32
一、實驗材料與動物分組32
二、實驗劑量換算32
第三節 實驗流程與方法33
一、實驗流程33
二、運動測試35
三、前肢抓力測定36
四、游泳力竭測試37
五、血清生化分析38
六、肝臟肝醣分析38
第四節 統計分析38
【實驗二】
第一節 實驗動物39
第二節 實驗材料及劑量39
一、實驗材料與動物分組39
二、實驗劑量換算40
第三節 實驗流程與方法40
一、實驗流程40
二、活動量(LOCOMOTION)測試42
三、老化指數(GRADING SCORE)評估43
四、血清生化值分析44
五、腦部與肝臟組織老化之生物活性指標測定45
第四節 統計分析54
第四章 實驗結果55
【實驗一】
第一節 體重、攝食量、飲水量55
第二節 運動表現能力56
一、運動測試56
二、前肢抓力與游泳力竭測試68
第三節 器官重量之變化72
第四節 血清生化值分析74
第五節 血乳酸及肝醣含量76
【實驗二】
第一節 體重、攝食量、飲水量80
第二節 老化指數81
第三節 活動量83
第四節 器官重量之變化84
第五節 血清生化值分析86
第六節 腦部與肝臟組織老化之生物活性指標測定88
一、腦部組織之生物活性指標測定88
二、肝臟組織老化之生物活性指標測定100
三、肝臟抗氧化生化指標測定103
第五章 綜合討論109
第六章 結論與建議112
第七章 參考文獻114

中國藥典委員會,新編中國藥典中藥彩色圖集,旺文社股份有限公司,台北,1999.3;398-399。
內政部統計處,107年內政統計年報電子書,台北, 2019.10。
內政部統計處,內政國際指標,台北, 2019.11.29。
內政部統計處,內政統計月報,台北,2020.3.7。
內政部統計處,內政統計通報-108年第37週,台北,2019.9.11。
同仁堂養生館編委會,中藥養生事典,新視野圖書出版公司,台北,2006.2;37-39。
余丹鳳、孔繁智、朱婉萍、李靜,黃耆多糖抗呼吸道綠膿桿菌感染的實驗研究,中國中西藥結合急救雜誌,北京,2007;14:76-80。
吳棟、吳煥,實用中藥學,晨星出版有限公司,台中,2014.3;548-550。
宋小妹、唐志書,中藥化學成分提取分離與製備,人民衛生出版社,北京,2007.6;444-448。
李時珍(明)著,俞小平、黃志杰主編,本草綱目白話精解全書,鴻毅圖書有限公司,台北,2003.4;300-303。
李時珍(明)著,俞小平、黃志杰主編,李洁策劃編輯,本草綱目精譯,科學技術文獻出版社,北京,1999.2;191-193。
李燕玉、徐麗梅、宋艷紅、陳雪濤、張波、劉又寧,黃耆對加速度暴露後大鼠TNF-α和IL-1β水平及其在肺組織中mRNA表達的影響,軍醫進修學院學報,北京,2007;28:68-70。
沈書萍、楊慧貞、徐雲卓等,黃耆提取液小劑量口服預防小兒上呼吸道感染100例,江蘇中醫,江蘇,1988;9:32。
周明宇,臺灣育成專案的風險及其對策研究,中國科學院管理學院博士論文,北京,2012.6。
姚秀俊、韓波、張建軍、韓秀珍,干擾素和黃耆對小鼠病毒性心肌炎TNF-α影響的研究,臨床兒科雜誌,2007;25:51-53。
高木敬次郎、木村正康、原田正敏、大塚恭男等編、何志鋒譯,和漢藥物學,國立中國醫藥研究所,台北,1992.5;69-71。
康鑑文化編輯部,中藥材食療事典,源樺出版事業股份有限公司,台北,2009.1;200-201。
張貴君、陳玉婷、楊雲、王英華等編,常用中藥化學鑒定,化學工業出版社,北京,2005.4;158-159。
張學文、陳尚璉、陶根魚、李守朝、王建英等,通脈舒絡液治療腦血栓形成110例臨床觀察,新中醫,廣州,1982;3:37。
陳榮福,中藥藥理學,國立中國醫藥研究所,台北,1991.5;73-76。
程超寰、杜漢陽,本草藥名匯考,上海古籍出版社,上海,2004.12;571-573。
黃品潔,黃耆基原鑑定與多序岩黃耆活性成分之探討,宜蘭大學食品科學學系碩士論文,宜蘭,2019.8;161。
劉崇祥,黃耆對腦中風後患者疲勞之療效評估:一個隨機、雙盲、對照組的研究,中國醫學大學中西醫結合研究所博士論文,台中,2017.01.09;9-14。
衛生福利部,中華民國106年老人狀況調查報告,台北,2018.9。
鄧樹勳、王健,運動生理學-理論與應用。冠學文化,台北,2004;1-22。
閻玉凝,中藥鑒定學,科技圖書股份有限公司,台北,2006.8;61-62。
霍根紅,黃耆心血管藥理作用研究進展,河南中醫學院學報,河南,2007;22(1)86-88。
謝明哲,保健食品全事典,三采文化出版事業有限公司,台北,2012.8;14-18。
謝明哲、王銘富,健康抗老要趁藻-營養博士的不老秘密,三養顧問有限公司,台北,2013.12;21-22。
謝明哲、陳淑子、趙振瑞、蔡雅惠、楊素卿、陳雅琳、邱琬淳、簡怡雯,生命期營養,禾楓書局有限公司,台北,2006.6;(9)。
顏正華,中藥學,知音出版社,台北,1998.2;744-750。
Akiguchi I, Yagi H, Ueno M, Takemura M, Kitabayashi T, Seriu N, Kawamata T, Nakamura S, Shimada A, Takeda T. Age related morphological changes in the brain of senescence-accelerated mouse (SAMP8). In The SAM Model of Senescence, Proceeding of the First International Conference on Senescence. 1994; 25:67-72.
Abuelsaad AS. Supplementation with Astragalus polysaccharides alters Aeromonas-induced tissue-specific cellular immune response. Microb Pathog. 2014;66:48-56.
Blomstrand E. A role for branched-chain amino acid in reducing central fatigue. J Nutr. 2006;136(2):544-547.
Bogdanis GC. Effects of physical activity and inactivity on muscle fatigue. Front Physiol. 2012;3:142.
Boyas S and Guével A. Neuromuscular fatigue in healthy muscle: underlying factors and adaptation mechanisms. Ann Phys Rehabil Med. 2011;54(2):88-108.
Brown GW. Onser and course of depressive disorders:Summary of research programme.In.1996.
Cai Zhi-you YY. Pathway and mechanism of oxidative stress in Alzheimer's disease. Journal of Medical Colleges of PLA. 2007;22:320-325.
Carins SP. Lactic acid and exercise performance: culprit or friend? Sports Med. 2006;36(4):279-291.
Chen HW, Lin IH, Chen YJ, Chang KH, Wu WH, Su WH, Huang GC, Lai YL. A novel infusible botanically-derived drug, PG2, for cancer-related fatigue: a phase Ⅱ double-blind, randomized placebo-controlled study. Clinical and investigative medicine. Medecine clinique et experimentale 2012;35:E1-11.
Cheng H, Yu J, Jiang Z, Zhang X, Liu C, Peng Y. Acupuncture improves cognitive deficits and regulates the brain cell proliferation of SAMP8 mice. Neurosci Lett. 2008;432(2):111-116.
Chien CT, Lee PH, Chen F, Ma MC, Lai MK, Hsu SM. De novo demonstration and co-localization of free-radical production and apoptosis formation in rat kidney subjected to ischemia reperfusion. J Am Soc Nephrol. 2001; 12:973-982.
Elaine R, Peskind MD. Neurobiology of Alzheimer’s disease. J Clin Psychiatry 1996; 57: 5-8.
Flood JF, Morley JE. Learning and memory in the SAMP8 mouse. Neurosci Biobehav Rev. 1998; 22(1):1-20.
Geula C, C K Wu, D Saroff, A Lorenzo, M Yuan, B A Yankner. Aging renders the brain vulnerable to amyloid beta-protein neurotoxicity: Nat Med, 1998; 4: 827-831.
Glenner GG, C W Wong. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein: Biochem Biophys Res Commun, 1984; 120: 885-890.
Gomez-Cabrera MC, Domenech E, Vina J. Moderate exercise is an antioxidant: upregulation of antioxidant genes by training. Free Radic Biol Med. 2008;44(2):126-131.
Gui SY, Wei W, Wang H, Wu L, Sun WY, Chen WB, Wu CY. Effects and mechanisms of crude astragalosides fraction on liver fibrosis in rats. J Ethnopharmacol. 2006; 103(2):154-159.
Halliwell B, Gutteridge J MC, Cross CE. Free radicals, antioxidants and human disease : where are we now ? J. Lab. Clin. Med. 1992; 119(6): 598-620.
He C Tu, Y Liu, Role of lncRNAs in aging and age-related diseases, Aging Medic.2018; 1(2):158–175.
Hong L, Bin W, Wei-Ping L, Yan Y, Ai-Wu Z, Min-Zhu C. Anti-aging effect of astragalosides and its mechanism of action. Acta Pharmacol Sin. 2003; 24 (3): 230 -234.
Jin M, Zhao K, Huang Q, Shang P. Structural features and biological activities of the polysaccharides from Astragalus membranaceus. Int J Biol Macromol. 2014 ;64:257-66.
Keyser RE. Peripheral fatigue: high-energy phosphates and hydrogen ions. PM R. 2010;2(5):347-358.
Kiyohara H, Uchida T, Takakiwa M, Matsuzaki T, Hada N, Takeda T, Shibata T, Yamada H. Different contributions of side-chains in beta-D-(1-->3,6)-galactans on intestinal Peyer's patch-immunomodulation by polysaccharides from Astragalus mongholics Bunge. j.phytochem.2010.
Lambert EV, St Clair Gibson A, Noakes TD. Complex systems models of fatigue: integrative homoeostatic control of peripheral physiological systems during exercise in humans. Br J Sports Med. 2005;39:52-62.
Liu P, Zhao H, Luo Y. Anti-Aging Implications of Astragalus Membranaceus (Huangqi): A Well-Known Chinese Tonic. Aging Dis. 2017;8:868–886.
Lei H, Wang B, Li WP, Yang Y, Zhou AW, Chen MZ. Anti-aging effect of astragalosides and its mechanism of action . Acta Pharmacol Sin 2003; 24(3):230-234.
Luo Y, Qin Z, Hong Z, Zhang X, Ding D, Fu JH, Zhang WD, Chen J. Astragaloside IV protects against ischemic brain injury in a murine model of transient focal ischemia. Neurosci Lett. 2004;363:218-23.
Liu Y, Liu F, Yang Y, Li D, Lv J, Ou Y, Sun F, Chen J, Shi Y, Xia P. Astragalus polysaccharide ameliorates ionizing radiation-induced oxidative stress in mice. Int J Biol Macromol. 2014;68:209-214.
Ma X, Shi Q, Duan A, Dong T. Chemical analysis of radix astragali(Huangqi) in China: A comparison with its adulterants and seasonal variations. Journal of Agricultural and Food Chemistry. 2002;50:4861-4866.
Maclaren DP, Gibson H, Parry-Billings M, Edwards RH. A review of metabolic and physiological factors in fatigue. Exerc Sport Sci Rev. 1989;17:29-66.
Markesbery WR. Oxidative stress hypothesis in Alzheimer's disease.Free Radic Biol Med. 1997;23:134-147.
Masters CL, G Multhaup, G Simms, J Pottgiesser, R N Martins, K Beyreuther. Neuronal origin of a cerebral amyloid: neurofibrillary tangles of Alzheimer's disease contain the same protein as the amyloid of plaque cores and blood vessels: Embo 1985; 4: 2757-2763.
Mao XQ, Yu F, Wang N, Wu Y, Zou F, Wu K, Liu M, Ouyang JP. Hypoglycemic effect of polysaccharide enriched extract of Astragalus membranaceus in diet induced insulin resistant C57BL/6J mice and its potential mechanism. Phytomedicine. 2009; 16(5): 416-425.
Medved I, Brown MJ, Bjorksten AR, Leppik JA, Sostaric S, McKenna MJ. N-acetylcysteine infusion alters blood redox status but not time to fatigue during intense exercise in humans. J Appl Physiol. 2003;94(4):1572-1582.
Nomura Y, Okuma Y. Age-related defects in lifespan and learning ability in SAMP8 mice. Neurobiol Aging. 1999;20(2):111-115.
Okuma Y, Nomura Y. Senescence-accelerated mouse (SAM) as an animal model of senile dementia: pharmacological, neurochemical and molecular biological approach. Jpn J Pharmacol. 1998; 78(4):399-404.
Poon HF, Castegna A, Farr SA, Thongboonkerd V, Lynn BC, Banks WA, Morley JE, Klein JB, Butterfield DA. Quantitative proteomics analysis of specific protein expression and oxidative modification in aged senescence-accelerated-prone 8 mice brain. Neuroscience. 2004; 126(4):915-926.
Rios JL, Waterman PG. A review of the pharmacology and toxicology of Astragalus. Phytother Res.1997; 11:411-418.
Sies H. Biochemistry of oxidative stress. Angew Chem Int Ed Engl 1986;25:1058-1071.
Smriga M, Kameishi M, Torii K. Exercise-dependent preference for a mixture of branched-chain amino acids and homeostatic control of brain serotonin in exercising rats. J Nutr. 2006;136(2):548-552.
Sun H, Zhaobao W. Effects on exercise endurance capacity and antioxidant properties of astragalus membranaceus polysaccharides (APS). J. Med. Plants Res. 2010;4(10):982-986.
Shim JY, Han Y, Ahn JY, Yun YS, Song JY. Chemoprotective and adjuvant effects of immunomodulator ginsan in cyclophosphamide-treated normal and tumor bearing mice. Int J Immunopathol Pharmacol. 2007;20(3):487-497.
Takeda T, Hosokawa M, Takeshita S, Irino M, Higuchi K, Matsushita T, Tomita Y, Yasuhira K, Hamamoto H, Shimizu K, Ishii M, Yamamuro T. A new murine model of accelerated senescence. Mech Ageing Dev.1981;17:183-194.
Takeda T. Senescence-accelerated mouse (SAM): a biogerontological resource in aging research. Neurobiol Aging. 1999; 20(2):105-110.
William R. Markesbery1, John M. Carney. Oxidative alterations in Alzheimer's disease. Brain Pathol 1999;9:133-146.
Wang SC, Shan JJ, Wang ZT, Hu ZB. Isolation and Structural Analysis of an Acidic Polysaccharide from Astragalus membranaceus (Fisch.) Bunge. J Integr Plant Biol, 2006;48 :1379-1384.
Xie JH, Jin ML, Morris GA, Zha XQ, Chen HQ, Yi Y, Li JE, Wang ZJ, Gao J, Nie SP, Shang P, Xie MY. Advances on Bioactive Polysaccharides from Medicinal Plants. Crit Rev Food Sci Nutr. 2016;56:60-84.
Yan H, Xie Y, Sun S, Sun X, Ren F, Shi Q, Wang S, Zhang W, Li X, Zhang J. Chemical analysis of Astragalus mongholicus polysaccharides and antioxidant activity of the polysaccharides. Carbohydr. Polym.2010;82:636-640.
Yang B, Xiao B, Sun T. Antitumor and immunomodulatory activity of Astragalus membranaceus polysaccharides in H22 tumor-bearing mice. Int J Biol Macromol. 2013; 62: 287-290.
Zhang G, Zhou SM, Zheng SJ, Liu FY, Gao YQ. Astragalus on the anti-fatigue effect in hypoxic mice. Int J Clin Exp Med. 2015;15;8(8):14030-14035.
Zhao C, CF Yang, STC Wai, YB Zhang, MP Portillo, P Paoli, YJ Wu, W S Cheang, B Liu, C Carpéné, JB Xiao, H Cao. Regulation of glucose metabolism by bioactivephytochemicals for the management of type 2 diabetes mellitus, Crit. Rev. FoodSci. 2019;59 : 830–847.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊