跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/10 06:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴季湘
研究生(外文):Lai, Chi-Hsiang
論文名稱:薑黃溶劑萃取與超臨界萃取之生物活性物質分析
論文名稱(外文):Solvent extraction of bioactive compounds from Curcuma longa and its comparison with supercritical fluid extraction
指導教授:張心怡張心怡引用關係
指導教授(外文):Chang, Hsin-I
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:生化科技學系研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:78
中文關鍵詞:薑黃超臨界萃取抗氧化抗發炎脂肪分化
外文關鍵詞:turmericsupercritical fluid extractionAnti-oxidationAnti-inflammatoryAdipogenesis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:473
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
薑黃素是一種從薑黃中提取的一種黃色天然色素,具有多種藥理作用,包括消炎,抗氧化,抗細胞增生和抗血管新生等活性。而薑黃酮則是薑黃油的主要成分,具有抗發炎之效果。先前的研究表明薑黃素在骨細胞中具有良好的生物活性,但是沒有找到薑黃酮對骨細胞作用之相關研究。基於這些文獻綜述,本研究的目的是研究薑黃萃取物(乙醇萃取和超臨界萃取)對骨細胞的作用,並且希望發現薑黃酮是否具有與薑黃素相似的生物作用。
本研究的薑黃粉末為行政院農業委員會農業試驗所嘉義農業試驗分所提供的台灣品種薑黃,再用兩種萃取方式獲得薑黃萃取液,一種是利用超臨界流體萃取(SFE)方式萃取薑黃粉,並通過GC-MS確定其主要成分為“薑黃酮”。此外,亦用乙醇作為溶劑萃取薑黃粉(EE),並通過HPLC發現其主要成分為“薑黃素”。之後,觀察比較這兩種萃取物(EE和SFE)在RAW264.7小鼠巨噬細胞和7F2小鼠成骨細胞的細胞毒殺性,並選擇細胞存活率超過80%的萃取物濃度作細胞實驗。此外,利用DPPH和ABTS測定兩種薑黃萃取液的抗氧化活性;並且使用H2O2誘導7F2小鼠成骨細胞損傷並測定細胞內ROS的生成量與細胞老化比例。再利用LPS刺激RAW264.7小鼠巨噬細胞發炎並測定薑黃萃取液之抗發炎活性,並使用脂質分化培養液(ADM)誘導7F2小鼠成骨細胞生成脂質來研究抑制脂肪分化之能力。最後,通過即時定量PCR檢測COX-2, FAS和FABP4的基因表現。
總體而言,實驗結果表明,薑黃萃取物(EE & SFE)具有良好的抗氧化活性,並且隨著萃取物濃度增長而逐漸抑制LPS誘導的RAW264.7小鼠巨噬細胞中的COX-2基因表現和NO釋放。此外,薑黃提取物(EE & SFE)可以通過減少細胞內ROS的生成來抑制細胞衰老,並通過下調FAS和FABP4基因表達來減少7F2小鼠成骨細胞中的脂質堆積。最後,兩種薑黃萃取物相比之下,薑黃萃取物EE的生物活性高於SFE。因此,乙醇萃取可能是從薑黃中分離生物活性化合物的適合方法。
Curcumin, (1,7-Bis(4-hydroxy-3-methoxyphenyl) hepta-1,6-diene-3,5-dione), a yellow pigment extracted from Curcuma longa, possesses diverse pharmacologic effects including anti-inflammatory, antioxidant, anti-proliferative and antiangiogenic activities. Turmerone, (2-Methyl-6-(4-methylphenyl)-2-hepten-4-one), is one of lipophilic components in turmeric extract and that has anti-inflammatory effects.
Previously, our laboratory has extracted the turmeric powder by supercritical fluid extraction (SFE), and identified its main composition “turmerone” by GC-MS. Besides, I used ethanol as solvent for the extraction of turmeric powder (EE), and found its main composition, curcumin, by HPLC. Hence, I used these two extracts (EE and SFE) to compare their cytotoxicity in RAW264.7 mouse macrophages and 7F2 osteoblasts and the concentrations of turmeric extracts with cell viability over 80% were selected for DPPH and ABTS assays. Moreover, intracellular ROS production and cell-senescence were investigated using H2O2-induced 7F2 osteoblasts. LPS-stimulated RAW264.7 mouse macrophages were used to measure anti-inflammatory activity, and adipogenic differentiation medium (ADM)-treated 7F2 osteoblasts were used to investigate anti-adipogenic ability. Finally, we measured the gene expressions of COX-2, FAS and FABP4 by quantitative real-time PCR.
Previous studies have demonstrated that curcumin has good biological activities in bone cells, but there is no similar study to investigate the effect of turmerone on bone cells. Based on these literature review, the objective of this study is to investigate the effect of the turmeric extracts (EE and SFE) on bone cells, and we are keen to find whether turmerone has similar biological effects as curcumin.
So far, the results indicated that turmeric extracts (EE & SFE) showed good antioxidant activities and could suppress NO release and COX-2 mRNA expression in RAW264.7 mouse macrophages dose dependently. In addition, turmeric extracts (EE & SFE) could suppress intracellular ROS production, cell aging and lipid accumulation in 7F2 mouse osteoblasts. The adipogenesis-related gene expressions, FAS and FABP4, were reduced by the treatment of turmeric extracts. In comparison, the bioactivities of turmeric extract (EE) was higher than SFE. Therefore, ethanol extraction maybe the better way to isolate bioactive compounds from Curcuma longa.
中文摘要………………………………………………………………………………1
Abstract……………………………………………………………………………….3
致謝……………………………………………………………………………………5
Index…………………………………………………………………………………..6
Figure index…………………………………………………………………………..9
Table index…………………………………………………………………………..11
Scheme index………………………………………………………………………...12
Chapter 1 Introduction
1.1 Bone structure………………………………………………………………...13
1.2 Oxidative stress and anti-oxidant…………………………………………... 14
1.3 Inflammation…………………………………………………........................16
1.4 Adipogenic differentiation…………………………………………………...18
1.5 Curcumin and turmerone……………………………………………………21
1.6 Aim of thesis…………………………………………………………………..24
1.7 Experimental design………………………………………………………….25
Chapter 2 Materials and Methods
2.1 Materials………………………………………………………………………27
2.2 Cell culture……………………………………………………………………27
2.3 Extract of turmeric powder………………………………………………….28
2.4 Total polyphenolic assay……………………………………………………...28
2.5 Determination of triterpenoid………………………………………………..28
2.6 Antioxidant activity by DPPH assay…………………………………………29
2.7 Radical scavenging activity by ABTS assay…………………………………30
2.8 Cell viability assay…………………………………………………………….30
7
2.9 Nitrite assay…………………………………………………………………...31
2.10 Detection of oxygen species (ROS) level by DCF-DA staining……………31
2.11 DAPI Staining………………………………………………………………..32
2.12 Senescence-Associated β-Galactosidase (SA-β-Gal) Staining…………….33
2.13 Oil Red O Staining…………………………………………………………..34
2.14 Triglyceride assay……………………………………………………………34
2.15 Quantitative real-time PCR………………………………………………...35
2.16 HPLC………………………………………………………………………...35
2.17 Gas chromatography–mass spectrometry (GC-MS)………………………36
2.18 Statistical analysis…………………………………………………………...37
Chapter 3 Results
3.1 HPLC analysis of turmeric extracts (ETOH/SFE)…………………………38
3.2 Total polyphenol content in turmeric extracts………………………………40
3.3 Total triterpenoid content in turmeric extracts……………………………..41
3.4 Antioxidant activity by DPPH assay…………………………………………42
3.5 Antioxidant activity by ABTS assay…………………………………………43
3.6 The effect of the turmeric extracts (EE & SFE) on cell viabilities of
RAW264.7 mouse macrophages and 7F2 mouse osteoblasts…………………..44
3.7 The effect of EE and SFE turmeric extracts on nitrite production of
RAW264.7 mouse macrophages…………………………………………………47
3.8 The effect of turmeric extracts (EE&SFE) on gene expression of LPS
induced inflammatory factors…………………………………………………..48
3.9 The effect of turmeric extracts (EE & SFE) on ROS production of 7F2 mouse
osteoblasts………………………………………………………………………...50
3.10 The effect of turmeric extracts (EE & SFE) on cell senescence of 7F2 mouse
osteoblasts………………………………………………………………………...54
8
3.11 The effect of turmeric extracts (EE&SFE) on lipid accumulation of ADMtreated 7F2 mouse osteoblasts……………………………………………………56
3.12 The effect of turmeric extracts (EE & SFE) on triglyceride synthesis in
ADM-induced 7F2 mouse osteoblasts…………………….……………………..60
3.13 The effect of turmeric extracts (EE&SFE) on gene expression of adipogenic
markers in 7F2 mouse osteoblasts……………………………………………….62
Chapter 4 Discussion………………………………………………………………..64
Chapter 5 Conclusion……………………………………………………………….69
Reference…………………………………………………………………………….70
 Aggarwal, B. B., Sundaram, C., Malani, N., & Ichikawa, H. (2007). Curcumin: the Indian solid gold. In The molecular targets and therapeutic uses of curcumin in health and disease (pp. 1-75). Springer, Boston, MA.

 Akar, Z., Küçük, M., & Doğan, H. (2017). A new colorimetric DPPH• scavenging activity method with no need for a spectrophotometer applied on synthetic and natural antioxidants and medicinal herbs. Journal of enzyme inhibition and medicinal chemistry, 32(1), 640-647.

 Akram, M., Shahab-Uddin, A. A., Usmanghani, K. H. A. N., Hannan, A. B. D. U. L., Mohiuddin, E., & Asif, M. (2010). Curcuma longa and curcumin: a review article. Rom J Biol Plant Biol, 55(2), 65-70.

 Anand, P., Kunnumakkara, A. B., Newman, R. A., & Aggarwal, B. B. (2007). Bioavailability of curcumin: problems and promises. Molecular pharmaceutics, 4(6), 807-818.

 Arden, N., & Nevitt, M. C. (2006). Osteoarthritis: epidemiology. Best practice & research Clinical rheumatology, 20(1), 3-25.

 Aruoma, O. I. (1998). Free radicals, oxidative stress, and antioxidants in human health and disease. Journal of the American oil chemists' society, 75(2), 199-212.

 Avanço, G. B., Ferreira, F. D., Bomfim, N. S., Peralta, R. M., Brugnari, T., Mallmann, C. A., & Machinski Jr, M. (2017). Curcuma longa L. essential oil composition, antioxidant effect, and effect on Fusarium verticillioides and fumonisin production. Food Control, 73, 806-813.

 Banfi, G., Iorio, E. L., & Corsi, M. M. (2008). Oxidative stress, free radicals and bone remodeling. Clinical Chemistry and Laboratory Medicine, 46(11), 1550-1555.

 Bharti, A. C., Takada, Y., & Aggarwal, B. B. (2004). Curcumin (diferuloylmethane) inhibits receptor activator of NF-κB ligand-induced NF-κB activation in osteoclast precursors and suppresses osteoclastogenesis. The journal of Immunology, 172(10), 5940-5947.
 Bishayee, A., Ahmed, S., Brankov, N., & Perloff, M. (2011). Triterpenoids as potential agents for the chemoprevention and therapy of breast cancer. Frontiers in bioscience: a journal and virtual library, 16, 980.

 Bliddal, H., Leeds, A. R., & Christensen, R. (2014). Osteoarthritis, obesity and weight loss: evidence, hypotheses and horizons–a scoping review. Obesity reviews, 15(7), 578-586.

 Buckwalter, J. A., & Cooper, R. R. (1987). Bone structure and function. Instructional course lectures, 36, 27-48.

 Chen, L., Deng, H., Cui, H., Fang, J., Zuo, Z., Deng, J., & Zhao, L. (2018). Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 9(6), 7204.

 Devi, H. P., & Mazumder, P. B. (2016). Methanolic extract of Curcuma caesia Roxb. prevents the toxicity caused by cyclophosphamide to bone marrow cells, liver and kidney of mice. Pharmacognosy research, 8(1), 43.

 Devi, H. P., Mazumder, P. B., & Devi, L. P. (2015). Antioxidant and antimutagenic activity of Curcuma caesia Roxb. rhizome extracts. Toxicology Reports, 2, 423-428.

 Dirckx, N., Moorer, M. C., Clemens, T. L., & Riddle, R. C. (2019). The role of osteoblasts in energy homeostasis. Nature Reviews Endocrinology, 15(11), 651-665.

 Domazetovic, V., Marcucci, G., Iantomasi, T., Brandi, M. L., & Vincenzini, M. T. (2017). Oxidative stress in bone remodeling: role of antioxidants. Clinical Cases in Mineral and Bone Metabolism, 14(2), 209.

 Dong, J. W., Cai, L., Xing, Y., Yu, J., & Ding, Z. T. (2015). Re-evaluation of ABTS•+ Assay for Total Antioxidant Capacity of Natural Products. Natural product communications, 10(12), 1934578X1501001239.

 Ejaz, A., Wu, D., Kwan, P., & Meydani, M. (2009). Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice. The Journal of nutrition, 139(5), 919-925.
 Fan, H., Tian, W., & Ma, X. (2014). Curcumin induces apoptosis of HepG2 cells via inhibiting fatty acid synthase. Targeted oncology, 9(3), 279-286.

 Fan, J. P., & He, C. H. (2006). Simultaneous quantification of three major bioactive triterpene acids in the leaves of Diospyros kaki by high-performance liquid chromatography method. Journal of Pharmaceutical and Biomedical Analysis, 41(3), 950-956.

 Floegel, A., Kim, D. O., Chung, S. J., Koo, S. I., & Chun, O. K. (2011). Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. Journal of food composition and analysis, 24(7), 1043-1048.

 Florencio-Silva, R., Sasso, G. R. D. S., Sasso-Cerri, E., Simões, M. J., & Cerri, P. S. (2015). Biology of bone tissue: structure, function, and factors that influence bone cells. BioMed research international, 2015.

 Goulart, M., Partar, D., Cunha, L., & Zung, S. (2019). AB0792 curcumin in osteoarthritis treatment: the present state of evidence.

 Gupta, S. C., Patchva, S., Koh, W., & Aggarwal, B. B. (2012). Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clinical and Experimental Pharmacology and Physiology, 39(3), 283-299.

 Halliwell, B., & Gutteridge, J. M. (2015). Free radicals in biology and medicine. Oxford University Press, USA.

 Han, H. K. (2011). The effects of black pepper on the intestinal absorption and hepatic metabolism of drugs. Expert opinion on drug metabolism & toxicology, 7(6), 721-729.

 Heger, M., van Golen, R. F., Broekgaarden, M., & Michel, M. C. (2014). The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer. Pharmacological reviews, 66(1), 222-307.

 Hewlings, S. J., & Kalman, D. S. (2017). Curcumin: a review of its’ effects on human health. Foods, 6(10), 92.

 Hewlings, S. J., & Kalman, D. S. (2017). Curcumin: a review of its’ effects on human health. Foods, 6(10), 92.

 Hucklenbroich, J., Klein, R., Neumaier, B., Graf, R., Fink, G. R., Schroeter, M., & Rueger, M. A. (2014). Aromatic-turmerone induces neural stem cell proliferation in vitro and in vivo. Stem cell research & therapy, 5(4), 100.

 Hussan, F., Ibraheem, N. G., Kamarudin, T. A., Shuid, A. N., Soelaiman, I. N., & Othman, F. (2012). Curcumin protects against ovariectomy-induced bone changes in rat model. Evidence-Based Complementary and Alternative Medicine, 2012.

 Itahana, K., Campisi, J., & Dimri, G. P. (2007). Methods to detect biomarkers of cellular senescence. In Biological Aging (pp. 21-31). Humana Press.

 Jin, J., Wang, Y., Jiang, H., Kourkoumelis, N., Renaudineau, Y., & Deng, Z. (2018). The impact of obesity through fat depots and adipokines on bone homeostasis. AME Medical Journal, 3(1).

 Kapoor, M., Martel-Pelletier, J., Lajeunesse, D., Pelletier, J. P., & Fahmi, H. (2011). Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nature Reviews Rheumatology, 7(1), 33.

 Kawahara, K., Hohjoh, H., Inazumi, T., Tsuchiya, S., & Sugimoto, Y. (2015). Prostaglandin E2-induced inflammation: Relevance of prostaglandin E receptors. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1851(4), 414-421.

 Kedare, S. B., & Singh, R. P. (2011). Genesis and development of DPPH method of antioxidant assay. Journal of food science and technology, 48(4), 412-422.

 Kraus, N. A., Ehebauer, F., Zapp, B., Rudolphi, B., Kraus, B. J., & Kraus, D. (2016). Quantitative assessment of adipocyte differentiation in cell culture. Adipocyte, 5(4), 351-358.

 Landete, J. M. (2012). Updated knowledge about polyphenols: functions, bioavailability, metabolism, and health. Critical reviews in food science and nutrition, 52(10), 936-948.

 Lao, C. D., Ruffin, M. T., Normolle, D., Heath, D. D., Murray, S. I., Bailey, J. M. & Brenner, DE (2006). Dose escalation of a curcuminoid formulation. BMC complementary and alternative medicine, 6(1), 10.
 Lee, S. K., Hong, C. H., Huh, S. K., Kim, S. S., Oh, O. J., Min, H. Y., & Hwang, J. K. (2002). Suppressive effect of natural sesquiterpenoids on inducible cyclooxygenase (COX-2) and nitric oxide synthase (iNOS) activity in mouse macrophage cells. Journal of environmental pathology, toxicology and oncology, 21(2).

 Lee, Y. K., Lee, W. S., Hwang, J. T., Kwon, D. Y., Surh, Y. J., & Park, O. J. (2009). Curcumin exerts antidifferentiation effect through AMPKα-PPAR-γ in 3T3-L1 adipocytes and antiproliferatory effect through AMPKα-COX-2 in cancer cells. Journal of agricultural and food chemistry, 57(1), 305-310.

 Li, J., Ren, L., Sun, G., & Huang, H. (2013). Gas chromatography-mass spectrometry (GC-MS) and its application in metabonomics. Sheng wu gong cheng xue bao= Chinese journal of biotechnology, 29(4), 434-446.

 Li, J., Zuo, B., Zhang, L., Dai, L., & Zhang, X. (2018). Osteoblast versus adipocyte: bone marrow microenvironment-guided epigenetic control. Case Reports in Orthopedic Research, 1(1), 2-18.

 Li, S. Y., & Li, S. P. (2009). Antioxidant activities of essential oil of Curcuma longa and Curcuma wenyujin. Int. J. Essent. Oil Ther, 3, 31-34.

 Libby, P. (2007). Inflammatory mechanisms: the molecular basis of inflammation and disease. Nutrition reviews, 65(suppl_3), S140-S146.

 Liju, V. B., Jeena, K., & Kuttan, R. (2011). An evaluation of antioxidant, anti-inflammatory, and antinociceptive activities of essential oil from Curcuma longa. L. Indian journal of pharmacology, 43(5), 526.

 Lobo, V., Patil, A., Phatak, A., & Chandra, N. (2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy reviews, 4(8), 118.

 Loi, F., Córdova, L. A., Pajarinen, J., Lin, T. H., Yao, Z., & Goodman, S. B. (2016). Inflammation, fracture and bone repair. Bone, 86, 119-130.
 Majumdar, M. K., Thiede, M. A., Mosca, J. D., Moorman, M., & Gerson, S. L. (1998). Phenotypic and functional comparison of cultures of marrow‐derived mesenchymal stem cells (MSCs) and stromal cells. Journal of cellular physiology, 176(1), 57-66.

 Marxen, K., Vanselow, K. H., Lippemeier, S., Hintze, R., Ruser, A., & Hansen, U. P. (2007). Determination of DPPH radical oxidation caused by methanolic extracts of some microalgal species by linear regression analysis of spectrophotometric measurements. Sensors, 7(10), 2080-2095.

 Menon, V. P., & Sudheer, A. R. (2007). Antioxidant and anti-inflammatory properties of curcumin. In The molecular targets and therapeutic uses of curcumin in health and disease (pp. 105-125). Springer, Boston, MA.

 Mittler, R. (2017). ROS are good. Trends in plant science, 22(1), 11-19.

 Moon, H. J., Ko, W. K., Han, S. W., Kim, D. S., Hwang, Y. S., Park, H. K., & Kwon, I. K. (2012). Antioxidants, like coenzyme Q10, selenite, and curcumin, inhibited osteoclast differentiation by suppressing reactive oxygen species generation. Biochemical and biophysical research communications, 418(2), 247-253.

 Muruganandan, S., Roman, A. A., & Sinal, C. J. (2009). Adipocyte differentiation of bone marrow-derived mesenchymal stem cells: cross talk with the osteoblastogenic program. Cellular and molecular life sciences, 66(2), 236-253.

 Nelson, S. E., Frantz, J. A., & Ziegler, E. E. (1998). Absorption of fat and calcium by infants fed a milk-based formula containing palm olein. Journal of the American College of Nutrition, 17(4), 327-332.

 Ottewell, P. D. (2016). The role of osteoblasts in bone metastasis. Journal of bone oncology, 5(3), 124-127.

 Pae, H. O., Jeong, S. O., Kim, H. S., Kim, S. H., Song, Y. S., Kim, S. K., & Chung, H. T. (2008). Dimethoxycurcumin, a synthetic curcumin analogue with higher metabolic stability, inhibits NO production, inducible NO synthase expression and NF‐κB activation in RAW264. 7 macrophages activated with LPS. Molecular nutrition & food research, 52(9), 1082-1091.
 Park, S. Y., Jin, M. L., Kim, Y. H., Kim, Y., & Lee, S. J. (2012). Anti-inflammatory effects of aromatic-turmerone through blocking of NF-κB, JNK, and p38 MAPK signaling pathways in amyloid β-stimulated microglia. International Immunopharmacology, 14(1), 13-20.

 Peddada, K. V., Peddada, K. V., Shukla, S. K., Mishra, A., & Verma, V. (2015). Role of curcumin in common musculoskeletal disorders: a review of current laboratory, translational, and clinical data. Orthopaedic surgery, 7(3), 222-231.

 Petrova, O. E., & Sauer, K. (2017). High-performance liquid chromatography (HPLC)-based detection and quantitation of cellular c-di-GMP. In c-di-GMP Signaling (pp. 33-43). Humana Press, New York, NY.

 Pfeilschifter, J., Köditz, R., Pfohl, M., & Schatz, H. (2002). Changes in proinflammatory cytokine activity after menopause. Endocrine reviews, 23(1), 90-119.

 Pham-Huy, L. A., He, H., & Pham-Huy, C. (2008). Free radicals, antioxidants in disease and health. International journal of biomedical science: IJBS, 4(2), 89.

 Rahmani, A. H., Alsahli, M. A., Aly, S. M., Khan, M. A., & Aldebasi, Y. H. (2018). Role of curcumin in disease prevention and treatment. Advanced biomedical research, 7.

 Ray, P. D., Huang, B. W., & Tsuji, Y. (2012). Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cellular signalling, 24(5), 981-990.

 Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free radical biology and medicine, 26(9-10), 1231-1237.

 Reische, D. W., Lillard, D. A., & Eitenmiller, R. R. (1998). Chemistry, nutrition and biotechnology. New York, 423-448.
 Ricciotti, E., & FitzGerald, G. A. (2011). Prostaglandins and inflammation. Arteriosclerosis, thrombosis, and vascular biology, 31(5), 986-1000.

 Rietjens, I. M., Boersma, M. G., de Haan, L., Spenkelink, B., Awad, H. M., Cnubben, N. H., & Koeman, J. H. (2002). The pro-oxidant chemistry of the natural antioxidants vitamin C, vitamin E, carotenoids and flavonoids. Environmental toxicology and pharmacology, 11(3-4), 321-333.

 Riva, A., Togni, S., Giacomelli, L., Franceschi, F., Eggenhoffner, R., Feragalli, B., & Dugall, M. (2017). Effects of a curcumin-based supplementation in asymptomatic subjects with low bone density: A preliminary 24-week supplement study. Eur Rev Med Pharmacol Sci, 21(7), 1684-1689.

 Ruby, A. J., Kuttan, G., Babu, K. D., Rajasekharan, K. N., & Kuttan, R. (1995). Anti-tumour and antioxidant activity of natural curcuminoids. Cancer letters, 94(1), 79-83.

 Sellam, J., & Berenbaum, F. (2010). The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nature Reviews Rheumatology, 6(11), 625.

 Selvam, R., Subramanian, L., Gayathri, R., & Angayarkanni, N. (1995). The anti-oxidant activity of turmeric (Curcuma longa). Journal of ethnopharmacology, 47(2), 59-67.

 Sharma, R. A., McLelland, H. R., Hill, K. A., Ireson, C. R., Euden, S. A., Manson, M. M., & Steward, W. P. (2001). Pharmacodynamic and pharmacokinetic study of oral Curcuma extract in patients with colorectal cancer. Clinical Cancer Research, 7(7), 1894-1900.

 Shoba, G., Joy, D., Joseph, T., Majeed, M., Rajendran, R., & Srinivas, P. S. S. R. (1998). Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta medica, 64(04), 353-356.

 Su, N., Yang, J., Xie, Y., Du, X., Chen, H., Zhou, H., & Chen, L. (2019). Bone function, dysfunction and its role in diseases including critical illness. International journal of biological sciences, 15(4), 776.

 Suruchi, V., & Vikas, K. (2015). Pharmacological profile of turmeric oil: A review. Lekovite sirovine, (35), 3-21.
 Tarnowski, B. I., Spinale, F. G., & Nicholson, J. H. (1991). DAPI as a useful stain for nuclear quantitation. Biotechnic & histochemistry, 66(6), 296-302.

 Tat, S. K., Pelletier, J. P., Velasco, C. R., Padrines, M., & Martel-Pelletier, J. (2009). New perspective in osteoarthritis: the OPG and RANKL system as a potential therapeutic target?. The Keio journal of medicine, 58(1), 29-40.

 Tirzitis, G., & Bartosz, G. (2010). Determination of antiradical and antioxidant activity: basic principles and new insights. Acta Biochimica Polonica, 57(2).

 Van Meerloo, J., Kaspers, G. J., & Cloos, J. (2011). Cell sensitivity assays: the MTT assay. In Cancer cell culture (pp. 237-245). Humana Press.

 Veronica Sanda Chedea & Raluca Maria Pop. (2019). Total Polyphenols Content and Antioxidant DPPH Assays on Biological Samples. Isolation, Purification and Extract Preparation. 169-183.

 Wang, T., & He, C. (2018). Pro-inflammatory cytokines: the link between obesity and osteoarthritis. Cytokine & growth factor reviews, 44, 38-50.

 Wang, Y. J., Pan, M. H., Cheng, A. L., Lin, L. I., Ho, Y. S., Hsieh, C. Y., & Lin, J. K. (1997). Stability of curcumin in buffer solutions and characterization of its degradation products. Journal of pharmaceutical and biomedical analysis, 15(12), 1867-1876.

 Wauquier, F., Leotoing, L., Coxam, V., Guicheux, J., & Wittrant, Y. (2009). Oxidative stress in bone remodelling and disease. Trends in molecular medicine, 15(10), 468-477.

 Wluka, A. E., Lombard, C. B., & Cicuttini, F. M. (2013). Tackling obesity in knee osteoarthritis. Nature Reviews Rheumatology, 9(4), 225.

 Yang, G., Lee, K., Lee, M., Ham, I., & Choi, H. Y. (2012). Inhibition of lipopolysaccharide-induced nitric oxide and prostaglandin E 2 production by chloroform fraction of Cudrania tricuspidata in RAW 264.7 macrophages. BMC complementary and alternative medicine, 12(1), 1-7.
 Zhou, T., Chen, D., Li, Q., Sun, X., Song, Y., & Wang, C. (2013). Curcumin inhibits inflammatory response and bone loss during experimental periodontitis in rats. Acta Odontologica Scandinavica, 71(2), 349-356.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊