跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/13 09:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳志榮
研究生(外文):ChihJung Wu
論文名稱:光子晶體濾波器諧振腔之研究
論文名稱(外文):Research of Photonic Crystal Filters and Cavities
指導教授:劉宗平劉宗平引用關係
口試委員:周勝次王仲淳趙耀庚林仲相歐陽征標
口試日期:2012-7-11
學位類別:博士
校院名稱:元智大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:100
語文別:中文
論文頁數:99
中文關鍵詞:光子晶體濾波器諧振腔
外文關鍵詞:Photonic CrystalFilterCavities
相關次數:
  • 被引用被引用:0
  • 點閱點閱:446
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
光子晶體領域是近年來發展非常迅速的研究領域,其作為控制光傳播的重要材料,己經得到了廣泛、深入的研究;此外,光子晶體具有的“光子禁帶”和“光子局域”特性又決定了它具有廣闊的應用前景。如何在實踐中充分利用光子晶體特殊的能帶結構、帶隙特徵及傳輸特性,依然是一個很有價值的課題。基於其廣泛的應用潛力,本論文主要對光子晶體濾波器諧振腔和含負折射率一維光子晶體的特性進行了相關的研究,系統性地分析了影響光子晶體濾波的主要因素及提高濾波效率的方法,並設計了高效的光子晶體多通道濾波器。
首先介紹了二維光子晶體全光學半加器的設計與研究。由於組成CPU基本單元的全加器一般是由半加器組成,因此進一步研究由全光學半加器(AOHA)實現的全光學CPU具有重要的意義。基於二維光子晶體“及”閘和“或”閘的分析,我們建立了基於交叉波導和缺陷腔結構的全光學半加器的模型,並且分析了光子晶體單元形狀、晶格結構、組成晶體的介質柱介電常數及介質佔空比對光子晶體帶隙大小的影響。經過分析發現介質柱介電常數越大,晶體的帶隙也越大;介質柱佔空比越大,晶體的帶隙也越大。此外,研究了諧振腔缺陷介質柱半徑大小與耦合波長之間的關係,模擬結果顯示當缺陷介質柱半徑小於晶體介質柱半徑時,波長隨著缺陷介質柱半徑的增加而增加;當缺陷介質柱半徑大於晶體介質柱半徑時,波長變小且耦合效率比較低。故缺陷介質柱半徑應當選擇小於光子晶體介質柱半徑。對缺陷波導進行了分析計算。首先分析了波導的反射特性,結果表明波導缺陷介質柱的介電常數設為晶體介質柱介電常數的整數倍時反射率最大;然後分析了提高波導和諧振腔間耦合效率的方法,通過分析發現,改變波導邊緣介質柱半徑對耦合效率有著很大的影響,還發現改變波導與相應諧振腔之間介質柱半徑大小及波導寬度對波導與諧振腔的效率也有很大的影響。利用時域有限差分法(FDTD),數學模擬實驗成功證實了半加器模型具有的全光學半加器的功能。此半加器結構由開到關的邏輯電平相對比率至少為16dB,在忽略Kerr效應的物質波回應時間時運行速度能達到0.91Tbits/s,這種半加器結構在設計全光學信號處理單元和光學計算系統時具有廣泛的用途。
接著對光子晶體太赫茲波導及太赫茲雙折射波導進行了研究。在理論上對相關波導元件進行了深入研究,並在實驗中對光子晶體太赫茲波導聯合腔體進行了設計與研究。為進行光子晶體諧振腔的設計與應用,首先建立了一維光子晶體諧振腔的物理模型,分析了諧振腔各參數之間的關係及相互影響。經過對光子晶體諧振腔進行了系統的研究,分析了諧振腔各參數之間的關係,並研究了高靈敏度太赫茲(THz)信號檢測聯合腔的結構及性質,經過試驗以及計算,結論是缺陷層厚度、諧振波長、品質因數三者之間的關係表明,對每一級次,隨著缺陷層厚度的增加,品質因數先增加後減小,中間存在一個極大值,其變化趨勢決定於週期性結構的禁帶情況;由光子晶體點缺陷腔(PDC)和光子晶體波導諧振器(WGR)耦合而成的聯合腔,在共振條件下,聯合腔中PDC場強比單獨的PDC場強很多,並且品質因數也得到大大地增加。此外,還可以通過在WGR中加入一個電介質板來實現聯合腔的同步諧振;如果在雙諧振中通過在PDC中加入絕緣棒,會使結構中的最大品質因數提高了34.7%,點諧振腔中的最大局部場強增加了314%。
為了方便理解光子晶體偏振器,本論文首先利用不同偏振模式在光子晶體中具有不同帶隙的特點,研究單個一維光子晶體的偏振特性,並設計出由單個一維光子晶體構成偏振器。本論文主要利用轉移矩陣法計算了一維光子晶體中TE和TM兩種偏振模式的特性,討論了一維光子晶體中兩種偏振模式隨介質填充比的變化而反映出的特性;由加入各向異性電介質材料的兩個一維光子晶體中組成的偏振器,證明了其具有頻域濾波和空間域濾波的功能。如果不在光子晶體中加入各向異性電介質是不能獲得對於0°入射波偏振器的。
最後研究了由特殊材料所組成的一維光子晶體濾波器特性,並且討論了含雙負缺陷的一維光子晶體腔結構。計算結果表明,如果改變缺陷的折射率,缺陷模之間的作用將發生改變,使得光子帶隙中的雜質帶也隨之改變。若缺陷的折射率取適當的值,就可以在禁帶中同時得到幾個尖銳的透射峰和較寬的通帶。本部分主要對含有特殊材料的光子晶體進行了系統性的研究,分析材料特性及結構參數對濾波特性的影響:基於零平均折射率帶隙的光子量子井,發現由於零平均折射率帶隙,光子量子井不依賴於入射角和偏振,對光子晶體的厚度也不敏感。由此,本論文提出了一種新的具有高斯分佈折射率的光學濾波器。這種濾波器能平滑的去掉透射光譜中尖的諧振峰值並能擴大通帶的延伸。對於TE模式,對於不同的入射角通帶的中心頻率可以很大的改變但通帶的寬度並不變;對於TM模式,當增大入射角時通帶中心的頻率會改變,並且其延伸度也會被大大擴大。研究結果表明具有高斯分佈厚度和高斯分佈折射率的光子層狀結構的光子晶體有相同的特性,其中的一些結論將會對光子晶體濾波器的設計提供有用的資訊。
Photonic crystals is a new class developing very rapidly in recent years, it has been attracted much attention and deep study. Due to its "photonic band gap" and "photon localization" feature , photonic crystals have broad application prospects. But it is still a valuable subject that how to make full use of the special band structure, band gap and transmission characteristics in practice. Based on the wide application potential, the author mainly relate the research to the photonic crystal filter resonator and one-dimensional photonic crystals with negative refractive index , making a systematic analysis of the main factors influencing on the photonic crystals filter and the method of improving the filter efficiency, finally the writer designs an efficient multi-channel photonic crystals filter.

Firstly, the author introduces us the all-optical half adder based on cross structures in two-dimensional photonic crystals. As is known, full adders are the basic parts of CPU and they are built with the half adder. it is critical to investigate all-optical half adders (AOHA) for the realization of all-optical CPU. In this paper, we analysis “AND gate” and “XOR gate” of two-dimensional photonic crystals, then establish the models of the basic all-optical half adder based on the defect cavity and cross waveguide. After making research on the shape of the photonic crystal unit, the crystal structure and permittivity dielectric cylinder , we found that the greater the dielectric constant of dielectric, the greater the band gap crystals; the greater media column larger duty cycle,the greater the band gap crystals. Then we study the relationship between the radius of the resonance cavity defects and coupled wavelength, the simulation results show that when radius of the defects media rod is shorter than that of the crystal, the wavelength increases with the defective media rod radius increases; when the radius of defect media rod is longer than that of the crystal, the wavelength becomes shorter and the coupled efficiency is relatively low. Therefore, radius of defects media rod should be chosen smaller than that of the photonic crystal. After calculating defect waveguide, we analyze the reflective properties of the waveguide, and the results show that the dielectric constant is set to multiple times of the crystal dielectric constant, the reflective index gets the maximum; then we analyze the way to improve the waveguide and resonator coupling efficiency. Through the analysis, it is found that changing the radius of waveguide edge rod has a great impact on the coupled efficiency. It is also proved that changing the radius of medium rod between waveguide and its corresponding resonance cavity and width of waveguide influence a lot on the efficiency of the resonator and waveguide. Through the FDTD method, numerical simulations demonstrated successfully that the structure presented does function as an all-optical half adder. The ON to OFF logic-level contrast ratio for this half adder could reach at least 16dB, and when omitting the material-wave response time of Kerr effect, the optimal operating speed is found to be as high as 0.91Tbits/s. This structure is useful in designing all-optical signal processing circuits and optical computer systems.

Then we made research on the THz waveguide of photonic crystals and THz doubled reflective waveguide. In theory, deep study on relevant waveguide devices has been carried out. During the experiments, researches and designs on photonic crystal THz waveguide combined cavity are made. For guiding photonic crystals resonator’s design and application, firstly we create a physical model of one-dimensional photonic crystals resonant cavity, and analyze the relations and influences of the various parameters in the resonator. After a systematic study on photonic crystals cavity , relations between the various parameters, and the structure and nature of THz signal detection of the combined cavity with high sensitivity, through testing and calculations, we conclude that the relationship between defect layer thickness, resonance wavelength, the quality factor show that for every level, with the defect layer thickness increases, the quality factor increases and then decreases, and there is a maximum value, the changing trend depends on the periodic structure of the band; We have investigated a combined coupled cavity, composed of a PDC and a WGR. The field intensity in the PDC in the combined cavity under simultaneous resonance is much higher than that in a simple separate PDC. The quality factor is also promoted through the cavity combination and mutual coupling. To meet the requirement of simultaneous resonance, a dielectric slab for phase shifting is necessary to add in the WGR. If adding a dielectric pole in the PDC in double resonance, the maximum quality factor of the new structure is promoted by 34.7%, and the maximum localized field intensity in the point defect cavity is promoted by 314% over that in the earlier structure.

For the better understanding of photonic crystal polarizer, first we make use of the features that different polarization modes in photonic crystals have different band gap, thus we can have a study on polarization characteristic of the single one-dimensional photonic crystals, and design a polarizer made by one-dimensional photonic crystals. We mainly use the transfer matrix method to test characteristics of two polarization modes TE and TM in the one-dimensional photonic crystals. Then we discuss the characteristics of two kinds modes which vary with dielectric ratio; In conclusion, we have proposed and demonstrated a polarizer with integrated functions of both NBP frequency domain filtering and NTA space-domain filtering, by combining two one-dimensional with PCs anisotropic materials. Without introducing anisotropic materials into the PCs, one can not obtain a polarizer for normal (0°) incident waves.

Lastly, we study the characteristics of the one-dimensional photonic crystals composed by the special materials. We discuss the structure of the doubled defect one-dimensional photonic crystals. And the calculation show that if we change the refractive index of the defect, the interaction effect of defect modes will change, thus making the impurity band of the photonic gap band change. If taking the appropriate value of the refractive index, we can get several sharp peaks and wide pass band in the band gap.In this part, the author make a systematic analysis about the special materials of photonic crystals and its structure parameters’ impact on filtering properties; Based on the zero-n gap of the photonic QWs, the photonic QW is very weak dependent on the incident angle and polarization, and also insensitive to thickness disorder of the barrier PCs. These features are benefit to improve the performance of the multiple channeled filter. In summary, we propose the construction of new optical filters with Gaussian-distributed refractive index. This kind of filter can smooth the sharp resonant peaks in the transmission spectrum and enlarge the extension of the pass-bands. For different incident angles, the central frequency of the pass-band can be significantly changed but the pass-band width for the TE mode remains unchanged. However, for the TM mode, while increasing the incident angle, not only the central frequency of the pass-bands is shifted but also their extensions are evidently enlarged. We also observe that in the PCs with the Gaussian-distributed thickness of the optical barriers, they have quite similar characteristics to those of the PCs with the Gaussian modulation of the refractive index of the optical barriers. The main findings in this work may provide useful information for the design of the favorable PC filters.
目 錄
書名頁 i
論文口試委員會審定書 iii
授權書 v
中文摘要 vii
英文摘要 xi
誌謝 xiv
目錄 xv
表目錄 xvii
圖目錄 xviii
符號說明 xxi
第1章 緒論 1
1.1 光子晶體及其特徵 2
1.2 光子晶體的製作與應用 5
1.2.1 光子晶體的製作 5
1.2.2 光子晶體的應用 7
1.3 光子晶體光濾波器研究現狀 12
1.4 光子晶體諧振腔及其應用研究現狀 15
1.5 數值計算及模擬方法 16
1.5.1 平面波展開法 16
1.5.2 時域有限差分法 17
1.5.3 轉移矩陣法 18
1.5.4 有限元素法 18
1.6 本論文的工作安排 18
第2章 基於交叉波導和缺陷腔結構的二維光子晶體全光學半加器的設計與研究 21
2.1 引言 21
2.2 基於二維光子晶體的全光學半加器模型的建立與理論分析 21
2.2.1 基於二維光子晶體全光學邏輯“及或”閘基本模型的建立與驗證 21
2.2.2 基於二維光子晶體的全光學半加器模型的建立 23
2.2.3 基於FDTD方法的理論分析 24
2.3 半加器數字模擬驗證及性能分析 26
2.3.1 “及”閘 26
2.3.2 “或”閘 29
2.3.3 半加器 30
2.4 本章小結 32
第3章 聯合腔體的設計與研究 33
3.1 引言 33
3.2 一維光子晶體諧振腔的物理模型 33
3.3 諧振腔各參數之間的關係 34
3.3.1 缺陷層厚度對諧振腔參數的影響 34
3.3.2 品質因數與諧振波長及模式級次的關係 36
3.3.3 模式級次對諧振腔參數的影響 39
3.4 高靈敏度THz信號檢測聯合腔體的設計與研究 41
3.4.1 聯合腔體模型設計的理論分析及模擬步驟 41
3.4.2 PDC模型的性能模擬分析 42
3.4.3 WGR模型的性能模擬分析 44
3.4.4 聯合腔體的設計與模擬分析 45
3.5 在子腔諧振情況下具有更高性能的聯合腔體的設計與研究 49
3.5.1 物理模型的結構以及模擬步驟 50
3.5.2 子腔諧振情況下聯合腔體的性能分析 52
3.6 本章小結 54
第4章 具有窄的通帶和透射角度的光子晶體偏振器的設計與研究 56
4.1 引言 56
4.2 單個一維光子晶體偏振器特性研究 57
4.2.1 單個一維光子晶體週期結構特徵矩陣的推導 57
4.2.2 單個一維光子晶體偏振器的特性研究 59
4.3 組合一維光子晶體偏振器的結構特性研究 61
4.4 單軸電解質多層結構中透射和反射率公式的推導 62
4.4.1 反射角公式的推導 62
4.4.2 透射和反射率公式的推導 64
4.5 一維光子晶體偏振器的模擬研究 66
4.5.1 缺陷模式下偏振器極小帶寬的模擬計算 66
4.5.2 缺陷模式下偏振器濾波功能的模擬驗證 67
4.6 本章小結 68
第5章 由特殊材料組成的一維光子晶體濾波特性研究 70
5.1 引言 70
5.2 光子量子井的結構及光子晶體的負折射現象 70
5.3 含負折射率材料的光子量子井的透射性能研究 73
5.4 由多量子井組成的具有高斯分佈折射率的一維光子晶體濾波特性研究 76
5.4.1 具有高斯分佈折射率的一維光子晶體的結構組成及各參數的確定 76
5.4.2 具有高斯分佈折射率的一維光子晶體的濾波特性研究 79
5.5 本章小結 85
第6章 結論與未來工作 86
6.1 結論 86
6.2 未來工作 89
參考文獻 93
附錄:攻讀博士學位期間發表的學術論文清單 99
[1] E.Yablonovitch,”Inhibited Spontaneous Emissionin Solid-State Physics and Electronics”,Physical Review Letters,58(20),P.2059-2062,1987.
[2] John.S,”Strong Localization of Photons in certain disordered dielectric
Superlattices”,Physical Review Letters,58(23),P.2486-2489,1987.
[3] Ho.K.M,C.T.Chan and C.M.Soukoulis,”Existence of a photonic gap in periodic dielectric structures”,Physical Reviews Letters,65(25),p.3152-3155,1990.
[4] E.Yablonovitch,T.J.Gmitter and K.M.Leung,”Photonic band structure: The
face-centered-cubic case employing nonspherical atoms”,Physical Review letter,67(17),p.2295-2298,1991.
[5] J.D.JoarmoPoulos,G.Johnson’s,”Photonic crystals:Modeling the flow of light”, Princeton:Princeton UniversityPress,2008.
[6] J.Rayleigh,“On the remarkable Phenomenon of crystalline reflexion described by Prof. Stokes”,Phil.Mag,26,256-265(1888).
[7] T.Krauss,R.De La Rue.,and S.Brand,“Two-dimensional Photonic-bandgap
structures operating at near- infrared wavelengths”,Nature,383,699-702,1996,.
[8] E.Yablonovitch and TJ. GmitteF,,”Photonic band structure:The free-centered-cubieease,Physical Review Letters,63(18),P.1950-1953,1989.
[9] Noda,S.,et al5.,”Optical Properties of three-dimensional photonic crystals based on Ⅲ-Ⅴsemiconductors at infrared to near-infrared wavelengths”,Applied Physics Letters,75,p.905,1999.
[10] Noda,S.,”Three-dimensional Photonic crystals operating at optical wavelength region”,PhysicaB: Physics of Condensed Matter,279(l-3),p.142-149,2000.
[11] Ho,K,”Photonic band gaps in three dimensions: New layer-by-layer periodic structures” ,1994.
[12] Mekis,A.,et al.,”High Transmission through Sharp Bends in Photonic Crystal Waveguides”,Physical Review Letters,77(18),p.3787-3790,1996.
[13] Benisty,H.,et al., “Models and Measurements for the Transmission of
Submicron-Width Waveguide Bends Defined in Two-Dimensional Photonic
Crystals”, IEEE JOURNAL OF QUANTUME LECTRONICS,38(7),2002.
[14] Loncar,M.,”Waveguiding in planar Photonic crystals”,Applied Physics Letters,,77(13),p.1937,2000.
[15] Moosburger,J.,et al.,”Enhanced transmission through Photonic-crystal-based bent wave guides by bend engineering”,Applied Physics Letters,79,p.3579,2001.
[16] Tokushima,M,.et al.,”Lightwave Propagation through a 120° sharply bent single-line-defect Photonic crystal waveguide”,Applied Physics Letters,76, p.952,2001.
[17] Yariv,A.,et al.,”Coupled-resonator optical waveguide: a proposal and
analysis”,Optics Letters,24(11),p.711-713,1999.
[18] Kim,S.,et al.,”High efficieney 90/spl deg/silica waveguide bend using an air hole photonic crystal region”,Photonics Technology Letters,IEEE,16(8),p.1846-1848,2004.
[19] AKahane,Y.,et al.,”High-Q photonic nanocavity in a two-dimensional Photonic crystal”,.Nature,425(6961),p.944-7,2003.
[20] Guerrero,G.,D.Boiko,and E.KaPon,”Photonic crystal heterostructures
implemented with vertical-cavity surface-emitting lasers”,Optics Express,
12(20),p.4922-4928,2004.
[21] Lundeberg,L.D.A.,D.L.Boiko, and E.Kapon,”Coupled islands of Photonic crystal heterostructures implemented with vertical-cavity surface-emitting lasers”,Applied Physics Letters,87,p.241120,2005.
[22] Song,B.S.,S.Noda,and T.Asano,”Photonic Devices Based on In-Plane Hetero Photonic Crystals”,American Association for the Advancement of Science, p.1537-1537,2003.
[23] Niemi,T.,et al.,”Wavelength-Division Demultiplexing Using Photonic Crystal Waveguides”,Photonics Technology Letters,IEEE,18(l),p.226-228,2006.
[24] Qiu,M.,”Ultra-compact optical filter in two dimensional Photonic crystal”,Electronics Letters,40(9),p.539-540,2004.
[25] Ren,H.,et al.,”Photonic crystal channel drop filter with a wavelength-selective reflection micro-cavity”,Optics Express,14(6),p.2446-2458,2006.
[26] 歐陽征標,張道中,”多層光子晶體濾波器研究”,光學學報,22(001),p.79-84,2002.
[27] Akahane,Y.,et al.,”Design of a channel drop filter by using a donor-type cavity with high-quality factor in a two-dimensional Photonic crystal slab”,Applied Physics Letters,82(9),p.1341-1343,2003.
[28] Akahane,Y.,et al.,”Investigation of high-channel drop filters using donor-type defects in two-dimensional photonic crystal slabs”,Applied Physics Letters,83(8),P.1512-1514,2003.
[29] Qiu,M.,”Ultra-compact optical filter in two-dimensional photonic crystal”,Electronics Letters,40(9),p.539-540,2004.
[30] Qiu,M. and B. Jaskorzynska,”Design of a channel drop filter in a two-dimensional triangular photonic crystal”,Applied Physics Letters,83(6),p.1074-1076,2003.
[31] O.Painter,R.K.Lee,A.scherer,A.Yariv,J. O’Brien,P. Dapkus,and I.Kim,“Two-dimensional photonic band-gap defect mode laser”, Science,284(11), p.1819-1821,1999.
[32] Hong-Gyu Park,Jeong-ki Hwang,Joon Huh,et al. “Nondegenerate
monopole-mode two-dimensional photonic band gap laser”,Applied Physics
Letters,79(19),p.3032-3034,2001.
[33] M.Loncar,T.Yoshie,A.Scherer,et al. “Low-threshold photonic crystal laser” Applied Physics Letters,81(15),p.2680-2682,2002.
[34] HFSS,Ansoft HFSS [M],http://www.ansoft.com/Products/hf/hfss/,Inc.
[35] XFDTD,Remcom[Ml,http://www.remcom.com/,Inc.
[36] BeamProp,Bandsolve,and FullWAVE,RSoft Design Group[M].
[37] Krakiwsky,S.E.,L.E.Turner,and M.M. Okoniewski,”Acceleration of
finite-difference time-domain (FDTD) using graphics Processor units(GPU)” Microwave Symposium Digest, 2004 IEEE MIT-S International,2004.2.
[38] Krakiwsky,S.E.,L.E.Turner,and M.M. Okoniewski,”Graphics Processor unit (GPU) acceleration of finite-difference time-domain(FDTD) algorithm”,Circuits and Systems,ISCAS’04. Proceedings of the 2004 International Symposium on, 2004.5.
[39] Mur,G,”Absorbing Boundary Conditions for the Finite-Difference Approximation of theTime-Domain Electromagnetic-Field Equations”,Electromagnetic Compatibility,IEEE Transactions,p.377-382.,1981.
[40] Berenger,J.P.,”A Perfectly matched layer for the absorption of electromagnetic waves”,.J.Comput.Phys.,114(2),p.185-382,1994.
[41] H.M.Gibbs,“Optical Bistability”in Controlling Light with Light,Academic
Press,Orlando,1985.
[42] E.Centeno and D.Felbacq,“Optical Bistability in finite-size nonlinear
bidimensional photonic crystal doped by a microcavity”,Phys.Rev.B
62,7683-7686(2000).
[43] K.M.F.Yanik,S.Fan,and M.Soijacic,“High-contrast all-optical bistable switching in photonic crystal microcavities”,Appl. Phys. Lett. 83, 2739-2741,2003.
[44] M.Soljacic,M.Ibanescu,S.G.Johnson,Y.Fink,and J.D.Joannopoulos,“Optimal bistable switching innonlinear photonic crystals”,Phys.Rev.E 66,0556011-4, 2002.
[45] M.F.Yanik,S.Fan,M.Soljacic, and J.D.Joannopoulos,“All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry”,Opt.Lett.,28,2506-2608,2003.
[46] Z.-H.Zhu,W.-M.Ye,J.-R.Ji,X.-D.Yuan,and C.Zen, “High-contrast light-by-light switching and AND gate based on nonlinear photonic crystals,” [J]. Opt.Express 14,1783-1788(2006).
[47] M.Notomi,A.Shinya,S.Mitsugi,G.Kira,E.Kuramochi,and T.Tanabe,“Optical bistable switching of Si high-Q photonic-crystal nanocavities”,Opt.Express 13,2678,2005.
[48] Y.L.Zhang,Y.Zhang,and B.J.Li,“Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals”,Opt.Express
15,9287-9292,2007.
[49] Yu,X.and S.Fan,“Bends and splitters for self-collimated beams in photonic crystals”,Appl.Phys.Lett.,83,3251-3253,2003.
[50] C.C.Chen,H.D.Chien,and P.G.Luan,“Photonic crystal beam splitters”,
Appl.Opt.,43,6187-6190,2004.
[51] K.A.Shinya,T.Tanabe,E.Kuramochi,and M.Notomi,“All-optical Switch and Digital Light Processing Using Photonic Crystals”,NTT Tech.Rev.3,61-68,2005.
[52] T.Asai,Y.Amemiya,and M.Kosiba,“A Photonic-Crystal Logic Circuit Based on the Binary Decision Diagram” ,in Proceeding of International Workshop on Photonic and Electromagnetic Crystal Structures,(Academic,Sendai,Japan,2000),T4-14.
[53] Y.KawashitaM.Haraguchi,H,Okamoto,M.Fujii,and M.Fukui,“Optical Amplifier Using Nonlinear Nanodefect Cavity in Photonic Crystal” ,Jpn.J.Appl.Phys ,45,7724-7728,2006.
[54] N.C.Panoiu,M.Bahl,and R.M.Osgood,Jr.,“All-optical tunability of a nonlinear photonic crystal channel drop filter”,Opt.Express 12,1605,2004.
[55] E.P.Kosmidou and T.D.Tsiboukis,“An FDTD analysis of photonic crystal
waveguides comprising third-order nonlinear materials”Opt.Quantum Electron
,35,931-946,2003.
[56] M.Bahl,N.C.Panoiu,and R.M.Osgood,Jr.,“Nonlinear optical effects in a
two-dimensional photonic crystal containing one-dimensional Kerr defects”,
Phys.Rev.E ,67,0566041-9,2003.
[57] M.L.Povinelli,S.G.Johnson,S.Fan,and J.D.Joannopoulos,“Emulation of
two-dimensional photonic crystal defect modes in a photonic crystal with a
three-dimensional photonic band gap”,Phys.Rev.B,64,0753131-8,2001.
[58] H.-H.Lee,K.-M.Chae,S.-Y.Yim,and S.-H.Park,“Finite-difference time-domain analysis of self-focusing in a nonlinear Kerr film”,Opt.Express,12,2603,2004.
[59] D.Vujic and S.John,“Pulse reshaping in photonic crystal waveguides and microcavities with Kerr nonlinearity: Critical issues for all-optical switching”,
Phys.Rev.A,72,0138071-10,2005.
[60] 王海松,高效光子晶體濾波器的設計與研究,2008
[61] Lin,S.Y.et al. “A three-dimensional Photonic crystal operating at infrared
wavelengths,Nature,394(6690),p.251-253,1998.
[62] 馮尚申,大帶隙二維光子晶體的設計,2003.
[63] Kosmidou,E.P.,E.E.Kriezis,andT.D.Tsiboukis,”Analysis of tunable Photonic Crystal devices comprising liquid crystal materials as defects”, Quantum Electronies,IEEE Journal of,41(5),p.657-665,2005.
[64] Qiang liu,Zhenbiao Ouyang,Chih Jung Wu,Chung Ping Liu and Jong C.Wang,“All-optical half adder based on cross structures in two-dimensional photonic crystals”,OPTICS EXPRESS,23(16),2008.
[65] M. Born,E. Wolf . Princi ples of Optics [M] . 6t h ed.,Oxford :Pergaman Press,67?90,1980.
[66] Xu Guiwen,Ouyang Zhengbiao,An He nan et al .. “Investigation on the
bandwidth and quality factor of t he defect mode in a photonic crystal with a
defect,Acta Photonica S inica,32 (9),1079?1082,2003.
[67] Ouyang Zhengbiao,Yang Linling,Xu Guiwen et al . . “Mode properties of
one2dimensional photonic crystals wit h defect,J .Optoelect ronics ·Laser,16 (1),63?66,2005.
[68] Ouyang Zhengbiao,Xu Guiwen,Sun Yiling et al . . “Tuning characteristics of photonic crystal micro2resonators”,J .Optoelect ronics ·Laser,16 (4),399?401, 2005.
[69] Se2Heon Kim,Han2Youl Ryu,Hong2Gyu Park et al . . “Two dimensional
photonic crystal hexagonal waveguide ring laser”,Appl . Phys . Let t .,81 (14),81 (14),2499?2501,2002.
[70] K. Mizuno,R. Kuwahara,and S. Ono,“Submillimeter detection using a Schottky diode with a longwire antenna,” Appl. Phys. Lett.,26,605–607,1975.
[71] Q. Wu,M. Litz,and X. C. Zhang,“Broadband detection capability of ZnTe
electro-optic field detectors”,Appl.Phys. Lett,68,2924–2926,1996.
[72] G. Gallot and D. Grischkowsky,“Electro-optic detection of terahertz radiation”, J. Opt. Soc. Am. B,16,1204-12,1999.
[73] F. Klappenberger,A. A. Ignatov,S. Winnerl,et al.,“Broadband semiconductor superlattice detector for THz radiation”,Appl. Phys. Lett,78,1673–1675,2001.
[74] D. G. Esaev,S. G. Matsik,M. B. M. Rinzan,et al. ,“Resonant cavity enhancement in heterojunction GaAs/AlGaAs terahertz detectors”,Appl. Phys,4(93),1879-1883 ,2003.
[75] H.C. Liu,C.Y. Song,A.J. Spring Thorpe,et al.,“Terahertz quantum-well
photodetector”,Appl. Phys. Lett,84,4068-4070,2004.
[76] C Stellmach,A Hirsch,N G Kalugin,et al.,“Gate-tunable THz detector based on a quantum Hall device”,Semicond. Sci. Technol,4(19),S454–S456,2004.
[77] Iwao Kawayama,Tatsuya Miyadera,Hironaru Murakami,et al.,“A tunable sub-terahertz wave generation and detection system with a photomixer and a high-Tc Josephson junction”,Supercond. Sci. Technol,5(19),S403– S406,2006.
[78] M.B. Rinzan,S. Matsik,A.G.U. Perera,“Quantum mechanical effects in internal photoemission THz detectors”,Infrared Physics &; Technology,50,199–205,2007.
[79] G.Q. Liang,P. Han,H.Z. Wang,Opt. Lett,29,192,2004.
[80] Tang J F,Zheng Q.,Applied Optics of Thin Film,Shanghai,Shanghai Science andTechnology Press,1984,39-108.
[81] Chen W Z,Shen Y,HuML,et al. “Structure of Basic Period of One-Dimensional Photonic Crystal and the Characters of Forbidden Bands” ActaPhotonicaSinica,30(12),1453-1456,2001.
[82] S. Teitler,B.W. Henvis,Opt. Soc. Am,60,830,1970.
[83] D.W. Berreman,Opt. Soc. Am,62,502,1972.
[84] P. Yeh,Opt. Soc. Am,69,742,1979.
[85] C.M. Soukoulis,”Photonic band gap Materials”,Kluwer,Dordrecht,1996.
[86] J.D. Joannopoulos,P.R. Villeneuve,S. Fan,Nature,386,143,1997.
[87] K. Inoue,K. Ohtaka,Photonic Crystals: Physics,Fabrication and Applications,Springer Series in Optical Sciences,Vol. 94,Springer,New York,2004.
[88] V.G. Veselago,Sov. Phys. Usp,10,509,1968.
[89] D.R. Smith,W.J. Padilla,D.C. Vier,S.C. Nemat-Nasser,S. Schultz,Phys. Rev. Lett,84,4184,2000.
[90] R.A. Shelby,D.R. Smith,S. Schultz,Science,77,292,2001.
[91] A.A. Houck,J.B. Brock,I.L. Chuang,Phys. Rev. Lett,90,137401,2003.
[92] J.B. Pendry,Phys. Rev. Lett,85,3966,2000.
[93] J. Li,L. Zhou,C.T. Chan,P. Sheng,Phys. Rev. Lett,90,083901,2003.
[94] H. Miyazaki,Y. Jimba,C.-Y. Kim,T. Watanabe,Phys. Soc. Jpn,65,3842,1996.
[95] J. Zi,J. Wan,C. Zhang,Appl. Phys. Lett,73,2084,1998.
[96] Y. Jiang,C. Niu,D.L. Lin,Phys. Rev. B,59,998,1999.
[97] F. Qiao,C. Zhang,J. Wan,J. Zi,Appl. Phys. Lett,77,3698,2000.
[98] S. Yano,Y. Segawa,J.S. Bae,K. Mizuno,H. Miyazaki,K. Ohtaka,
S. Yamaguchi,Phys. Rev. B,63,153316,2001.
[99] A. Sharkawy,S. Shi,D.W. Prather,Appl. Opt, 41,7245,2002.
[100] L.D.A. Lundeberg,D.L. Boiko,E. Kapon,Appl. Phys. Lett,87,241120,2005.
[101] G.V. Eleftheriades,A.K. Iyer,P.C. Kremer,IEEE Trans. Microwave Theory
Tech,50,2702,2002.
[102] P.Yeh,Optical Waves in Layered Media,Wiley,New York,1988.
[103] Y. Fink,J. N. Winn,S. Fan,C. Chen,J. Michel,J. D. Joannopoulos and E. L.Thomas,Science,282,1679,1988.
[104] X. Wang,X. Hu,Y. Li,W. Jia,X. H. Liu and J. Zi,Appl. Phys. Lett,80,
4291,2002.
[105] L. M. Zhao,B. Y. Gu,Y. S. Zhou and C. P. Liu,Appl. Phys. Lett,2004.
[106] H. H. Tung and C. P. Lee,IEEE Quantum Electron,32,507,1996.
[107] I. Gomez,F. Dominguez-Adame,E. Diez and V. Bellani,Appl. Phys,85,3916,1996.
[108] N. C. Karmakar,Microwave and Opt Tec. Lett,33,191,2002.
[109] R. Sapienza et al,Phys. Rev. Lett,91,263902,2003.
[110] O. Bisi,S. Ossicini and L. Pavesi,Surf,Sci. Rep,38,1,2000.
[111] M. Ghulinyan et al., [J]. Appl. Phys. 93, 9724. (2003).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top