跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/26 17:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:古志成
研究生(外文):Gu,Jyhchen
論文名稱:應用 RANS 方程探討地形影響波浪變形之研究
論文名稱(外文):Research on the effects of topography on waves deformation based on RANS equations
指導教授:謝志敏謝志敏引用關係
口試委員:蔡立宏溫志中陳昭銘
口試日期:2011-07-20
學位類別:碩士
校院名稱:國立高雄海洋科技大學
系所名稱:海事資訊科技研究所
學門:運輸服務學門
學類:航海學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:97
中文關鍵詞:雷諾平均 Navier-Stokes 方程式流體體積法潛堤坑洞
外文關鍵詞:Reynolds Averaged Navier-Stokes Equationsvolume of fluidsubmerged breakwaterpit
相關次數:
  • 被引用被引用:1
  • 點閱點閱:853
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:2
中文摘要
本文主旨在建立一套數值模式,模擬波浪通過海底地形之波浪變形特性和流場變化,藉以探討海底地形和波浪互制時液面的變化特性及流場特性。數值模式採用有限體積法,求解雷諾平均 Navier-Stokes 方程式 (Reynolds Averaged Navier-Stokes Equations, RANS),以期能夠呈現波浪場中非線性與黏性效應的影響,同時配合 k-ε 紊流模式來模擬紊流效應。其中時間差分項以顯式法來離散,壓力場則藉著預測—修正方式來建立,配合 MAC (Marker And Cell) 交錯網格系統,採用不等間距網格,自由液面採用流體體積法以建立高效率的數值模式。本模式與傳統方法之最大不同係使用 RANS (Reynolds Averaged Navier-Stokes),模擬波浪與結構物互制,完整地考慮非線性、黏性和紊流效應。為了研究波浪通過潛堤後非線性效應影響,本文討論波浪變形及主頻至三倍頻波浪振幅的變化,並採用Lin 和 Huang (2002) 之 四支波高計之分析方法,探討不同位置高階自由波和強制波之振幅以及不同間距下之反射率和透射率。


關鍵詞: 雷諾平均 Navier-Stokes 方程式、流體體積法、潛堤、坑洞

Abstract
The purpose of the present study is to develop a numerical model for studying the properties of wave transformations over seabed topography (submerged breakwaters or pit). The significant benefit of the present study over the traditional way of analyzing wave propagation problems is to apply the RANS (Reynolds Averaged Navier-Stokes) by taking account of the entire nonlinear, viscous and turbulent effects on the physical problem. The k-εmodel is employed to simulate the flow kinematics and the turbulence effects in the RANS. The RANS is used to simulate the flow field; and the transport equations are discretized by the finite volume method, based on a staggered grid system with variable width and height. The unsteady term is treated by an explicit method. The pressure field is obtained by a predictor-corrector procedure. In order to update the free surface configuration with every time step, the Volume of Fluid (VOF) method is implemented. To better understand the nonlinear effects following the wave propagation over the seabed topography, we make a detailed investigation concerning the wave deformation process and the change in harmonic wave amplitude. To understand the basic mechanism of wave evolution and decomposition, Lin and Huang (2002) is used to determine the amplitude of high frequency components and the ratio of reflection and transmission.

Keywords: Reynolds Averaged Navier-Stokes Equations, RANS, volume of fluid, submerged breakwater, pit

目錄
中文摘要 I
英文摘要 II
謝誌 III
目錄 IV
圖目錄 VI
表目錄 Ⅷ
符號說明 IX
第一章 緒論 1
1-1 前言 1
1-2 前人研究 2
1-2-1 波浪通過坑洞之研究 3
1-2-2 波浪通過潛堤之研究 4
1-3 研究目的 11
1-4 本文組織 12
第二章 RANS模式 14
2-1 RANS方程式簡介 14
2-2 初始條件和邊界條件條件 16
2-2-1 上游邊界條件 16
2-2-2 下游邊界條件 17
2-2-3 底部邊界條件 18
2-2-4 自由表面邊界條件 18
2-3 數值方法 20
2-3-1 自由表面處理方法 20
2-3-2 複雜地形處理方法 22
2-3-3 壁函數法的處理 25
2-4 計算程序 26
第三章 波浪變形之分析工具 29
3-1 頻譜分析 29
3-2 高頻成份波的分解機制 29
第四章 結果與討論 37
4-1 數值模式驗證 37
4-1-1 數值驗證 –波浪通過單一潛堤驗證 37
4-1-2 數值驗證 –波浪通過雙列潛堤驗證 43
4-2 波浪通過海底底床之波浪變形特性 46
4-2-1 流場變化 48
4-2-2 波浪變形 57
第五章 結論與建議 71
5-1 結論 71
5-2 建議 72
參考文獻 73




圖目錄
圖2-1 波浪和結構物作用的示意圖 14
圖2-2 流體體積法 (VOF)處理自由表面示意圖 21
圖2-3 結構物邊界網格示意圖 24
圖2-4 壁函數法之示意圖 26
圖2-5 RANS波浪流場數值模式計算流程圖 28
圖3-1 波高計空間式意圖 31
圖4-1 波浪通過潛堤之渦漩生成與實驗量測之比較 39
圖4-1 波浪通過潛堤之渦漩生成與實驗量測之比較 (續) 40
圖4-2 造波水槽之實驗配置示意圖 41
圖4-3 實驗量測和數值模擬之液面變化 41
圖4-4 實驗量測和數值模擬之流場圖 42
圖4-5 波浪通過潛堤自由液面振幅之空間變化 43
圖4-6 波浪通過潛堤不同位置之波形變化 44
圖4-7 數值計算與實驗量測之流速時序列結果比較 45
圖4-8 波浪與海底地形作用示意圖 47
圖4-9 波浪通過雙列潛堤之流場變化圖 ( S/L=1/8 ) 50
圖4-10 波浪通過雙列潛堤之流場變化圖 ( S/L=4/8 ) 52
圖4-11 波浪通過雙坑洞之流場變化圖 55
圖4-12 波浪通過單一坑洞之流場變化圖 56
圖4-13 波浪通過潛堤不同位置之波形時序列圖 58
圖4-14 波浪通過單一坑動不同位置之波形時序列圖 59
圖4-15 波浪通過潛堤在不同位相之空間波形變化 60
圖4-16 波浪通過潛堤在不同位相之空間波形變化 ( S/L = 1/8 ) 61
圖4-17 波浪通過雙列潛堤在不同位相之空間波形變化 ( S/L = 4/8) 61

圖4-18 波浪通過雙列潛堤,不同位置波高計資料的頻譜圖 64
圖4-19 波浪通過雙列潛堤時主頻至三倍頻無因次波浪振幅空間變化圖 65
圖4-19 波浪通過雙列潛堤時主頻至三倍頻無因次波浪振幅空間變化圖(續) 66
圖4-19 波浪通過雙列潛堤時主頻至三倍頻無因次波浪振幅空間變化圖(續) 67
圖4-20 波浪通過雙列潛堤不同潛堤間距之反射和透射率之變化圖 68
圖4-21 波浪通過雙列潛堤時,不同位置高階自由波和強制波無因次振幅變化圖 70



表目錄
表1-1 障礙物對入射波影響之前人研究 2
表1-2 前人研究方法及成果 (波浪與坑洞互制作用) 3
表1-3 前人研究方法及成果 (波浪通過潛堤之非線性問題) 6
表1-4 前人研究方法及成果 (主頻波與高階諧和波間能量的轉換) 8
表2-1 RANS 數值方法整理表 27
表3-1 強制波與自由波之比較 31


參考文獻
1. Alfrink, B. J. and Rodi W., “Two-equation turbulence model for flow in trenches,” Journal of Hydraulic Engineering, ASCE, Vol. 109, pp. 941-958 (1983).
2. Arai, M., Paul U. K., Cheng L. Y., and Inoue Y., “A technique for open boundary treatment in numerical wave tanks,” Journal of the Society of Naval Architects of Japan, pp. 45-50 (1993).
3. Bartholomeusz, E.F., “The reflection of long waves at a step,” Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 54,pp. 106 (1958).
4. Beji, S., Ohyama T., Battjes J. A., and Nadaoka K., “Transformation of nonbreaking over a bar,” 23rd Coastal Engineering Congress, ASCE, pp. 51-61 (1992).
5. Beji, S. and Battjes J. A., “Experimental investigation of the wave propagation over a bar,” Coastal Engineering, Vol. 19, pp.151-162 (1993).
6. Beji, S. and Battjes J. A., “Numerical simulation of nonlinear wave propagation over a bar,” Coastal Engineering, Vol. 23, pp.1-16 (1994).
7. Biesel, F., “Radiating Second-order phenomena in gravity waves,” 10th Congress IAMR, Paper I. 27, London (1963).
8. Brorsen, M. and Larsen J., “Source generation of nonlinear gravity waves with the boundary integral equation method,” Coastal Engineering, Vol. 11, pp. 93-113 (1987).
9. Brossard, J. and Chagdali, M., “Experimental investigation of the harmonics generation by waves over a submerged plate,” Coastal Engineering, Vol. 42, pp. 277-290 (2001).
10. Boussinesq, J., “Theorie des ondes et ramous qui se propagent le long dun canal
rectangularire horizontal, en communiquant au liquide contenu dansce canal des
vitesses sensiblement pareilles de la surface au,” Journal of Mathematical Pure et Application, 2nd Series, Vol. 17, pp. 55-108 (1872).
11. Chan, R. K. C. and Street R. L., “A computer study of finite-amplitude water waves,”
Journal of Computational Physics, Vol. 6, pp. 68-94. (1970).
12. Chang, K. A., Hsu T. J., and Liu P. L. –F, “Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle, Part I. Solitary waves,” Coastal Engineering, Vol. 44, pp. 13-36 (2001).
13. Chapalain, G., Cointe R., and Temperville A., “Observed and modeled resonantly interacting progressive water-waves,” Coastal Engineering, Vol. 16, pp. 267-300 (1992).
14. Chen, C. J. and Chen H. C., The finite-analytic method, IIHR Report 232-IV, Iowa Institute of Hydraulic Research, The University of Iowa (1982).
15. Chen, C. J. and Jaw S. Y., Fundamentals of Turbulence Modeling, Taylor and Francis, Washington, D.C. (1998).
16. Chorin, A. J., “A numerical method for solving incompressible viscous flow problems,” Journal of Computational Physics, Vol. 2, pp. 12-16, (1967).
17. Clement, A., “Coupling of two absorbing boundary conditions for 2D time-domain simulation of free surface gravity waves,” Journal of Computational Physics, Vol. 126, pp. 139-151, (1996).
18. Deardoff, J. W., “The use of subgrid transport equation in a three dimensional method of atmospheric turbulence”, Journal Fluid Engineering, ASME, Vol. 95, pp. 429 (1973).
19. Dong, C. M. and Huang C. J., “Vortex generation in water waves propagating over a submerged rectangular dike”, 9th International Offshore and Polar Engineering Conference, Brest, France, Vol. 3, pp. 388-395 (1999).
20. Dong, C. M., The development of a numerical wave tank of viscous fluid and its applications, Ph. D. Thesis, National Cheng Kung University, Tainan, Taiwan (2000).
21. Driscoll, A. M., Dalrymple R. A., and Grill, S. T., “Harmonic generation and transmission past a submerged rectangular obstacle,” 23rd Coastal Engineering Congress, ASCE, pp. 1142-1152 (1992).
22. Fontanet, P., “Theorie de la gneration de la houle cylindrique par unbatteur plan,” La Houille Blanche., Vol. 16, No. 1, pp. 3-31 (1961).
23. Garcia, N., Lara J. L., and Losada I. J. “2-D numerical analysis of near-field flow at low-crested permeable breakwaters, ” Coastal Engineering, Vol. 51, pp. 991-1020 (2004).
24. Goda, Y., “Recurring evolution of water waves through nonresonant interactions,” Ocean wave measurement and analysis, Vol. 1, pp.1-23 (1997).
25. Goring, D. and Fredric Raichlen, “Propagation of long wave onto shelf,” Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, Vol. 118, No. 1, pp. 43-61 (1990).
26. Grilli, S. T., Losada M. A., and Martin F., “Shoaling of Solitary waves on plane beaches,” Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, Vol. 120, No. 6, pp. 609-627 (1994).
27. Grilli, S. T. and Horrillo J., “ Numerical generation and absorption of fully nonlinear periodic waves,” Journal of Engineering Mechanics, Vol. 123, pp. 1060-1069 (1997).
28. Grue, J., “Nonlinear water waves at a submerged obstacle or bottom topography,” Journal of Fluid Mechanics, Vol. 244, pp. 455-476 (1992).
29. Hansen, J. B. and Svenden Ib. A., “Laboratory generation of constant form,” Proceedings of 14th International Coastal Engineering Conference, Vol.1, pp.388-399 (1974).
30. Harlow, F. H. and Welch J. E., “Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface,” Physics of Fluids, Vol. 8, pp. 2182-2189 (1965).
31. Hirt, C. W. and Nichols B. D., “ Volume of fluid method for the dynamics of free boundaries,” Journal of Computational Physics, Vol. 39, pp. 201-225 (1981).
32. Hsu, T. W. and Jan C. D., “Calibration of Businger-Arya type of eddy viscosity model’s parameters,” Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, Vol. 125, No. 5, pp. 281-284 (1998).
33. Hsu, T. W., Hsieh C. M. and Hwang R. R., “Using RANS to simulate vortex generation and dissipation around impermeable submerged double breakwaters,” Coastal Engineering, Vol. 51, pp. 557-579 (2004).
34. Huang, C. J. and Dong C. M., “Wave deformation and vortex generation in water waves propagating over a submerged dike,” Coastal Engineering, Vol. 37, pp. 123-148 (1999).
35. Huang, C. J. and Dong C. M., “On the interaction of a solitary wave and a submerged dike,” Coastal Engineering, Vol. 43, pp. 265-286 (2001).
36. Hulsbergen, C. H., “Origin, effect and suppression of secondary waves,” Proceedings of 14th International Coastal Engineering Conference, pp.392-411 (1974).
37. Hughes, S. A., Physical Models and Laboratory Techniques in Coastal Engineering, (Chap. 7: Laboratory wave generation). World Scientific Publishing Co. Pte. Ltd., Singapore (1993).
38. Hwang, R. R. and Sue Y. C., “Numerical simulation on nonlinear interaction of water waves with submerged obstacles,” Proceedings of Flow Modeling and Turbulence Measurements VII, Taiwan, ASCE, pp. 545-554 (1998).
39. Hwung, H. H., and Hwang K. S., ‘‘Flow structures over a wavy boundary in wave motion,’’ Proceedings of 9th Symp. on Turbulent Shear Flows, Kyoto,Japan pp. 306.1–306.4 (1993).
40. Ishida, A. and Takahashi H., “Numerical analysis of shallow water wave deformation in a constant depth region,” Coastal Engineering in Japan, Vol. 24, pp. 1-18 (1981).
41. Johnson, J.W., Fuchs R. A., and Morison J.R., “The damping action of submerged breakwater,” Transactions of American Geophysical Union 32, pp. 704-718 (1951).
42. Kirby, J. T. and Dalrymple R. A., “Propagation of obliquely incident water waves over a trench,” Journal of Fluid Mechanics, Vol. 133, pp. 47-63 (1983).
43. Knott, G. F. and Mackley M. R., “On eddy motion near plates and ducts induced by water waves and periodic flows,” The Philosophical Transactions of the Royal Society,London. A294, pp. 559-623 (1980).
44. Lamb, H., 1932. Hydrodynamics, 6th edition, Cambridge University Press.
45. Lassiter, J. B., The propagation of water waves over sediment pockets, Ph.D. Thesis, Massachusetts Institute of Technology (1972).
46. Larsen, J. and Dancy H., “Open boundaries in short-wave simulation - a new approach,” Coastal Engineering, Vol. 7, pp. 285-297 (1983).
47. Launder, B. E. and Spalding D. B., “The numerical computation of turbulent flows,” computer methods for the solution of scientific and engineering, Vol. 3, pp. 269-289 (1974).
48. Launder, B. E., “Second-Moment closure and its use in modeling turbulent industrial,” International Journal for Numerical Methods in Fluids, Vol. 9, pp. 963-985 (1989).
49. Lee, J. J., Ayer R. M., and Chiang W. L., “Interactions of waves with submarine trenches,” Proceedings of. 17th Coastal Engineering. Conference, ASCE, pp.812-822 (1980).
50. Lee, J. J. and Ayer R. M., “Wave propagation over a rectangular trench,” Journal of Fluid Mechanics, Vol. 110, pp. 335-347 (1981).
51. Lemos, C. M., Wave breaking, Springer-Verlag, (1992a).
52. Lemos, C. M., “A simple numerical technique for turbulent flow with free surface,” International Journal for Numerical Methods in Fluids, Vol. 15, pp. 127-146 (1992b).
53. Leonard, A., “ Energy cascade in large eddy simulation of turbulent flow,” Advances in Geophysics., Vol. 68 A , pp. 237 (1974).
54. Lin, P., Numerical modeling of breaking waves. Ph.D. thesis, Department of Civil and Environmental Engineering, Cornell University (1998).
55. Lin, P., “A numerical study of solitary wave interaction with rectangular obstacles,” Coastal Engineering, Vol. 51, pp. 35-51 (2004).
56. Lin, C.Y. and Huang, C.J., “Decomposition of incident and reflected higher harmonic waves using four wave-gages,” Coastal Engineering, Vol. 51, No. 5-6, pp. 395-406 (2004).
57. Liu, P. L. -F. and Cheng Y., “A numerical study of the evolution of a solitary wave over a shelf,” Physics of Fluids, Vol. 13 pp. 1660-1667 (2001).
58. Longuet-Higgins, M.S., “The mean forces exerted by waves on floating or submerged bodies with applications to sand bars and wave power machine,”Proceedings of the Royal Society, London A352, pp. 463-480 (1977).
59. Losada, M., Vidal A. C., and Medina R., “Experimental study of the evolution of a solitary wave at an abrupt junction,” Journal Geophysics Research., No. 94, pp. 557-566 (1989).
60. Losada, I. J., Losada M. A., and Martin F. L., “Experimental study of wave-induced flow in a porous structure,” Coastal Engineering, Vol. 26, pp. 77-98 (1995).
61. Losada, I. J., Patterson M. D., and Losada M. A., “Harmonic generation past a submerged porous step,” Coastal Engineering, Vol. 31, pp.281-304 (1997).
62. Madsen, O. S., “On the generation of long waves,” Journal of Geophysical Research, Vol. 76, No.36, pp.8672-8683 (1971).
63. Massel, S. R., “Harmonic generation by waves propagating over a submerged step,” Coastal Engineering, Vol. 7, pp. 357-380 (1983).
64. Massel, S.R., “On the largest wave height in water of constant depth,” Ocean Engineering, Vol.23, No.7, pp.553-573 (1996).
65. Mei, C. C. and Ünlüata Ü., “Harmonic generation in shallow water waves,” In: R.E. Meyer (Editor), Waves on Beaches and Resulting Sediment Transport. Acadmic Press, pp. 181-202 (1972).
66. Mei, C. C. and Black J. L., “Scattering of surface waves by rectangular obstacles in waters of finite depth,” Journal of Fluid Mechanics, Vol. 38, pp. 499-511 (1969).
67. Mei, C. C., The applied dynamics of ocean surface waves, World Scientific Publishing Co. Pte. Ltd., Singapore, pp. 564 (1983).
68. Mei, C. C., “Resonant reflection of surface waves by periodic sand-bars,” Journal of Fluid Mechanics, Vol. 152, pp. 315-335 (1985).
69. Milgram, J. H., “Active water-wave absorbers,” Journal of Fluid Mechanics, Vol. 43, pp. 845-859 (1970).
70. Miles, J. W., ”Surface-wave scattering matrix for a shelf,” Journal of Fluid Mechanics, Vol. 28, pp. 755-767 (1967).
71. Miles, J. W., “Oblique surface-wave diffraction by a cylindrical obstacle,” Dynamics of Atmospheres and Oceans, Vol. 6, pp. 121-123 (1981).
72. Miyata, H., “Finite-difference simulation of breaking waves,” Journal of Computational Physics, Vol. 65, pp. 179-214 (1986).
73. Naot, D. and Rodi W., “Calculation of secondary current in channel flow over smooth and rough bed,” Journal of the Hydraulics Division ASCE, Vol. 108, pp. 948-968 (1982).
74. Newman, J. N., “Propagation of water waves past long two dimensional obstacles,” Journal of Fluid Mechanics, Vol. 23, pp. 23-29 (1965).
75. Nichols, B. D. and Hirt C. W., “Numerical calculation of wave forces on structures,” Proceedings of 13th International Coastal Engineering Conference, ASCE ,Venice,Italy , pp. 2254-2270 (1976).
76. Noh, W. F., “CEL: A time-dependent, two space dimensional, coupled Eulerian-Lagrange code,” Methods in Computational Physics, Vol. 3, pp. 117-179 (1964).
77. Ohyama, T. and Nadaoka K., “Development of a numerical wave tank for analysis of nonlinear and irregular wave field,” Fluid Dynamics Research, Vol. 8, pp. 231-251, (1991).
78. Ohyama, T. and Nadaoka K., “Modeling the transformation of nonlinear waves passing over a submerged dike,” Proceedings of 23th International Coastal Engineering Conference, ASCE, Venice, Italy, pp. 526-539 (1992).
79. Ohyama, T. and Nadaoka K., “Transformation of a nonlinear waves train passing over a submerged shelf without breaking,” Coastal Engineering, Vol. 24, pp. 1-12 (1994).
80. Orlanski, I., “A simple boundary condition for unbounded hyperbolic flows,” Journal of Computational Physics, Vol. 21, pp 251-269 (1976).
81. Patankar, S. V. and Splading D. B., Heat and mass transfer in boundary layers, 2d ed., Intertext, London (1970).
82. Patankar, S. V., Numerical heat transfer and fluid flow, Hemisphere, Washington, D.C. (1980).
83. Prandtl, L., Essentials fluid dynamics, Hafner Publishing Co., Inc., New York, Article IIb (1952).
84. Petti, M., Quinn P. A., Liberatore G., and Easson W. J., “Wave velocity field measurement over a submerged breakwater,” Proceedings of 24th International Coastal Engineering Conference, ASCE, Kobe, Japan,pp. 525-539 (1994).
85. Rayleigh, L. “On waves,” Philosophical Magazine ,Vol. 1, pp. 257-279 (1876).
86. Rey, V., Belzons M., and Guazzelli E., “Propagation of surface gravity waves over a rectangular submerged bar,” Journal of Fluid Mechanics, Vol. 235, pp. 453-479 (1992).
87. Rodi, W., Turbulence models and their application in hydraulics, Delft, Neth: Int. Assoc. Hydraul. Res. (1980).
88. Smagorinsky, J., “General circulation experiments with the primitive equations. I. The basic experiment,” The Monthly Weather Review, Vol. 91, pp. 99-104, (1963).
89. Sommerfeld, A., Mechanics of deformation bodies, Vol. 2 of Lectures on Theoretical Physics, Academic Press, New York, (1964).
90. Tang, C. J. and Chang J. H., “Flow separation during solitary wave passing over submerged obstacle,” Journal Hydraulic Engineering, ASCE, Vol. 124, No. 7, pp. 742-749 (1998).
91. Ting, F. C. K. and Raichlen F., “Wave interaction with a rectangular trench,” Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, Vol. 112, pp. 454-460 (1986).
92. Ting, F. C. K. and Kim Y. K., “Vortex generation in water waves propagation over a submerged obstacle,” Coastal Engineering, Vol. 24, pp. 23-49 (1994).
93. Wiegel, R. L., Oceanographical engineering, Prentice-Hall, Inc., New York (1964).
94. Hong-Bin Chen, Ching-Piao Tsai and Chun-Chieh Jeng, “Wave Transformation between Submerged Breakwater and Seawall,” Journal of Coastal Research,Special Issue 50, pp 1069-1074(2007).
95. 吳永照、王瑋、徐虎嘯,「海底壕溝引致二階表面波的變形」,第十六屆海洋工程研討會論文集,pp.A122-A141(1994)。
96. 台南水工試驗所(1995),「台塑六輕灰塘抽沙臨時航道超挖情事對波浪傳遞造成之影響之初步評估」,研究試驗報告第171號。
97. 吳盈志,「波浪通過潛堤之渦流行為」,國立成功大學水利暨海洋工程研究所碩士論文 (1997)。
98. 饒國清,「波浪作用人工底床之流場可視化」,國立成功大學水利暨海洋工程研究所碩士論文 (1997)。
99. 張憲國、許泰文、李逸信,「波浪通過人工沙洲之試驗研究」,第十九屆海洋工程研討會論文集,台灣台中,第 242-249 頁 (1997)。
100. 張志華,「孤立波與結構物在黏性流體中互制作用之研究」,國立成功大學水利暨海洋工程研究所博士論文 (1997)。
101. 蘇怡中,「自由液面表面波流場之數值方法發展與應用」,國立台灣大學造船及海洋工程學研究所博士論文 (1998)。
102. 歐善惠,許泰文,游國周,廖建明,「應用 FLDV 量測波浪通過潛堤之渦流行為」,第二十屆海洋工程研討會論文集,基隆,第 249-256 頁 (1998)。
103. 岳景雲、曹登皓、陳炳奇,「波浪斜向入射正方形複列潛堤反射率之研究」,第二十屆海洋工程研討會論文集,第 265-272 頁 (1998)。
104. 盧建林,「以 FLDV 量測波浪作用下潛堤附近之渦流特性」,國立成功大學水利暨海洋工程研究所碩士論文 (1999)。
105. 賴堅戊,「坑洞對海灘斷面變化之影響」,國立成功大學水利暨海洋工程研究所碩士論文 (2000)。
106. 許泰文、謝志敏、辛志勇、黃榮鑑,「應用數值模擬波浪通過序列潛堤之渦流特性」,第二十四屆全國力學會議,中壢,第 B249-B256 頁 (2000)。
107. 黃清哲、董志明、張興漢,「數值黏性造波水槽之發展及應用」,2001 海洋數值模式研討會,台北,第 6-1 - 6-22 頁 (2001)。
108. 許泰文,彭逸凡,謝志敏,楊文昌,黃榮鑑,「應用數值模擬波浪通過不透水雙列潛堤之渦流特性」,第二十六屆全國力學會議論文摘要集,雲林虎尾,第 B54 頁 (2002)。
109. 丁肇隆,林銘崇,李芳承,「波浪通過透水潛堤產生高階諧和波之流場特性研究」,第二十九屆海洋工程研討會論文集,台南,第 337-342 頁 (2007)。
110. 夏冠群,蕭柏川,楊瑞源,郭禮安,「應用水工模型試驗探討表面波與水下航道及坑洞之交互作用」,第二十九屆海洋工程研討會論文集,台南,第 107-110 頁 (2007)。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top