參考文獻
1. Alfrink, B. J. and Rodi W., “Two-equation turbulence model for flow in trenches,” Journal of Hydraulic Engineering, ASCE, Vol. 109, pp. 941-958 (1983).
2. Arai, M., Paul U. K., Cheng L. Y., and Inoue Y., “A technique for open boundary treatment in numerical wave tanks,” Journal of the Society of Naval Architects of Japan, pp. 45-50 (1993).
3. Bartholomeusz, E.F., “The reflection of long waves at a step,” Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 54,pp. 106 (1958).
4. Beji, S., Ohyama T., Battjes J. A., and Nadaoka K., “Transformation of nonbreaking over a bar,” 23rd Coastal Engineering Congress, ASCE, pp. 51-61 (1992).
5. Beji, S. and Battjes J. A., “Experimental investigation of the wave propagation over a bar,” Coastal Engineering, Vol. 19, pp.151-162 (1993).
6. Beji, S. and Battjes J. A., “Numerical simulation of nonlinear wave propagation over a bar,” Coastal Engineering, Vol. 23, pp.1-16 (1994).
7. Biesel, F., “Radiating Second-order phenomena in gravity waves,” 10th Congress IAMR, Paper I. 27, London (1963).
8. Brorsen, M. and Larsen J., “Source generation of nonlinear gravity waves with the boundary integral equation method,” Coastal Engineering, Vol. 11, pp. 93-113 (1987).
9. Brossard, J. and Chagdali, M., “Experimental investigation of the harmonics generation by waves over a submerged plate,” Coastal Engineering, Vol. 42, pp. 277-290 (2001).
10. Boussinesq, J., “Theorie des ondes et ramous qui se propagent le long dun canal
rectangularire horizontal, en communiquant au liquide contenu dansce canal des
vitesses sensiblement pareilles de la surface au,” Journal of Mathematical Pure et Application, 2nd Series, Vol. 17, pp. 55-108 (1872).
11. Chan, R. K. C. and Street R. L., “A computer study of finite-amplitude water waves,”
Journal of Computational Physics, Vol. 6, pp. 68-94. (1970).
12. Chang, K. A., Hsu T. J., and Liu P. L. –F, “Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle, Part I. Solitary waves,” Coastal Engineering, Vol. 44, pp. 13-36 (2001).
13. Chapalain, G., Cointe R., and Temperville A., “Observed and modeled resonantly interacting progressive water-waves,” Coastal Engineering, Vol. 16, pp. 267-300 (1992).
14. Chen, C. J. and Chen H. C., The finite-analytic method, IIHR Report 232-IV, Iowa Institute of Hydraulic Research, The University of Iowa (1982).
15. Chen, C. J. and Jaw S. Y., Fundamentals of Turbulence Modeling, Taylor and Francis, Washington, D.C. (1998).
16. Chorin, A. J., “A numerical method for solving incompressible viscous flow problems,” Journal of Computational Physics, Vol. 2, pp. 12-16, (1967).
17. Clement, A., “Coupling of two absorbing boundary conditions for 2D time-domain simulation of free surface gravity waves,” Journal of Computational Physics, Vol. 126, pp. 139-151, (1996).
18. Deardoff, J. W., “The use of subgrid transport equation in a three dimensional method of atmospheric turbulence”, Journal Fluid Engineering, ASME, Vol. 95, pp. 429 (1973).
19. Dong, C. M. and Huang C. J., “Vortex generation in water waves propagating over a submerged rectangular dike”, 9th International Offshore and Polar Engineering Conference, Brest, France, Vol. 3, pp. 388-395 (1999).
20. Dong, C. M., The development of a numerical wave tank of viscous fluid and its applications, Ph. D. Thesis, National Cheng Kung University, Tainan, Taiwan (2000).
21. Driscoll, A. M., Dalrymple R. A., and Grill, S. T., “Harmonic generation and transmission past a submerged rectangular obstacle,” 23rd Coastal Engineering Congress, ASCE, pp. 1142-1152 (1992).
22. Fontanet, P., “Theorie de la gneration de la houle cylindrique par unbatteur plan,” La Houille Blanche., Vol. 16, No. 1, pp. 3-31 (1961).
23. Garcia, N., Lara J. L., and Losada I. J. “2-D numerical analysis of near-field flow at low-crested permeable breakwaters, ” Coastal Engineering, Vol. 51, pp. 991-1020 (2004).
24. Goda, Y., “Recurring evolution of water waves through nonresonant interactions,” Ocean wave measurement and analysis, Vol. 1, pp.1-23 (1997).
25. Goring, D. and Fredric Raichlen, “Propagation of long wave onto shelf,” Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, Vol. 118, No. 1, pp. 43-61 (1990).
26. Grilli, S. T., Losada M. A., and Martin F., “Shoaling of Solitary waves on plane beaches,” Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, Vol. 120, No. 6, pp. 609-627 (1994).
27. Grilli, S. T. and Horrillo J., “ Numerical generation and absorption of fully nonlinear periodic waves,” Journal of Engineering Mechanics, Vol. 123, pp. 1060-1069 (1997).
28. Grue, J., “Nonlinear water waves at a submerged obstacle or bottom topography,” Journal of Fluid Mechanics, Vol. 244, pp. 455-476 (1992).
29. Hansen, J. B. and Svenden Ib. A., “Laboratory generation of constant form,” Proceedings of 14th International Coastal Engineering Conference, Vol.1, pp.388-399 (1974).
30. Harlow, F. H. and Welch J. E., “Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface,” Physics of Fluids, Vol. 8, pp. 2182-2189 (1965).
31. Hirt, C. W. and Nichols B. D., “ Volume of fluid method for the dynamics of free boundaries,” Journal of Computational Physics, Vol. 39, pp. 201-225 (1981).
32. Hsu, T. W. and Jan C. D., “Calibration of Businger-Arya type of eddy viscosity model’s parameters,” Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, Vol. 125, No. 5, pp. 281-284 (1998).
33. Hsu, T. W., Hsieh C. M. and Hwang R. R., “Using RANS to simulate vortex generation and dissipation around impermeable submerged double breakwaters,” Coastal Engineering, Vol. 51, pp. 557-579 (2004).
34. Huang, C. J. and Dong C. M., “Wave deformation and vortex generation in water waves propagating over a submerged dike,” Coastal Engineering, Vol. 37, pp. 123-148 (1999).
35. Huang, C. J. and Dong C. M., “On the interaction of a solitary wave and a submerged dike,” Coastal Engineering, Vol. 43, pp. 265-286 (2001).
36. Hulsbergen, C. H., “Origin, effect and suppression of secondary waves,” Proceedings of 14th International Coastal Engineering Conference, pp.392-411 (1974).
37. Hughes, S. A., Physical Models and Laboratory Techniques in Coastal Engineering, (Chap. 7: Laboratory wave generation). World Scientific Publishing Co. Pte. Ltd., Singapore (1993).
38. Hwang, R. R. and Sue Y. C., “Numerical simulation on nonlinear interaction of water waves with submerged obstacles,” Proceedings of Flow Modeling and Turbulence Measurements VII, Taiwan, ASCE, pp. 545-554 (1998).
39. Hwung, H. H., and Hwang K. S., ‘‘Flow structures over a wavy boundary in wave motion,’’ Proceedings of 9th Symp. on Turbulent Shear Flows, Kyoto,Japan pp. 306.1–306.4 (1993).
40. Ishida, A. and Takahashi H., “Numerical analysis of shallow water wave deformation in a constant depth region,” Coastal Engineering in Japan, Vol. 24, pp. 1-18 (1981).
41. Johnson, J.W., Fuchs R. A., and Morison J.R., “The damping action of submerged breakwater,” Transactions of American Geophysical Union 32, pp. 704-718 (1951).
42. Kirby, J. T. and Dalrymple R. A., “Propagation of obliquely incident water waves over a trench,” Journal of Fluid Mechanics, Vol. 133, pp. 47-63 (1983).
43. Knott, G. F. and Mackley M. R., “On eddy motion near plates and ducts induced by water waves and periodic flows,” The Philosophical Transactions of the Royal Society,London. A294, pp. 559-623 (1980).
44. Lamb, H., 1932. Hydrodynamics, 6th edition, Cambridge University Press.
45. Lassiter, J. B., The propagation of water waves over sediment pockets, Ph.D. Thesis, Massachusetts Institute of Technology (1972).
46. Larsen, J. and Dancy H., “Open boundaries in short-wave simulation - a new approach,” Coastal Engineering, Vol. 7, pp. 285-297 (1983).
47. Launder, B. E. and Spalding D. B., “The numerical computation of turbulent flows,” computer methods for the solution of scientific and engineering, Vol. 3, pp. 269-289 (1974).
48. Launder, B. E., “Second-Moment closure and its use in modeling turbulent industrial,” International Journal for Numerical Methods in Fluids, Vol. 9, pp. 963-985 (1989).
49. Lee, J. J., Ayer R. M., and Chiang W. L., “Interactions of waves with submarine trenches,” Proceedings of. 17th Coastal Engineering. Conference, ASCE, pp.812-822 (1980).
50. Lee, J. J. and Ayer R. M., “Wave propagation over a rectangular trench,” Journal of Fluid Mechanics, Vol. 110, pp. 335-347 (1981).
51. Lemos, C. M., Wave breaking, Springer-Verlag, (1992a).
52. Lemos, C. M., “A simple numerical technique for turbulent flow with free surface,” International Journal for Numerical Methods in Fluids, Vol. 15, pp. 127-146 (1992b).
53. Leonard, A., “ Energy cascade in large eddy simulation of turbulent flow,” Advances in Geophysics., Vol. 68 A , pp. 237 (1974).
54. Lin, P., Numerical modeling of breaking waves. Ph.D. thesis, Department of Civil and Environmental Engineering, Cornell University (1998).
55. Lin, P., “A numerical study of solitary wave interaction with rectangular obstacles,” Coastal Engineering, Vol. 51, pp. 35-51 (2004).
56. Lin, C.Y. and Huang, C.J., “Decomposition of incident and reflected higher harmonic waves using four wave-gages,” Coastal Engineering, Vol. 51, No. 5-6, pp. 395-406 (2004).
57. Liu, P. L. -F. and Cheng Y., “A numerical study of the evolution of a solitary wave over a shelf,” Physics of Fluids, Vol. 13 pp. 1660-1667 (2001).
58. Longuet-Higgins, M.S., “The mean forces exerted by waves on floating or submerged bodies with applications to sand bars and wave power machine,”Proceedings of the Royal Society, London A352, pp. 463-480 (1977).
59. Losada, M., Vidal A. C., and Medina R., “Experimental study of the evolution of a solitary wave at an abrupt junction,” Journal Geophysics Research., No. 94, pp. 557-566 (1989).
60. Losada, I. J., Losada M. A., and Martin F. L., “Experimental study of wave-induced flow in a porous structure,” Coastal Engineering, Vol. 26, pp. 77-98 (1995).
61. Losada, I. J., Patterson M. D., and Losada M. A., “Harmonic generation past a submerged porous step,” Coastal Engineering, Vol. 31, pp.281-304 (1997).
62. Madsen, O. S., “On the generation of long waves,” Journal of Geophysical Research, Vol. 76, No.36, pp.8672-8683 (1971).
63. Massel, S. R., “Harmonic generation by waves propagating over a submerged step,” Coastal Engineering, Vol. 7, pp. 357-380 (1983).
64. Massel, S.R., “On the largest wave height in water of constant depth,” Ocean Engineering, Vol.23, No.7, pp.553-573 (1996).
65. Mei, C. C. and Ünlüata Ü., “Harmonic generation in shallow water waves,” In: R.E. Meyer (Editor), Waves on Beaches and Resulting Sediment Transport. Acadmic Press, pp. 181-202 (1972).
66. Mei, C. C. and Black J. L., “Scattering of surface waves by rectangular obstacles in waters of finite depth,” Journal of Fluid Mechanics, Vol. 38, pp. 499-511 (1969).
67. Mei, C. C., The applied dynamics of ocean surface waves, World Scientific Publishing Co. Pte. Ltd., Singapore, pp. 564 (1983).
68. Mei, C. C., “Resonant reflection of surface waves by periodic sand-bars,” Journal of Fluid Mechanics, Vol. 152, pp. 315-335 (1985).
69. Milgram, J. H., “Active water-wave absorbers,” Journal of Fluid Mechanics, Vol. 43, pp. 845-859 (1970).
70. Miles, J. W., ”Surface-wave scattering matrix for a shelf,” Journal of Fluid Mechanics, Vol. 28, pp. 755-767 (1967).
71. Miles, J. W., “Oblique surface-wave diffraction by a cylindrical obstacle,” Dynamics of Atmospheres and Oceans, Vol. 6, pp. 121-123 (1981).
72. Miyata, H., “Finite-difference simulation of breaking waves,” Journal of Computational Physics, Vol. 65, pp. 179-214 (1986).
73. Naot, D. and Rodi W., “Calculation of secondary current in channel flow over smooth and rough bed,” Journal of the Hydraulics Division ASCE, Vol. 108, pp. 948-968 (1982).
74. Newman, J. N., “Propagation of water waves past long two dimensional obstacles,” Journal of Fluid Mechanics, Vol. 23, pp. 23-29 (1965).
75. Nichols, B. D. and Hirt C. W., “Numerical calculation of wave forces on structures,” Proceedings of 13th International Coastal Engineering Conference, ASCE ,Venice,Italy , pp. 2254-2270 (1976).
76. Noh, W. F., “CEL: A time-dependent, two space dimensional, coupled Eulerian-Lagrange code,” Methods in Computational Physics, Vol. 3, pp. 117-179 (1964).
77. Ohyama, T. and Nadaoka K., “Development of a numerical wave tank for analysis of nonlinear and irregular wave field,” Fluid Dynamics Research, Vol. 8, pp. 231-251, (1991).
78. Ohyama, T. and Nadaoka K., “Modeling the transformation of nonlinear waves passing over a submerged dike,” Proceedings of 23th International Coastal Engineering Conference, ASCE, Venice, Italy, pp. 526-539 (1992).
79. Ohyama, T. and Nadaoka K., “Transformation of a nonlinear waves train passing over a submerged shelf without breaking,” Coastal Engineering, Vol. 24, pp. 1-12 (1994).
80. Orlanski, I., “A simple boundary condition for unbounded hyperbolic flows,” Journal of Computational Physics, Vol. 21, pp 251-269 (1976).
81. Patankar, S. V. and Splading D. B., Heat and mass transfer in boundary layers, 2d ed., Intertext, London (1970).
82. Patankar, S. V., Numerical heat transfer and fluid flow, Hemisphere, Washington, D.C. (1980).
83. Prandtl, L., Essentials fluid dynamics, Hafner Publishing Co., Inc., New York, Article IIb (1952).
84. Petti, M., Quinn P. A., Liberatore G., and Easson W. J., “Wave velocity field measurement over a submerged breakwater,” Proceedings of 24th International Coastal Engineering Conference, ASCE, Kobe, Japan,pp. 525-539 (1994).
85. Rayleigh, L. “On waves,” Philosophical Magazine ,Vol. 1, pp. 257-279 (1876).
86. Rey, V., Belzons M., and Guazzelli E., “Propagation of surface gravity waves over a rectangular submerged bar,” Journal of Fluid Mechanics, Vol. 235, pp. 453-479 (1992).
87. Rodi, W., Turbulence models and their application in hydraulics, Delft, Neth: Int. Assoc. Hydraul. Res. (1980).
88. Smagorinsky, J., “General circulation experiments with the primitive equations. I. The basic experiment,” The Monthly Weather Review, Vol. 91, pp. 99-104, (1963).
89. Sommerfeld, A., Mechanics of deformation bodies, Vol. 2 of Lectures on Theoretical Physics, Academic Press, New York, (1964).
90. Tang, C. J. and Chang J. H., “Flow separation during solitary wave passing over submerged obstacle,” Journal Hydraulic Engineering, ASCE, Vol. 124, No. 7, pp. 742-749 (1998).
91. Ting, F. C. K. and Raichlen F., “Wave interaction with a rectangular trench,” Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, Vol. 112, pp. 454-460 (1986).
92. Ting, F. C. K. and Kim Y. K., “Vortex generation in water waves propagation over a submerged obstacle,” Coastal Engineering, Vol. 24, pp. 23-49 (1994).
93. Wiegel, R. L., Oceanographical engineering, Prentice-Hall, Inc., New York (1964).
94. Hong-Bin Chen, Ching-Piao Tsai and Chun-Chieh Jeng, “Wave Transformation between Submerged Breakwater and Seawall,” Journal of Coastal Research,Special Issue 50, pp 1069-1074(2007).
95. 吳永照、王瑋、徐虎嘯,「海底壕溝引致二階表面波的變形」,第十六屆海洋工程研討會論文集,pp.A122-A141(1994)。
96. 台南水工試驗所(1995),「台塑六輕灰塘抽沙臨時航道超挖情事對波浪傳遞造成之影響之初步評估」,研究試驗報告第171號。
97. 吳盈志,「波浪通過潛堤之渦流行為」,國立成功大學水利暨海洋工程研究所碩士論文 (1997)。98. 饒國清,「波浪作用人工底床之流場可視化」,國立成功大學水利暨海洋工程研究所碩士論文 (1997)。99. 張憲國、許泰文、李逸信,「波浪通過人工沙洲之試驗研究」,第十九屆海洋工程研討會論文集,台灣台中,第 242-249 頁 (1997)。
100. 張志華,「孤立波與結構物在黏性流體中互制作用之研究」,國立成功大學水利暨海洋工程研究所博士論文 (1997)。101. 蘇怡中,「自由液面表面波流場之數值方法發展與應用」,國立台灣大學造船及海洋工程學研究所博士論文 (1998)。102. 歐善惠,許泰文,游國周,廖建明,「應用 FLDV 量測波浪通過潛堤之渦流行為」,第二十屆海洋工程研討會論文集,基隆,第 249-256 頁 (1998)。
103. 岳景雲、曹登皓、陳炳奇,「波浪斜向入射正方形複列潛堤反射率之研究」,第二十屆海洋工程研討會論文集,第 265-272 頁 (1998)。
104. 盧建林,「以 FLDV 量測波浪作用下潛堤附近之渦流特性」,國立成功大學水利暨海洋工程研究所碩士論文 (1999)。105. 賴堅戊,「坑洞對海灘斷面變化之影響」,國立成功大學水利暨海洋工程研究所碩士論文 (2000)。106. 許泰文、謝志敏、辛志勇、黃榮鑑,「應用數值模擬波浪通過序列潛堤之渦流特性」,第二十四屆全國力學會議,中壢,第 B249-B256 頁 (2000)。
107. 黃清哲、董志明、張興漢,「數值黏性造波水槽之發展及應用」,2001 海洋數值模式研討會,台北,第 6-1 - 6-22 頁 (2001)。
108. 許泰文,彭逸凡,謝志敏,楊文昌,黃榮鑑,「應用數值模擬波浪通過不透水雙列潛堤之渦流特性」,第二十六屆全國力學會議論文摘要集,雲林虎尾,第 B54 頁 (2002)。
109. 丁肇隆,林銘崇,李芳承,「波浪通過透水潛堤產生高階諧和波之流場特性研究」,第二十九屆海洋工程研討會論文集,台南,第 337-342 頁 (2007)。110. 夏冠群,蕭柏川,楊瑞源,郭禮安,「應用水工模型試驗探討表面波與水下航道及坑洞之交互作用」,第二十九屆海洋工程研討會論文集,台南,第 107-110 頁 (2007)。