[1] C. Dunsby et al., "An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy," Journal of Physics D: Applied Physics, vol. 37, no. 23, pp. 3296-3303, Nov. 2004.
[2] S. Keren, E. Brand, Y. Levi, B. Levit, and M. Horowitz, "Data storage in optical fibers and reconstruction by use of low-coherence spectral
interferometry," Optics Letters, vol. 27, no. 2, pp. 125-127, Jan. 2002.
[3] Y. You, C. Wang, P. Xue, A. Zaytsev, and C. Pan, "Supercontinuum generated by noise-like pulses for spectral-domain optical coherence tomography," in 2015 Conference on Lasers and Electro-Optics (CLEO),
2015, pp. 1-2.
[4] 施怡岑, "以 1560 奈米的種子脈衝雷射產生涵蓋可見光範圍的超連續光譜," 碩士, 照明與能源光電研究所, 國立交通大學, 新竹市, 2019.[5] 陳韋志, "以 1550 奈米脈衝雷射泵浦高非線性光纖產生超連續光譜,"碩士, 照明與能源光電研究所, 國立交通大學, 新竹市, 2017.[6] 林仕賢, "類雜訊脈衝之全光纖式高功率寬頻超連續光源," 博士, 光電系統博士學位學程, 國立交通大學, 新竹市, 2016.[7] H. A. Haus, J. G. Fujimoto, and E. P. Ippen, "Structures for additive pulse mode locking," Journal of the Optical Society of America B, vol. 8, no. 10,pp. 2068-2076, Oct. 1991.
[8] E. P. Ippen, H. A. Haus, and L. Y. Liu, "Additive pulse mode locking," Journal of the Optical Society of America B, vol. 6, no. 9, pp. 1736-1745,Sep. 1989.
[9] M. Horowitz, Y. Barad, and Y. Silberberg, "Noiselike pulses with abroadband spectrum generated from an erbium-doped fiber laser," Optics Letters, vol. 22, no. 11, pp. 799-801, Jun. 1997.
[10] H. Chen, X. Zhou, S.-P. Chen, Z.-F. Jiang, and J. Hou, "Ultra-compact Watt-level flat supercontinuum source pumped by noise-like pulse from an all-fiber oscillator," Optics Express, vol. 23, no. 26, pp. 32909-32916,
Dec. 2015.
[11] S.-S. Lin, S.-K. Hwang, and J.-M. Liu, "High-power noise-like pulse
generation using a 1.56-μm all-fiber laser system," Optics Express, vol. 23, no. 14, pp. 18256-18268, Jul. 2015.
[12] S.-S. Lin, S.-K. Hwang, and J.-M. Liu, "Supercontinuum generation in
highly nonlinear fibers using amplified noise-like optical pulses," Optics Express, vol. 22, no. 4, pp. 4152-4160, Feb. 2014.
[13] D. Strickland and G. Mourou, "Compression of amplified chirped optical
pulses," Optics Communications, vol. 56, no. 3, pp. 219-221, Dec. 1985.
[14] R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE Journal of Quantum Electronics, vol. 33, no. 7, pp. 1049-1056, Jul. 1997.
[15] P. C. Becker, N. A. Olsson, and J. R. Simpson, "Chapter 1 - Introduction," in Erbium-Doped Fiber Amplifiers, P. C. Becker, N. A. Olsson, and J. R.
Simpson, Eds. San Diego: Academic Press, 1999, pp. 1-11.
[16] Z. Li, A. M. Heidt, J. M. O. Daniel, Y. Jung, S. U. Alam, and D. J. Richardson, "Thulium-doped fiber amplifier for optical communications at 2 µm," Optics Express, vol. 21, no. 8, pp. 9289-9297, Apr. 2013.
[17] Y. Ohishi, T. Kanamori, T. Kitagawa, S. Takahashi, E. Snitzer, and G. H. Sigel, "Pr3+-doped fluoride fiber amplifier operating at 1.31 μm," Optics Letters, vol. 16, no. 22, pp. 1747-1749, Nov. 1991.
[18] E. Lim, S. Alam, and D. J. Richardson, "Highly efficient, high power, inband-pumped Erbium/Ytterbium-codoped fiber laser," in CLEO: 2011 - Laser Science to Photonic Applications, 2011, pp. 1-2.
[19] S. W. Harun, M. R. A. Moghaddam, and H. Ahmad, "High output power Erbium-Ytterbium doped cladding pumped fiber amplifier," Laser Physics, vol. 20, no. 10, pp. 1899-1901, Oct. 2010.
[20] P. Russell, "Photonic Crystal Fibers," Science, vol. 299, no. 5605, pp. 358-362, Jan. 2003.
[21] J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. J. Russell, "Anomalous dispersion in photonic crystal fiber," IEEE Photonics Technology Letters, vol. 12, no. 7, pp. 807-809, Jul. 2000.
[22] J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Reviews of Modern Physics, vol. 78, no. 4, pp.1135-1184, Oct. 2006.
[23] F. Yu and J. C. Knight, "Negative Curvature Hollow-Core Optical Fiber," IEEE Journal of Selected Topics in Quantum Electronics, vol. 22, no. 2, pp. 146-155, Apr. 2016.
[24] J. W. Nicholson et al., "All-fiber, octave-spanning supercontinuum," (in eng), Optics letters, vol. 28, no. 8, pp. 643-645, Apr. 2003.
[25] J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jørgensen, "Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers," Applied Physics B, vol. 77, no. 2, pp. 211-218, Sep. 2003.
[26] A. Kudlinski et al., "Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation," Optics express, vol. 14, pp. 5715-5722, Jul. 2006.
[27] T. A. Birks, W. J. Wadsworth, and P. S. J. Russell, "Supercontinuum generation in tapered fibers," Optics Letters, vol. 25, no. 19, pp. 1415-1417, Oct. 2000.
[28] A. Zaytsev, C.-H. Lin, Y.-J. You, C.-C. Chung, C.-L. Wang, and C.-L. Pan, "Supercontinuum generation by noise-like pulses transmitted through normally dispersive standard single-mode fibers," Optics Express, vol. 21,
no. 13, pp. 16056-16062, Jul. 2013.
[29] 張冠元, "利用高功率超連續光譜產生中心波長不同於種子光源的高
功率脈衝雷射," 碩士, 光電系統研究所, 國立交通大學, 新竹市,
2018.
[30] J. Limpert et al., "High-average-power femtosecond fiber chirped-pulse amplification system," Optics Letters, vol. 28, no. 20, pp. 1984-1986, Oct. 2003.
[31] A. Galvanauskas, "Mode-scalable fiber-based chirped pulse amplification systems," IEEE Journal of Selected Topics in Quantum Electronics, vol. 7, pp. 504-517, Aug. 2001.
[32] R. Huang, R. Zhou, and Q. Li, "Mid-Infrared Supercontinuum Generation in Chalcogenide Photonic Crystal Fibers with a Weak CW Trigger," Journal of Lightwave Technology, vol. 38, no. 6, pp. 1522-1528, Mar. 2020.
[33] T. Baselt, B. Nelsen, A. Lasagni, and P. Hartmann, "Supercontinuum Generation in the Cladding Modes of an Endlessly Single-Mode Fiber," Applied Sciences, vol. 9, p. 4428, Oct. 2019.