跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/13 23:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王瑞奇
研究生(外文):Wang, Rui-Ci
論文名稱:以光子晶體光纖產生涵蓋可見光範圍的超連續光譜
論文名稱(外文):Generation of High-Power and Ultra-Broadband Supercontinuum Containing Visible Spectra from 580 nm to 3300 nm with Photonic Crystal Fiber
指導教授:劉佳明劉佳明引用關係
指導教授(外文):Liu, Jia-Ming
口試委員:尤信介黃勝廣
口試委員(外文):Yu, Hsin-ChiehHwang, Sheng-Kwang
口試日期:2020-10-21
學位類別:碩士
校院名稱:國立交通大學
系所名稱:影像與生醫光電研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:109
語文別:中文
論文頁數:49
中文關鍵詞:脈衝雷射超連續光譜類噪脈衝光子晶體光纖
外文關鍵詞:Pulsed-laserSupercontinuumNoise-liked PulsePhotonic Crystal Fiber
相關次數:
  • 被引用被引用:6
  • 點閱點閱:296
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本次實驗利用中心波長為 1560 nm 的超連續光譜,以多模截止波長為
730 nm 及 570 nm 的單模光纖作為短通濾波器濾出的 1060 nm 脈衝雷射,將其以不同長度的單模光纖進行預啁啾。本實驗亦同時比較類噪脈衝與典型脈衝的效果差異,將兩者濾波後以摻鐿光纖放大器放大,可得到大於 5 W的輸出功率以及大約 20 ps 的脈衝寬度,並且發現類噪脈衝即便經過多種放大及非線性機制後,仍然保持其類噪特性。最後再將這些脈衝輸入不同長度的光子晶體光纖,經過不同預啁啾光纖的長度以及不同光子晶體光纖的長度配對,得到 50 m 單模光纖以及 4 m 光子晶體光纖的組合為當中最平滑、涵蓋範圍最廣的超連續光譜,其中心波長為 1060 nm,約從 580 至約3300 nm
In this study, we generate a ultrafast laser with 1060 nm center wavelength
filtered from supercontinuum that has a center wavelength at 1560 nm. The filter
is constructed of single-mode fibers with different second mode cutoff
wavelengths. We use different lengths of single mode fiber to pre-chirp the
pulses and compare the results of noise-like pulses and well-defined pulses:
Both kinds of pulses, amplified by an ytterbium-doped fiber amplifier, can reach
over 5 W of average output power and have pulse widths about 20 ps. In
addition, we find that the noise-like pulses maintain their temporal features
better than the well-defined pulses through the processes of amplification,
supercontinuum generation, filtering, and further amplification. Then we input
the pulses to different lengths of photonic crystal fibers to generate
supercontinua with 1060 nm center wavelength. As a result, we find that, for
both noise-like pulses and well-defined pulses, a pre-chirping single mode fiber
of a 50 m length and a photonic crystal fiber of a 4 m length are the optimum
combination to generate a smooth and ultra-broadband spectrum, spanning from
the visible 580 nm to the mid-infrared beyond 3300 nm.
摘要 ....................................................i
Abstract................................................ii
致謝 ...................................................iii
目錄 ....................................................iv
表目錄 ................................................. vi
圖目錄 ................................................. vi
第一章 緒論 ............................................. 1
1.1 前言................................................. 1
1.2 研究目的............................................. 3
1.3 論文架構............................................. 3
第二章 基本原理........................................... 4
2.1 雷射原理............................................. 4
2.1.1 光子與共振介質的三種交互作用 ........................ 4
2.1.2 雷射三要素 ........................................ 5
2.2 鎖模(Mode-locking)................................... 7
2.3 類噪脈衝(Noise-Like Pulse) ......................... 10
2.4 啁啾脈衝放大(Chirped-pulse Amplification, CPA)....... 11
2.5 光纖放大器(Optical Fiber Amplifier)................. 12
2.6 光子晶體光纖(Photonic Crystal Fiber) ............... 13
2.7 超連續光譜(Supercontinuum).......................... 15
第三章 實驗架構.......................................... 19
3.1 整體架構............................................ 20
3.1.1 產生中心波長為 1560 nm 的超連續光譜................. 20
3.1.2 產生 1060 nm 超快雷射光源及其預啁啾................. 21
3.1.3 產生中心波長為 1060 nm 的超連續光譜................. 22
3.3 光纖放大器.......................................... 25
3.3.1 前級放大器(Pre-amplifier) ........................ 26
3.3.2 助推器(Booster)................................... 27
3.3.3 摻鐿光纖放大器(Ytterbium-Doped Fiber Amplifier) ... 28
第四章 實驗數據分析...................................... 30
4.1 1060 nm 脈衝雷射放大前特性........................... 30
4.1.1 1060 nm 無預啁啾脈衝雷射特性 ...................... 30
4.1.2 1060 nm 脈衝雷射預啁啾後特性 ...................... 32
4.2 1060 nm 脈衝雷射放大後特性........................... 34
4.2.1 1060 nm 無預啁啾脈衝雷射放大後特性.................. 34
4.2.2 1060 nm 預啁啾脈衝雷射放大後特性.................... 36
4.3 產生中心波長為 1060 nm 的超連續光譜................... 39
4.3.1 以無預啁啾脈衝產生超連續光譜 ....................... 40
4.3.2 以 4 m PCF 產生超連續光譜.......................... 41
4.3.3 以 50 m 單模光纖預啁啾之脈衝產生超連續光譜........... 42
第五章 結論與討論........................................ 44
5.1 結論................................................ 44
5.2 討論................................................ 45
參考文獻 ............................................... 46
[1] C. Dunsby et al., "An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy," Journal of Physics D: Applied Physics, vol. 37, no. 23, pp. 3296-3303, Nov. 2004.
[2] S. Keren, E. Brand, Y. Levi, B. Levit, and M. Horowitz, "Data storage in optical fibers and reconstruction by use of low-coherence spectral
interferometry," Optics Letters, vol. 27, no. 2, pp. 125-127, Jan. 2002.
[3] Y. You, C. Wang, P. Xue, A. Zaytsev, and C. Pan, "Supercontinuum generated by noise-like pulses for spectral-domain optical coherence tomography," in 2015 Conference on Lasers and Electro-Optics (CLEO),
2015, pp. 1-2.
[4] 施怡岑, "以 1560 奈米的種子脈衝雷射產生涵蓋可見光範圍的超連續光譜," 碩士, 照明與能源光電研究所, 國立交通大學, 新竹市, 2019.
[5] 陳韋志, "以 1550 奈米脈衝雷射泵浦高非線性光纖產生超連續光譜,"碩士, 照明與能源光電研究所, 國立交通大學, 新竹市, 2017.
[6] 林仕賢, "類雜訊脈衝之全光纖式高功率寬頻超連續光源," 博士, 光電系統博士學位學程, 國立交通大學, 新竹市, 2016.
[7] H. A. Haus, J. G. Fujimoto, and E. P. Ippen, "Structures for additive pulse mode locking," Journal of the Optical Society of America B, vol. 8, no. 10,pp. 2068-2076, Oct. 1991.
[8] E. P. Ippen, H. A. Haus, and L. Y. Liu, "Additive pulse mode locking," Journal of the Optical Society of America B, vol. 6, no. 9, pp. 1736-1745,Sep. 1989.
[9] M. Horowitz, Y. Barad, and Y. Silberberg, "Noiselike pulses with abroadband spectrum generated from an erbium-doped fiber laser," Optics Letters, vol. 22, no. 11, pp. 799-801, Jun. 1997.
[10] H. Chen, X. Zhou, S.-P. Chen, Z.-F. Jiang, and J. Hou, "Ultra-compact Watt-level flat supercontinuum source pumped by noise-like pulse from an all-fiber oscillator," Optics Express, vol. 23, no. 26, pp. 32909-32916,
Dec. 2015.
[11] S.-S. Lin, S.-K. Hwang, and J.-M. Liu, "High-power noise-like pulse
generation using a 1.56-μm all-fiber laser system," Optics Express, vol. 23, no. 14, pp. 18256-18268, Jul. 2015.
[12] S.-S. Lin, S.-K. Hwang, and J.-M. Liu, "Supercontinuum generation in
highly nonlinear fibers using amplified noise-like optical pulses," Optics Express, vol. 22, no. 4, pp. 4152-4160, Feb. 2014.
[13] D. Strickland and G. Mourou, "Compression of amplified chirped optical
pulses," Optics Communications, vol. 56, no. 3, pp. 219-221, Dec. 1985.
[14] R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE Journal of Quantum Electronics, vol. 33, no. 7, pp. 1049-1056, Jul. 1997.
[15] P. C. Becker, N. A. Olsson, and J. R. Simpson, "Chapter 1 - Introduction," in Erbium-Doped Fiber Amplifiers, P. C. Becker, N. A. Olsson, and J. R.
Simpson, Eds. San Diego: Academic Press, 1999, pp. 1-11.
[16] Z. Li, A. M. Heidt, J. M. O. Daniel, Y. Jung, S. U. Alam, and D. J. Richardson, "Thulium-doped fiber amplifier for optical communications at 2 µm," Optics Express, vol. 21, no. 8, pp. 9289-9297, Apr. 2013.
[17] Y. Ohishi, T. Kanamori, T. Kitagawa, S. Takahashi, E. Snitzer, and G. H. Sigel, "Pr3+-doped fluoride fiber amplifier operating at 1.31 μm," Optics Letters, vol. 16, no. 22, pp. 1747-1749, Nov. 1991.
[18] E. Lim, S. Alam, and D. J. Richardson, "Highly efficient, high power, inband-pumped Erbium/Ytterbium-codoped fiber laser," in CLEO: 2011 - Laser Science to Photonic Applications, 2011, pp. 1-2.
[19] S. W. Harun, M. R. A. Moghaddam, and H. Ahmad, "High output power Erbium-Ytterbium doped cladding pumped fiber amplifier," Laser Physics, vol. 20, no. 10, pp. 1899-1901, Oct. 2010.
[20] P. Russell, "Photonic Crystal Fibers," Science, vol. 299, no. 5605, pp. 358-362, Jan. 2003.
[21] J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. J. Russell, "Anomalous dispersion in photonic crystal fiber," IEEE Photonics Technology Letters, vol. 12, no. 7, pp. 807-809, Jul. 2000.
[22] J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Reviews of Modern Physics, vol. 78, no. 4, pp.1135-1184, Oct. 2006.
[23] F. Yu and J. C. Knight, "Negative Curvature Hollow-Core Optical Fiber," IEEE Journal of Selected Topics in Quantum Electronics, vol. 22, no. 2, pp. 146-155, Apr. 2016.
[24] J. W. Nicholson et al., "All-fiber, octave-spanning supercontinuum," (in eng), Optics letters, vol. 28, no. 8, pp. 643-645, Apr. 2003.
[25] J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jørgensen, "Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers," Applied Physics B, vol. 77, no. 2, pp. 211-218, Sep. 2003.
[26] A. Kudlinski et al., "Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation," Optics express, vol. 14, pp. 5715-5722, Jul. 2006.
[27] T. A. Birks, W. J. Wadsworth, and P. S. J. Russell, "Supercontinuum generation in tapered fibers," Optics Letters, vol. 25, no. 19, pp. 1415-1417, Oct. 2000.
[28] A. Zaytsev, C.-H. Lin, Y.-J. You, C.-C. Chung, C.-L. Wang, and C.-L. Pan, "Supercontinuum generation by noise-like pulses transmitted through normally dispersive standard single-mode fibers," Optics Express, vol. 21,
no. 13, pp. 16056-16062, Jul. 2013.
[29] 張冠元, "利用高功率超連續光譜產生中心波長不同於種子光源的高
功率脈衝雷射," 碩士, 光電系統研究所, 國立交通大學, 新竹市,
2018.
[30] J. Limpert et al., "High-average-power femtosecond fiber chirped-pulse amplification system," Optics Letters, vol. 28, no. 20, pp. 1984-1986, Oct. 2003.
[31] A. Galvanauskas, "Mode-scalable fiber-based chirped pulse amplification systems," IEEE Journal of Selected Topics in Quantum Electronics, vol. 7, pp. 504-517, Aug. 2001.
[32] R. Huang, R. Zhou, and Q. Li, "Mid-Infrared Supercontinuum Generation in Chalcogenide Photonic Crystal Fibers with a Weak CW Trigger," Journal of Lightwave Technology, vol. 38, no. 6, pp. 1522-1528, Mar. 2020.
[33] T. Baselt, B. Nelsen, A. Lasagni, and P. Hartmann, "Supercontinuum Generation in the Cladding Modes of an Endlessly Single-Mode Fiber," Applied Sciences, vol. 9, p. 4428, Oct. 2019.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊