跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.181) 您好!臺灣時間:2025/12/14 06:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:翁藝芯
研究生(外文):Weng,Yi-Xin
論文名稱:以局部殼核型P3HT/TiO2複合觸媒光催化氧化酚類廢水之研究
論文名稱(外文):Solar photocatalytic oxidation of Phenols wastewater with partial shell-core P3HT/TiO2 nanocatalysts
指導教授:郭文旭
指導教授(外文):Dr. Wen-Shiuh Kuo
口試委員:黃德坤、游庶海
口試委員(外文):De. Kun Huang、Shu-Hai You
口試日期:2016-07-01
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:環境與安全衛生工程學系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:196
中文關鍵詞:局部殼核型P3HT/TiO2酚類廢水4-氯酚反應曲面法菲涅爾透鏡
外文關鍵詞:partial shell-core P3HT/TiO2phenols wastewaterphenol4-chlorophenolresponse surface methodologyFresnel lens
相關次數:
  • 被引用被引用:4
  • 點閱點閱:182
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
本研究之目的主要利用有機半導體- 3-己基噻吩(poly(3-hexylthiophene), P3HT)與無機半導體-二氧化鈦(TiO2)複合製備成局部殼核型(partial shell-core type)奈米光觸媒,以利改善TiO2能隙太大和電子-電洞對易再結合等缺點,進而提升太陽光TiO2光催化分解酚類廢水(酚(phenol)、4-氯酚(4-CP))之效率。藉由電子掃描顯微鏡(Scanning Electron Microscope , SEM)分析,觀察光觸媒表面之微觀結構,發現P3HT/TiO2與TiO2顆粒粒徑大小約為20-50 nm,差異不大。另由X光能量散譜儀(X-ray Energy Dispersive Spectrometer, EDS)之分析,可確認局部殼核型P3HT/TiO2確實有P3HT分子結構中S元素之存在。X光繞射 (X-ray diffraction, XRD)分析結果顯示P3HT/TiO2中之TiO2仍以銳鈦礦晶型為主。由紫外光可見光漫反射光譜(UV/VIS DRS)掃描分析結果可知當P3HT添加於TiO2之比例增加,可有效提升可見光之吸收率。
在光催化效率探討方面,本研究以局部殼核型P3HT/TiO2光催化程序之三個主要因子(光觸媒添加量(g/L)、P3HT添加比例(%)、曝氣量(L/L/min)),進行反應曲面法(Response Surface Methodology, RSM) Box-Behnken 3*3實驗設計進行實驗並進而探求最適操作條件,及利用ANOVA分析與類神經網路模式分析探討各因子對酚類廢水分解效率之影響,結果顯示三因子中以光觸媒添加量之影響最顯著。在最適條件 (光觸媒添加量1.36 g/L、P3HT添加比例0.5%及曝氣量1 L/L/min)下,光催化降解苯酚廢水之Phenol分子降解率可達95% 以上;另在4-CP廢水之最適操作條件(光觸媒添加量1.5 g/L、P3HT添加比例0.5%及曝氣量0.275 L/L/min)下,光催化降解4-CP廢水之礦化率可達90%以上。
在最適操作條件下,當光強度由250 W/m2 提高至750 W/m2時,光催化(60 min)程序處理Phenol廢水與4-CP廢水之降解率分別提升42.64%與29.74%。另當廢水溫度由15 oC提高至35 oC時,光催化(60 min)程序處理Phenol廢水與4-CP廢水之降解率分別提升13.29%與12.09%,由此可知提升光強度與廢水溫度有助於P3HT/TiO2光催化程序處理酚類廢水之效率。而在應用菲涅爾透鏡 (Fresnel lens)於實際太陽光光催化局部殼核型P3HT/TiO2程序處理酚類廢水,顯示附加Fresnel lens於系統中,可有效提升光強度與廢水溫度,因而提升處理效率,並可縮短反應所需時間。
另研究顯示光觸媒製備方法亦會影響廢水分解去除效率,局部殼核型光觸媒之P3HT因只部分附著在二氧化鈦上,使傳導帶上之電子能有效傳遞至氧氣進行作用,因此較殼核型光觸媒對於酚類廢水之處理,可促進廢水之abs@λmax下降率提升10%以上,顯示其具有較佳之光催化活性。在應用局部殼核型光觸媒光催化降解酚類廢水和偶氮染料廢水 (AO7、MeO)之效率比較上,因偶氮染料分子具含有較多苯環之結構,故其礦化率較酚類廢水之礦化率低20%以上。
綜合上述研究結果,顯示本研究所製備之局部殼核型P3HT/TiO2複合光觸媒確實能有效利用太陽光催化分解酚類廢水,於程序中附加Fresnel lens後產生之聚光聚熱效應,可提高太陽能P3HT/TiO2光催化程序處理酚類廢水之實際應用性。

Solar P3HT(Poly 3-hexylthiophene)/TiO2 photocatalytic degradation of phenols (phenol & 4-CP) wastewater was investigated in this study. Nano-photocatalysts including P3HT(0.5%)/TiO2 and P3HT(1.0%)/TiO2 composites were prepared by a novel partial shell-core method. The physical and chemical properties of P3HT/TiO2 nano-particles were characterized by Scanning Electron Microscope (SEM), X-ray Energy Dispersive Spectrometer (EDS), X-ray diffraction (XRD), and UV/VIS Diffuse Reflectance Spectroscopy (UV/VIS DRS). The images of SEM showed the particle size of P3HT/TiO2 and TiO2 nano-particles with a similar range of 20-50 nm. The analysis of EDS confirmed that the molecule of P3HT with a desired content existed in the P3HT/TiO2 composite. Moreover, the results of XRD indicated the crystal pattern of TiO2 still presented mainly anatase form in P3HT/TiO2 composites. The spectrum of UV/VIS DRS showed that P3HT/TiO2 composites were much more responsive to visible light than TiO2. The higher the P3HT content, the more the absorption in the band of visible light.
Response surface methodology (RSM) with a 3*3 experimental design of Box-Behnken, ANOVA and a 3-1-1 model of artificial neural network (ANN) were applied to assess the effect of critical process parameters ([catalyst], P3HT content, O2 aeration rate) on treatment performance in terms of phenols molecular degradation efficiency and TOC mineralization efficiency. Optimized reaction conditions were established: [catalyst]: 1.36 g/L, P3HT content: 0.5%, a O2 aeration rate of 1 L/L/min and a reaction time of 90 min for reaching a 95% efficiency of phenol degradation; For photocatalytic degradation of 4-CP wastewater: [catalyst]: 1.5 g/L, P3HT content: 0.5%, a O2 aeration rate of 0.275 L/L/min and a reaction time of 120 min for reaching a 90% efficiency of TOC mineralization.
Under the optimized reaction conditions, the degradation efficiency of phenols wastewater could increase 42.64% and 29.74% for phenol and 4-CP, respectively as light irradiation increased from 250 to 750 W/m2. The degradation efficiency of phenols wastewater could increased 13.29% and 12.09% for phenol and 4-CP, respectively as wastewater temperature increased from 15 to 35 oC. Accordingly, it was supposed that solar energy consisting of light energy and heat irradiation could have a synergistic effect on the P3HT/TiO2 photocatalytic reaction, especially with the assistance of Fresnel lens.
Moreover, it was found that the degradation efficiency of phenols wastewater increased basically as the dosage of photocatalyst increased. An appropriate presence of P3HT content and O2 supply rate were beneficial to solar photocatalytic process. The dosage of photocatalyst was considered as the most weight parameter of phenols degradation on the basis of ANOVA and ANN model analysis. On the other hand, TiO2 were almost coated by P3HT in the shell-core type of P3HT/TiO2 photocatalyst, leading to a lower shift rate of electrons and a lower photocatalytic efficiency of phenols wastewater than the partial shell-core type of P3HT/TiO2 photocatalyst. A 10% increase of the abs@λmax reduction efficiency of phenols wastewater would be found as partial shell-core type P3HT/TiO2 instead of shell-core type P3HT/TiO2 used in a photocatalytic reaction.
Based on the results obtained in this study, it was revealed that the partial shell-core P3HT/TiO2 photocatalysts could effectively adsorb and employ solar irradiation for the degradation of phenols wastewater successfully.

摘 要 I
ABSTRACT IV
目錄 VII
表目錄 XII
圖目錄 XV
第一章 緒論 1
1.1 研究緣起 1
1.3 研究內容 3
第二章 文獻回顧 6
2.1光觸媒 6
2.1.1 TiO2光觸媒特性 6
2.1.2 TiO2光催化原理 8
2.2 P3HT/TiO2複合奈米光觸媒 10
2.2.1 P3HT(poly(3-hexylthiophene))有機半導體特性 10
2.2.2可見光光催化P3HT/TiO2複合奈米光觸媒原理 14
2.2.3紫外光光催化P3HT/TiO2複合奈米光觸媒原理 16
2.3 P3HT/TiO2光催化程序處理酚類廢水之影響因子 18
2.3.1光觸媒總添加量之影響 18
2.3.2 P3HT添加比例之影響 20
2.3.3曝氣量暨溶氧之影響 21
2.3.4 P3HT/TiO2光觸媒製備方法 23
2.4太陽光能結合P3HT/TiO2光催化程序在廢水處理上之應用 25
2.4.1光強度之影響 26
2.4.2太陽熱能暨廢水溫度之影響 28
2.4.3菲涅爾透鏡(Fresnel lens) 29
2.5反應曲面法(RSM)實驗設計之概念與應用 30
2.6類神經網路概念及權重分析應用 37
第三章 材料與方法 40
3.1 研究流程 40
3.2 實驗藥品 48
3.3 P3HT/TiO2複合奈米光觸媒製備方法 50
3.4實驗設備 53
3.4.1模擬太陽光實驗設備 53
3.4.2實際太陽光瓶杯試驗裝置 55
3.4.3菲涅爾透鏡(Fresnel lens) 56
3.5 光源之光強度量測 58
3.6 實驗操作方法 59
3.6.1 太陽光模擬瓶杯試驗 59
3.6.2 實際太陽光瓶杯試驗 60
3.7 光觸媒物化特性分析 61
3.7.1 SEM/EDS分析 61
3.7.2 XRD分析 62
3.7.3 UV/VIS DRS分析 64
3.7.4粒徑分析 65
3.8廢水樣品分析方法 66
3.8.1廢水UV/VIS吸收光譜分析 66
3.8.2 廢水中pH、DO與溫度量測 67
3.8.3廢水中TOC分析 69
3.8.4 酚類廢水暨反應中間產物之鑑別分析 70
3.8.4.1 高效液相層析儀(HPLC-PDA)分析 70
3.8.4.2 離子層析儀(IC)分析 74
3.8.4.3 氣相層析質譜儀(GC/MS)分析 77
第四章 結果與討論 81
4.1 partial shell-core型P3HT/TiO2複合奈米光觸媒物化特性分析 81
4.1.1 SEM/EDS分析 82
4.1.2 XRD分析 85
4.1.3 UV/VIS DRS分析 88
4.1.4 粒徑分析 90
4.2以RSM技術進行P3HT/TiO2光催化程序處理酚類廢水最適化之探討 92
4.2.1 迴歸模式建立與變異數分析 92
4.2.2 P3HT/TiO2光催化程序處理酚類廢水最適操作條件探求 99
4.3以類神經網路技術進行光催化程序影響因子權重分析 103
4.3.1光觸媒總添加量對光催化分解酚類廢水效率之影響 107
4.3.2 P3HT添加比例對光催化分解酚類廢水效率之影響 113
4.3.3曝氣量對光催化分解酚類廢水效率之影響 119
4.4 光強度對酚類廢水處理效率之影響 125
4.5 太陽熱能暨廢水溫度對酚類廢水處理效率之影響 131
4.6 菲涅爾透鏡(Fresnel lens)對太陽光光催化酚類廢水分解效率之影響 136
4.7酚類廢水降解反應中間產物鑑定暨反應機制之探討 144
4.8 partial shell-core型和shell-core型P3HT/TiO2光催化酚類廢水之比較 157
4.9 partial shell-core型P3HT/TiO2光催化酚類廢水和偶氮染料廢水之比較 162
第五章 結論與建議 164
參考文獻 167


Ahmed, S., M. G. Rasul, W. N. Martens, R. Brown and M. A. Hashib, 2010: Heterogeneous photocatalytic degradation of phenols in wastewater: A review on current status and developments. Desalination, 261, 3-18.
Ay, F., E. C. Catalkaya and F. Kargi, 2009: A statistical experiment design approach for advanced oxidation of Direct Red azo-dye by photo-Fenton treatment. Journal of hazardous materials, 162, 230-236.
Bagheban Shahri, F. and A. Niazi, 2015: Synthesis of modified maghemite nanoparticles and its application for removal of Acridine Orange from aqueous solutions by using Box-Behnken design. Journal of Magnetism and Magnetic Materials, 396, 318-326.
Bansal, P., D. Singh and D. Sud, 2010: Photocatalytic degradation of azo dye in aqueous TiO2 suspension: Reaction pathway and identification of intermediates products by LC/MS. Separation and Purification Technology, 72, 357-365.
Blaková, A., L. Csölleová and V. Brezová, 1998: Effect of light sources on the phenol degradation using Pt/TiO2 photocatalysts immobilized on glass fibres. Journal of Photochemistry and Photobiology A: Chemistry, 113, 251-256.
Box, G. E. and D. W. Behnken, 1960: Some new three level designs for the study of quantitative variables. Technometrics, 2, 455-475.
Catalkaya, E. C. and F. Kargi, 2007: Effects of operating parameters on advanced oxidation of diuron by the Fenton's reagent: a statistical design approach. Chemosphere, 69, 485-492.
Černigoj, U., U. L. Štangar, P. Trebše and M. Sarakha, 2009: Determination of catalytic properties of TiO2 coatings using aqueous solution of coumarin: Standardization efforts. Journal of Photochemistry and Photobiology A: Chemistry, 201, 142-150.
D'Oliveira, J.-C., C. Minero, E. Pelizzetti and P. Pichat, 1993: Photodegradation of dichlorophenols and trichlorophenols in TiO2 aqueous suspensions: kinetic effects of the positions of the Cl atoms and identification of the intermediates. Journal of Photochemistry and Photobiology A: Chemistry, 72, 261-267.
Daneshvar, N., D. Salari and A. R. Khataee, 2003: Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters. Journal of Photochemistry and Photobiology A: Chemistry, 157, 111-116.
Dionysiou, D. D., A. A. Burbano, M. T. Suidan, I. Baudin and J.-M. Laîné, 2002: Effect of oxygen in a thin-film rotating disk photocatalytic reactor. Environmental science & technology, 36, 3834-3843.
Durán, A., J. M. Monteagudo, I. Sanmartín and A. Valverde, 2014: Solar photodegradation of antipyrine in a synthetic WWTP effluent in a semi-industrial installation. Solar Energy Materials and Solar Cells, 125, 215-222.
Fu, J., Y. Zhao and Q. Wu, 2007: Optimising photoelectrocatalytic oxidation of fulvic acid using response surface methodology. Journal of hazardous materials, 144, 499-505.
Fu, J. F., Y. Q. Zhao, X. D. Xue, W. C. Li and A. O. Babatunde, 2009: Multivariate-parameter optimization of acid blue-7 wastewater treatment by Ti/TiO2 photoelectrocatalysis via the Box–Behnken design. Desalination, 243, 42-51.
Fujishima, A. and K. Honda, 1972: Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238, 37-38.
Garg, K. K. and B. Prasad, 2016: Development of Box Behnken design for treatment of terephthalic acid wastewater by electrocoagulation process: Optimization of process and analysis of sludge. Journal of Environmental Chemical Engineering, 4, 178-190.
Gonçalves, M. S. T., A. M. F. Oliveira-Campos, E. M. M. S. Pinto, P. M. S. Plasência and M. J. R. P. Queiroz, 1999: Photochemical treatment of solutions of azo dyes containing TiO2. Chemosphere, 39, 781-786.
Hofstadler, K., R. Bauer, S. Novalic and G. Heisler, 1994: New Reactor Design for Photocatalytic Wastewater Treatment with TiO2 Immobilized on Fused-Silica Glass Fibers: Photomineralization of 4-Chlorophenol. Environmental Science & Technology, 28, 670-674.
Ilisz, I., Z. László and A. Dombi, 1999: Investigation of the photodecomposition of phenol in near-UV-irradiated aqueous TiO2 suspensions. I: Effect of charge-trapping species on the degradation kinetics. Applied Catalysis A: General, 180, 25-33.
Kasiri, M. B., H. Aleboyeh and A. Aleboyeh, 2008: Modeling and Optimization of Heterogeneous Photo-Fenton Process with Response Surface Methodology and Artificial Neural Networks. Environmental Science & Technology, 42, 7970-7975.
Khataee, A. R., M. N. Pons and O. Zahraa, 2009: Photocatalytic degradation of three azo dyes using immobilized TiO2 nanoparticles on glass plates activated by UV light irradiation: influence of dye molecular structure. Journal of hazardous materials, 168, 451-457.
Kim, Y.-H., C.-H. Chung, M.-H. Lee, S. J. Yun, J. Moon, G. H. Kim, D.-J. Park, J. W. Lim, Y.-H. Song and J. H. Lee, 2006: P-2: High Performance of Polycrystalline Silicon TFT on Plastic Substrate Processed at Very Low Temperatures. SID Symposium Digest of Technical Papers, 37, 197-199.
Kim, Y., S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook and J. R. Durrant, 2005: Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene. Applied Physics Letters, 86, 063502.
Liang, H. C., X. Z. Li, Y. H. Yang and K. H. Sze, 2008: Effects of dissolved oxygen, pH, and anions on the 2,3-dichlorophenol degradation by photocatalytic reaction with anodic TiO2 nanotube films. Chemosphere, 73, 805-812.
Liu, C., Y. Hsieh, P. Lai, C. Li and C. Kao, 2006: Photodegradation treatment of azo dye wastewater by UV/TiO process. Dyes and Pigments, 68, 191-195.
Malato, S., P. Fernández-Ibáñez, M. I. Maldonado, J. Blanco and W. Gernjak, 2009: Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catalysis Today, 147, 1-59.
Mo, S.-D. and W. Y. Ching, 1995: Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite. Physical Review B, 51, 13023-13032.
Monteagudo, J. M. and A. Duran, 2006: Fresnel lens to concentrate solar energy for the photocatalytic decoloration and mineralization of orange II in aqueous solution. Chemosphere, 65, 1242-1248.
Monteagudo, J. M., A. Duran, J. Guerra, F. Garcia-Pena and P. Coca, 2008: Solar TiO2-assisted photocatalytic degradation of IGCC power station effluents using a Fresnel lens. Chemosphere, 71, 161-167.

Naeem, K., 2009: Metal Ion Doped TiO2 Photocatalytic Degradation of Phenolic Compounds. Department of Environmental Science and Technology. Harbin Institute of Technology.
Nam, W., J. Kim and G. Han, 2002: Photocatalytic oxidation of methyl orange in a three-phase fluidized bed reactor. Chemosphere, 47, 1019-1024.
Nath, R., B. Rajagopalan and R. Ryker, 1997: Determining the saliency of input variables in neural network classifiers. Computers & Operations Research, 24, 767-773.
Nigam, P., I. M. Banat, D. Singh and R. Marchant, 1996: Microbial process for the decolorization of textile effluent containing azo, diazo and reactive dyes. Process Biochemistry, 31, 435-442.
Okamoto, K.-i., Y. Yamamoto, H. Tanaka, M. Tanaka and A. Itaya, 1985: Heterogeneous photocatalytic decomposition of phenol over TiO2 powder. Bulletin of the Chemical Society of Japan, 58, 2015-2022.
Oliveira, R., M. F. Almeida, L. Santos and L. M. Madeira, 2006: Experimental design of 2, 4-dichlorophenol oxidation by Fenton's reaction. Industrial & engineering chemistry research, 45, 1266-1276.
Pelaez, M., N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O'Shea, M. H. Entezari and D. D. Dionysiou, 2012: A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B: Environmental, 125, 331-349.
Rauf, M. A., M. A. Meetani, A. Khaleel and A. Ahmed, 2010: Photocatalytic degradation of Methylene Blue using a mixed catalyst and product analysis by LC/MS. Chemical Engineering Journal, 157, 373-378.
Ray, S., J. A. Lalman and N. Biswas, 2009: Using the Box-Benkhen technique to statistically model phenol photocatalytic degradation by titanium dioxide nanoparticles. Chemical Engineering Journal, 150, 15-24.
Tang, S., X. M. Wang, Y. Q. Mao, Y. Zhao, H. W. Yang and Y. F. Xie, 2015: Effect of dissolved oxygen concentration on iron efficiency: Removal of three chloroacetic acids. Water research, 73, 342-352.
Terzian, R., N. Serpone, C. Minero and E. Pelizzetti, 1991: Photocatalyzed mineralization of cresols in aqueous media with irradiated titania. Journal of Catalysis, 128, 352-365.
Uğurlu, M. and M. H. Karaoğlu, 2011: TiO2 supported on sepiolite: Preparation, structural and thermal characterization and catalytic behaviour in photocatalytic treatment of phenol and lignin from olive mill wastewater. Chemical Engineering Journal, 166, 859-867.
Wang, D., J. Zhang, Q. Luo, X. Li, Y. Duan and J. An, 2009: Characterization and photocatalytic activity of poly(3-hexylthiophene)-modified TiO2 for degradation of methyl orange under visible light. Journal of hazardous materials, 169, 546-550.
Wu, C. H. and C. H. Yu, 2009: Effects of TiO2 dosage, pH and temperature on decolorization of C.I. Reactive Red 2 in a UV/US/TiO2 system. Journal of hazardous materials, 169, 1179-1183.
Xu, S., L. Gu, K. Wu, H. Yang, Y. Song, L. Jiang and Y. Dan, 2012: The influence of the oxidation degree of poly(3-hexylthiophene) on the photocatalytic activity of poly(3-hexylthiophene)/TiO2 composites. Solar Energy Materials and Solar Cells, 96, 286-291.
Youn, N. K., J. E. Heo, O. S. Joo, H. Lee, J. Kim and B. K. Min, 2010: The effect of dissolved oxygen on the 1,4-dioxane degradation with TiO2 and Au-TiO2 photocatalysts. Journal of hazardous materials, 177, 216-221.
Zhu, Y. and Y. Dan, 2010: Photocatalytic activity of poly(3-hexylthiophene)/titanium dioxide composites for degrading methyl orange. Solar Energy Materials and Solar Cells, 94, 1658-1664.

吳致誠(2002),「UV/TiO2程序中氫氧自由基之生成研究」,國立中興大學環境工程學系,碩士論文。
李旻恬(2009),「太陽能在Fenton like程序處理染料廢水之效應研究」,國立聯合大學環境與安全衛生工程學系,碩士論文。
周嘉鑫(2013),「染料廢水在太陽光Fenton程序中誘導Fe(Ⅱ)再生途徑暨反應因子之探討」,國立聯合大學環境與安全衛生工程學系,碩士論文。
林苡任(2009),「菲涅爾透鏡(Fresnel lens)之光學設計與精密成形」,國立高雄應用科技大學模具工程系,碩士論文。
紀雅婷(2015),「以太陽光P3HT/TiO2光催化程序分解偶氮性染料廢 水之研究」,國立聯合大學環境與安全衛生工程學系,碩士論文。
徐川順(2007),「位置規則性聚噻吩及其共聚物之合成及其應用於有機場效電晶體特性之研究」,大同大學化學工程學系,碩士論文。
馬寧元(2009),「可見光光觸媒技術之開發」,化工資訊與商情,第4期。
張仁祐(2014),「P3HT/TiO2複合奈米光觸媒製備及其在酚類廢水處理之研究」,國立聯合大學環境與安全衛生工程學系,碩士論文。
陳玟妤(2011),「以太陽光/TiO2光催化程序處理偶氮性染料廢水之研究」,國立聯合大學環境與安全衛生工程學系,碩士論文。
劉東昀(2012),「以斜板渠道式太陽光Fenton反應系統處理彩色濾光片廢水之研究」,國立聯合大學環境與安全衛生工程學系,碩士論文。
鄭信民、林麗娟(2002),「X光繞射應用簡介」,工業材料雜誌,181期。
盧明德(2008),「聚噻吩和半導體氧化物奈米複合材料合成及應用於太陽能電池材料之研究」,國立中央大學化學工程與材料工程研究所,博士論文。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top