跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/09 09:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡柏鋐
研究生(外文):TSAI,BO-HUNG
論文名稱:基於心電圖辨識心室頻脈與心室顫動及其用於預測心因性猝死之研究
論文名稱(外文):Identification of Ventricular Tachycardia and Ventricular Fibrillation for Sudden Cardiac Death Prediction Based on Electrocardiogram
指導教授:余松年余松年引用關係
指導教授(外文):Yu,Sung-Nien
口試委員:余松年林育德詹曉龍江瑞秋
口試委員(外文):Yu,Sung-NienLin,Yue-DerChan,Hsiao-LungChiang,Jui-Chiu
口試日期:2016-07-15
學位類別:碩士
校院名稱:國立中正大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:90
中文關鍵詞:心因性猝死心電圖基因演算法多目標基因演算法P值法支持向量機
外文關鍵詞:Sudden Cardiac DeathElectrocardiogramGenetic algorithmMulti-objective genetic algorithmP valueSupport Vector Machine
相關次數:
  • 被引用被引用:0
  • 點閱點閱:580
  • 評分評分:
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出了一個基於心電圖的心室頻脈(Ventricular Tachycardia, VT)及心室顫動(Ventricular Fibrillation, VF)的辨識方法並探討運用於心因性猝死(Sudden Cardiac Death, SCD)預測的研究。VT、VF的辨識與SCD的預測分別使用5秒及60秒的心電圖(ECG)作為訊號來源,其中SCD預測是以VF發病前固定區段的時間進行研究及分析。
本研究主要分為兩部分,第一部分為VT、VF之心律不整辨識,訊號來源為MIT-BIH Malignant Ventricular Arrhythmia Database (VFDB),第二部分為SCD預測,訊號來源為MIT-BIH Sudden Cardiac Death Holter Database (SDDB)。在系統架構上可分為前處理、特徵擷取、特徵正規化、特徵挑選與分類。首先,先將原始訊號經過前處理去除不必要的雜訊,然後進行特徵擷取及特徵正規化來取得可用以分類的特徵,接著探討傳統基因演算法(GA)、改良型基因演算法(MGA)、多目標基因演算法(NSGA-II)及P值法(P-value)進行特徵挑選,以降低特徵維度時,提升辨識及預測正確率的效能。論文中並探討如何讓挑選出的特徵同時適用於訓練集與測試集的方法,其中分類使用支持向量機(SVM),並藉由五折(five-fold)的方式來進行交叉驗證。
結果顯示,第一部分嚴重心律不整辨識在訓練集得到的最佳靈敏度、特異度及正確率分別為93.05%、96.84%及95.6%。而在測試集則為92.55%、96.43%及95.52%。第二部分心因性猝死預測,於發病前第10分鐘的訊號在訓練集得到的最佳靈敏度(Sensitivity, Se)、特異度(Specificity, Sp)及正確率(Accuracy, Ac)則分別為76.25%、82.5%及79.38%。而在測試集則為72.5%、82.5%及77.5%。
本系統對於VT、VF的辨識以及SCD預測上皆有不錯的正確率,研究成果可應用在醫療救護上,作為醫護人員掌握病患病情的一項重要輔助。

This thesis proposes a Ventricular Tachycardia (VT) and Ventricular Fibrillation (VF) identification method and its application to Sudden Cardiac Death (SCD) prediction based on electrocardiogram (ECG). These two systems used ECG of 5 seconds and 60 seconds to separately identify VT, VF and predict SCD. The research of SCD prediction were based on signals in specific period of time before the onset of VF.
This study is divided into two parts. The first part is arrhythmia (VT and VF) identification. The ECG signals used in the experiment were obtained from the MIT-BIH Malignant Ventricular Arrhythmia Database (VFDB). The second part is SCD prediction. The ECG signals were obtained from the MIT-BIH Sudden Cardiac Death Holter Database (SDDB). The system architecture was divided into pre-processing, feature extraction, feature normalization, feature selection and classification. Firstly, the original signals were preprocessed to remove unnecessary noise. Secondly, feature extraction and feature normalization were used to obtain the features for classification. Thirdly, traditional genetic algorithm (GA), modified genetic algorithm (MGA), multi-objective genetic algorithm (NSGA-II) and P value were used for feature selection to reduce the feature dimensions. Their performance in improving the identification and prediction accuracy rate was compared. Strategies for selecting features that are suitable for using both in the training set and test set were discussed. Finally, support vector machine (SVM) was used to classify these heart rhythms, and the five-fold scheme was used for cross-validation.
In the first part, a sensitivity (Se) of 93.05%, a specificity (Sp) of 96.84%, and an accuracy (Ac) of 95.6% were obtained on the training dataset. And, an Se of 92.55%, an Sp of 96.43%, and an Ac of 95.52% were obtained on the test dataset.
In the second part, this study can predict the SCD ten minutes before its onset with an Se of 76.25%, an Sp of 82.5%, and an Ac of 79.38% on the training dataset, and an Se of 72.5%, an Sp of 82.5%, and an Ac of 77.5% on the test dataset. According to the results, the systems for arrhythmia identification and SCD prediction proposed in this study imposing accuracy rates, and demonstrate their capability to be used in medical care to assist health care workers handle their patient’s condition.

致謝辭
摘要
Abstract
目錄
圖目錄
表目錄
第一章 緒論
1.1研究動機
1.2相關研究
1.3研究目的
1.4論文架構
第二章 研究背景
2.1.心電圖原理
2.1.1心臟與心搏
2.1.2心電圖波型
2.1.3心電圖導極
2.2心律不整
2.3心因性猝死
2.4小波轉換
2.5支持向量機
第三章 研究方法
3.1實驗架構
3.2資料庫介紹
3.3訊號前處理
3.4特徵擷取
3.5特徵正規化
3.6特徵選取
3.6.1基因演算法
3.6.2改良型基因演算法
3.6.3適應值計算
3.6.4多目標基因演算法
3.6.5 P值法
3.7交叉驗證
第四章 研究結果與討論
4.1嚴重心律不整辨識結果與討論
4.2心因性猝死預測結果與討論
4.3研究結果評估與分析
4.4相關文獻比較
第五章 結論與未來展望
5.1結論
5.2未來展望
參考文獻

[1]衛生福利部,103年國人死因統計結果
http://www.mohw.gov.tw/news/531349778
[2]辛和宗醫師,亞東紀念醫院,漫談心因性猝死
http://www.femh.org.tw/epaperadmin/viewarticle.aspx?ID=1052
[3]林謂文醫師,臺安醫院醫藥專欄,魔術師謝幕、蝴蝶折翼,從徐生明總教練
病逝來看可怕的青壯年殺手-心因性猝死
http://www.tahsda.org.tw/newsletters/?p=3014
[4]呂嘉陞編譯,“心電圖學必備”,合記圖書版社發行
[5]國立臺灣科學教育館,生命的奇幻世界
http://activity.ntsec.gov.tw/lifeworld/body_c6.html
[6]Wikiwand,心電圖
http://www.wikiwand.com/zh-mo/%E5%BF%83%E7%94%B5%E5%9B%BE#/.E6.9C.AA.E6.9D.A5.E5.BA.94.E7.94.A8
[7]猶他州立大學
http://www.sci.utah.edu/~macleod/bioen/be6000/labnotes/ecg/descrip.html
[8]ECG Learning Center
http://ecg.utah.edu/lesson/1
[9]維基百科,心律不整
https://zh.wikipedia.org/wiki/%E5%BF%83%E5%BE%8B%E4%B8%8D%E6%
95%B4
[10]西園醫院,注意危險因子,遠離心因性猝死
http://www.westgarden.com.tw/health_detail.asp?num=280
[11]亞東紀念醫院心臟血管外科,常見的心臟血管疾病
http://www.roboticsurg.com/tw/disease1-4.php
[12]三軍總醫院心臟內科衛教資訊,瓣膜性心臟病
http://wwwu.tsgh.ndmctsgh.edu.tw/cv/EDU/cv-16/cv-16.html
[13]心律不整資訊網
http://www.jjmt.com.tw/bwitw/introVentricle.php
[14] S. G. Mallat, “A Theory for Multiresolution Signal Decomposition: The Wavelet
Representation”, IEEE Transactionson on Pattern Analysis and Machine Intelligence , Vol. 11, No. 7, 1989, Page(s): 674-693.
[15]V. Vapnik, “Statistical Learning Theory”, New York: Wiley, 1998.
[16]N. C. a. J. Shawe-Taylor, “An Introduction to Support Vector Machines and Other Kernel-based Learning Methods”, Cambridge University Press, 2000.
[17]“LIBSVM-A Library for Support Vector Machines”
http://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html
[18]X. S. Zhang, Y. S. Zhu, N. V. Thakor, and Z. Z. Wang, “Detecting ventricular
tachycardia and fibrillation by complexity measure,” IEEE Trans. Biomed. Eng.,
vol. 46, no. 5, pp. 548–555, May 1999.
[19]S. Kuo and R. Dillman, “Computer detection of ventricular fibrillation,” in Proc.
Comput. Cardiol., 1978, pp. 347–349.
[20]S. Barro, R. Ruiz, D. Cabello, and J. Mira, “Algorithmic sequential decision
making in a frequency domain for life threatening ventricular arrhythmias and
imitative artifacts: a diagnostic system,” J. Biomed. Eng., vol. 11, pp. 320–328,
Jul. 1989.
[21]A. Amann, R. Tratnig, and K. Unterkofler, “Detecting ventricular fibrillation by
time-delay methods,” IEEE Trans. Biomed. Eng., vol. 54, no. 1, pp. 174–177,
Jan.2007.
[22]I. Jekova and V. Krasteva, “Real time detection of ventricular fibrillation and
tachycardia,” Physiol. Meas., vol. 25, pp. 1167–1178, Aug. 2004.
[23]I. Jekova, “Shock advisory tool: Detection of life-threatening cardiac arrhythmias and shock success prediction by means of a common parameter set,” Biomed. Signal Process. Control, vol. 2, pp. 25–33, Jan. 2007.
[24]Q. Li, R. G. Mark, and G. D. Clifford, “Robust heart rate estimation from
multiple asynchronous noisy sources using signal quality indices and a Kalman
filter,” Physiol. Meas., vol. 29, pp. 15–32, Jan. 2008.
[25]M. Arafat, A. Chowdhury, and M. Hasan, “A simple time domain algorithm for
the detection of ventricular fibrillation in electrocardiogram,” Signal, Image and
Video Processing, vol. 5, no. 1, pp. 1–10,2011.
[26]S. M. Pincus, “Heart rate control in normal and aborted-SIDS infants”,
American Journal of Physiology, Vol. 33, Page(s): 638-646, 1991.
[27]A. Metin, “Approximate Entropy and Its Application in Biosignal Analysis “,
Nonlinear Biomedical Signal Processing:Dynamic Analysis and Modeling, IEEE
Press, Vol. 2, Page(s): 72-91, 2001.
[28]H. Li, W. Han, C. Hu, and M. H. Meng, “Detecting ventricular fibrillation by fast
algorithm of dynamic sample entropy,” in IEEE International Conference on
Robotics and Biomimetics, pp.1105–1110, Dec 2009.
[29]M. J. Katz, “Fractals and Analysis of Waveforms”, computers in biology and
medicine 18, Page(s): 145–156, 1988.
[30]“Hurst exponent”
https://en.wikipedia.org/wiki/Hurst_exponent
[31] 陳奕仁,”適應性基因演算法結合菁英政策於線性馬達定位機台之主動式振
動控制器設計”,國立中山大學機械工程研究所,90年
[32]K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multi-objective genetic algorithm : NSGA-II, ” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182-197, April 2002.
[33]MBAlib 顯著性檢驗
http://wiki.mbalib.com/zh-tw/%E6%98%BE%E8%91%97%E6%80%A7%E6%
A3%80%E9%AA%8C
[34]R. M. Rangayyan, “Measures of Diagnostic Accuracy and Cost,” In: “Biomedical Signal Analysis:A Case-Study Approach”, Wiley, pp. 466-472, 2002.
[35]Sang-Hong Lee, Joon S. Lim, “Detection of ventricular fibrillation based on time
domain analysis”, ICISA-2013, pp.1-3, 2013.
[36]Z. Hou, Y. Zhang, “Ventricular fibrillation detection by an improved time domain
algorithm combined with SVM”, International Conference on Medical
Biometrics-2014, pp. 189-194, 2014.
[37]E. Elias, M. Pooyan. “Early detection of sudden cardiac death by using classical
linear techniques and time-frequency methods on electrocardiogram signals”, Biomedical Science and Engineering, 11,699-706, 2011.
[38]E. Elias, P. Mohammad, B. Ahmad, “A novel approach to predict sudden cardiac death (SCD) using nonlinear and time-frequency analyses from HRV signals” , PLOS One, 9, e81896, 2014.
[39]U Rajendra Acharya, Hamido Fujita, Vidya K. Sudarshan, Dhanjoo N. Ghista, Lim Wei Jie Eugene, Joel EW Koh, “Automated Prediction of Sudden Cardiac Death Risk Using Kolmogorov complexity and Recurrence Quantification Analysis Features Extracted from HRV Signals” , IEEE International Conference on Systems, Man, and Cybernetics, pp. 1110-1115, 9-12 Oct. 2015.
[40] A. Grossmann, J. Morlet, ”Decomposition of Hardy function into square
integrable wavelets of constant shape,” SIAM J. Math. Anal. Vol.15, No.4, pp.
736-783, 1984.

[41]J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence, University of Michigan Press, 1975.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊