1.ACI Releases World Airport Traffic Report Media Release. Airports Council International, Montreal 2013; Available at: http://www.aci.aero/media/bc5239b4-07ac-4d1f-8cbb-db8f1b093d80/News/Releases/2013/PR_2013_08_28_WATR_Release_pdf.
2.Air transpot action group. Beginner's guide to aviation biofuels. ATAG, 2011.
3.Antal MJ, Mok WSL. Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from D-fructose and sucrose. Carbohydrate Research 1990;199:91-109.
4.Appell HR, Fu YC, Friedman S, Yavorsky PM, Wender I. Converting organic wastes to oil: a replenishable energy source. Report of Investigations 7560. Washington DC; 1980.
5.Asghari FS, Yoshida H. Acid catalyzed production of 5-hydroxymethyl furfural from D-fructose in subcritical water. Industrial & Engineering Chemistry Research 2006;45:2163-73.
6.Bühler W, Dinjus E, Ederer HJ, Kruse A, Mas C. Ionic reactions and pyrolysis of glycerol as competing reaction pathways in near- and supercritical catalytic dehydration of biomass-derived polyols in sub- and supercritical water. Journal of Supercritical Fluids 2002;22:37-53.
7.Behrendt F, Neubauer Y, Oevermann M, Wilmes B, Zobel N. Direct liquefaction of biomass review. Chemical Engineering Technology 2008;31:667-77.
8.Bermejo MD, Cocero MJ. Destruction of an industrial wastewater by supercritical water oxidation in a transpiring wall reactor. Journal of Hazardous Materials 2006;B137:965-71.
9.Biller P, Ross AB. Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresource Technology 2011;102:215-25.
10.Bobleter O. Hydrothermal degradation of polymers derived from plants. Polymer Science 1994;19:797-841.
11.Bonn G, Bobleter O. Determination of the hydrothermal degradation products of d-(U-14C) glucose and d-(U-14C) fructose by TLC. Journal of Radioanalytical Chemistry 1983;79:171 -7.
12.Bröll D, Kaul C, Krömer A, Krammer P, Richter T, Jung M. Chemistry in supercritical water. Angewandte Chemie International Edition in English 1999;38:2998-3014.
13.Bridgwater AV, Meier D, Radlein D. An overview of fast pyrolysis of biomass.Organic Geochemistry 1999;30:1479-93.
14.Chiaramontia D, Oasmaab A, Solantausta Y. Power Generation Using Fast Pyrolysis Liquids from Biomass. Renewable and Sustainable Energy Reviews 2007; 11: 1056-86.
15.Demirbas A. Thermochemical conversion of biomass to liquid products in the aqueous medium. Energy Sources 2005;27:1235-43.
16.Elliot DC, Phelps MR, Sealock LJ, Baker EG. Chemical processing in highpressure aqueous environments. 3. Continuous-flow reactor process development experiments for organics destruction. Industrial & Engineering Chemistry Research 1994;33:566-74
17.Elliot DC, Sealock LJ, Baker EG. Chemical processing in high-pressure aqueous environments. 2. Development of catalysts for gasification. Industrial & Engineering Chemistry Research 1993;32:1542-8.
18.Gupta KK, Rehman A, Sarviya RM. Bio-fuels for the gas turbine: A review. Renewable and Sustainable Energy Reviews.2010;14:2496-2955.
19.Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF, Lidén G, Zacchi G. Bioethanol-the fuel of tomorrow from the residues of today. Trends in Biotechnology 2006;24:549-56.
20.Heddle JF. Activated sludge treatment of slaughter house wastes with protein recovery. Water Research 1979;13:581-4.
21.Hodes M, Marrone PA, Hong GT, Smith KA, Tester JW. Salt precipitation and scale control in supercritical water oxidation e Part A: fundamentals and research. Journal of Supercritical Fluids 2004;29:265-88.
22.Holliday RL, King JW, List GR. Hydrolysis of vegetable oils in sub- and supercritical water. Industrial & Engineering Chemistry Research 1997;36:932-5.
23.Horvath A, Chester M. Environmental Life-cycle Assessment of Passenger Transportation An Energy, Greenhouse Gas and Criteria Pollutant Inventory of Rail and Air Transportation. Info: University of California Transportation Center, UC Berkeley.2008
24.IEO. International energy outlook. Liquid fuels Energy Information Administration 2009.
25.IPCC, Aviation and the Global Atmosphere: A Special Report of the Intergovernmental Panel on Climate Change (1999), Cambridge University Press Jump up Valuing the non-CO2 climate impacts of aviation Climate Change, 111 ( 3-4 ) s. 559-579 2012.
26.ITIA IATA 2014 Report on Alternative Fuels, 2014.
27.Jase B, Carleton A.M. The impacts of long-lived jet contrail 'outbreaks' on surface station diurnal temperature range. International Journal of Climatology.2015;35:4529-453.
28.Jena U, Das KC, Kastner JR.Comparison of the effects of Na2CO3, Ca3(PO4)2, and NiO catalysts on the thermochemical liquefaction of microalga Spirulina platensis.Applied Energ 2012;98:368-375.
29.Kabyemela BM, Adschiri T, Malaluan RM, Arai K. Glucose and fructose decomposition in subcritical and supercritical water: detailed reaction pathway, mechanisms, and kinetics. Industrial & Engineering Chemistry Research 1999;38:2888-95.
30.Kabyemela BM, Adschiri T, Malaluan RM, Arai K. Kinetics of glucose epimerization and decomposition in subcritical and supercritical water. Industrial & Engineering Chemistry Research 1997;36:1552-8.
31.Karagöz S, Bhaskar T, Muto A, Sakata Y, Oshiki T, Kishimoto T. Lowtemperature catalytic hydrothermal treatment of wood biomass: analysis of liquid products. Chemical Engineering Journal 2005(b);108:127-37.
32.Karagöz S, Bhaskar T, Muto A, Sakata Y. Comparative studies of oil compositions produced from sawdust, rice husk, lignin and cellulose by hydrothermal treatment. Fuel 2005(a);84:875-84.
33.Karagöz S, Bhaskar T, Muto A, Sakata Y. Hydrothermal upgrading of biomass:effect of K2CO3 concentration and biomass/water ratio on products distribution. Bioresource Technology 2006;97:90-8.
34.Keane, J. Briefing paper: The aviation industry, the European Union's Emissions Trading Scheme and Small and Vulnerable Economies. 2012
35.Kim Y, Mosier NS, Hendrickson R, Ezeji T, Blaschek H, Dien B. Composition of corn dry-grind ethanol by-products: DDGS, wet cake, and thin stillage. Bioresource Technology 2008;99:5165-76.
36.King JW, Holliday RL, List GR. Hydrolysis of soybean oil in a subcritical water flow reactor. Green Chemistry 1999;1:261-4.
37.Krammer P, Vogel H. Hydrolysis of esters in subcritical and supercritical water. Journal of Supercritical Fluids 2000;16:189-206.
38.Kritzer P, Dinjus E. An assessment of supercritical water oxidation (SCWO) existing problems, possible solutions and new reactor concepts. Chemical Engineering Journal 2001;83:207-14.
39.Kruse A, Dinjus E. Hot compressed water as reaction medium and reactant properties and synthesis reactions. Journal of Supercritical Fluids 2007(a);39:362-80.
40.Kruse A, Gawlik A. Biomass conversion in water at 330-410 C and 30-50 MPa. Identification of key compounds for indicating different chemical reaction pathways. Industrial & Engineering Chemistry Research 2003;42:267-79.
41.Kruse A, Maniam P, Spieler F. Influence of proteins on the hydrothermal gasification and liquefaction of biomass. 2. Model compounds. Industrial & Engineering Chemistry Research 2007(b);46:87-96.
42.Lehr V, Sarlea M, Ott L, Vogel H. Catalytic dehydration of biomass-derived polyols in sub- and supercritical water. Catalysis Today 2007;121:121-9.
43.Lewis, J.S., Niedzwiecki, R.W., Bahr, D.W., Bullock, S., Cumpsty, N., Dodds, W., DuBois, D., Epstein, A., Freguson, W.W., Fiorento, A., Gorbatko, A.A., Hagen D.E., Hart, P.J., Hayashi, S., Jamieson, J.B., Kerrebrock, J., Lecht, M., Lowrie,B., Miake- Lye, R.C., Mortlock, A.K., Moses,C., Renger, K., Sampath,S., Sanborn, J., Simon,B., Sorokin,A., Taylor, W., Waitz, I., Wey, C.C., Whitefield, P., Wilson, C.W., Wu, S., Aircraft technology and its relation to emissions, Aviation and the Global Atmosphere, Special Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge 1999;Chapter 7
44.Liu A, Park YK, Huang Z, Wang B, Ankumah RO, Biswas PK. Product identification and distribution from hydrothermal conversion of walnut shells.Energy & Fuels 2006;20:446-54.
45.Lu Y, Zhu Y,Li S, Zhang X,Guo L.Behavior of nickel catalysts in supercritical water gasification of glucose: Influence of support.biomass and bioenergy 2014;67:125-136.
46.Luijkx GCA, Rantwijk FV, Bekkum HV. Hydrothermal formation of 1,2,4-benzenetriol from 5 hydroxymethyl-2-furaldehyde and D-fructose. Carbohydrate Research 1993;242:131-9.
47.Marrone PA, Hodes M, Smith KA, Tester JW. Salt precipitation and scale control in supercritical water oxidation e Part B: commercial/full-scale applications. Journal of Supercritical Fluids 2004;29:289-312.
48.Matsumura Y, Minowa T, Potic B, Kersten SRA, Prins W, van Swaaij WPM, Biomass gasification in near- and super-critical water: status and prospects. Biomass and Bioenergy 2005;29:268-92.
49.McNeil BI, Matear RJ . Southern Ocean acidification: A tipping point at 450-ppm atmospheric CO2. Proceedings of the National Academy of Sciences 2008;105-48
50.Minowa T, Inoue S. Hydrogen production from biomass by catalytic gasification in hot compressed water. Renewable Energy 1999;16:1114-7.
51.Minowa T, Kondo T, Sudirjo S. Thermochemical liquefaction of Indonesian biomass residues. Biomass and Bioenergy 1998(c);14:517-24.
52.Minowa T, Murakami M, Dote Y, Ogi T, Yokoyama S. Oil production from garbage by thermochemical liquefaction. Biomass and Bioenergy 1995;8:117-20.
53.Minowa T, Ogi T. Hydrogen production from cellulose using a reduced nickel catalyst. Catalysis Today 1998b;45:411-6.
54.Minowa T, Zhen F, Ogi T. Cellulose decomposition in hot-compressed water with alkali or nickel catalyst. Journal of Supercritical Fluids 1998(b);13:253-9.
55.Mohammad B, Mokhtar B, Ahmad T, Ajay KD, Umashanker D.Hydrogen production via supercritical water gasification of bagasse using unpromoted and zinc promoted Ru/γ-Al2O3 nanocatalysts.Fuel Processing Technology 2014;123:140-48.
56.Nagamori M, Funazukuri T. Glucose production by hydrolysis of starch under hydrothermal conditions. Journal of Chemical Technology and Biotechnology 2004;79:229-33.
57.Onwudili JA, Williams PT. Hydrothermal Gasification and Oxidation as Effective Flameless Conversion Technologies for Organic Wastes. Journal of the Energy Institute 2008; 81:102-109.
58.Peterson AA, Vogel F, Lachance RP, Frling M, Antal MJ, Tester JW. Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. Energy and Environmental Science 2008;1:32-65.
59.Rajdeep S, Janelle W, Sushil A, Ravishankar M, Sneha N.Effect of temperature and Na2CO3 catalyst on hydrothermal liquefaction of algae.Algal Research 2015;12:80-90.
60.Rogalinski T, Liu K, Albrecht T, Brunner G. Hydrolysis kinetics of biopolymers in subcritical water. Journal of Supercritical Fluids 2008;46:335-41.
61.Russell JA, Miller RK, Motton PM. Formation of aromatic compounds from condensation reactions of cellulose degradation products. Biomass 1983;3:43-57.
62.Sasaki M, Adschiri T, Arai K. Kinetics of cellulose conversion at 25 MPa in sub- and supercritical water. AIChE Journal 2004;50:192-202.
63.Sasaki M, Fang Z, Fukushima Y, Adschiri T, Arai K. Dissolution and hydrolysis of cellulose in subcritical and supercritical water. Industrial & Engineering Chemistry Research 2000;39:2883-90.
64.Schmieder H, Abeln J, Boukis N, Dinjus E, Kruse A, Kluth M, et al. Hydrothermal gasification of biomass and organic wastes. Journal of Supercritical Fluids 2000;17:145-53.
65.Shie JL, Chang CY, Lin JP, Wu CH, Lee DJ, Chang CF. Oxidative Thermal Treatment of Oil Sludge at Low Heating Rates. Energy & Fuels 2004; 18, 1272-81.
66.Shie JL, Lin JP, Chang CY, Wu CH, Shih SM, Lee DJ. Pyrolysis of oil sludge with additives of catalytic solid wastes. Journal of Analytical and Applied Pyrolysis 2004;71(2), 695-707.
67.Shuping Z, Yulong W, Mingde Y, Kaleem I, Chun L, Tong J. Production and characterization of bio-oil from hydrothermal liquefaction of microalgae Dunaliella tertiolecta cake. Energy; 2010:32, 5406-11.
68.Sinag A, Kruse A, Rathert J. Influence of the heating rate and the type of catalyst on the formation of key intermediates and on the generation of gases during hydropyrolysis of glucose in supercritical water in a batch reactor. Industrial & Engineering Chemistry Research 2004;43:502-8.
69.Sinag A, Kruse A, Schwarzkopf V. Key compounds of the hydropyrolysis of glucose in supercritical water in the presence of K2CO3. Industrial & Engineering Chemistry Research 2003;42:3516-21.
70.Song C, Hu H, Zhu S, Wang G, Chen G. Nonisothermal catalytic liquefaction of corn stalk in subcritical and supercritical water. Energy & Fuels 2004;18:90-6.
71.Srokol Z, Bouche AG, Estrik AV, Strik RCJ, Maschmeyer T, Peters JA. Hydrothermal upgrading of biomass to biofuel; studies on some monosaccharide model compounds. Carbohydrate Research 2004;339:1717-26.
72.Steffen B, Flabianus H, Jaehoon K, Dong JS.Effect of heating rate on biomass liquefaction: Differences between subcritical water and supercritical ethanol. energy 2014;68:420-27.
73.Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology 2002;83:1-11.
74.Tekin K, Karagöz S. Non-catalytic and Catalytic Hydrothermal Liquefaction of Biomass. Res Chem Intermed 2013; 39, 485-98.
75.Toor SS, Rosendahl L, Rudolf A. Hydrothermal liquefaction of biomass: a review of subcritical water technologies. Energy 2011;36(5):2328-42.
76.Uematsu M, Franck EU. Static dielectric constant of water and steam. Journal of Physical and Chemical Reference Data 1980;9:1291-306.
77.Wahyudiono, Kanetake T, Sasaki M, Goto M. Decomposition of a lignin model compound under hydrothermal conditions. Chemical Engineering Technology 2007;30(8):1113-22.
78.Watanabe M, Aizawa Y, Iida T, Aida TM, Levy C, Sue K. Glucose reactions with acid and base catalysts in hot compressed water at 473 K. Carbohydrate Research 2005;340:1925-30.
79.Watanabe M, Iida T, Inomata H. Decomposition of a long chain saturated fatty acid with some additives in hot compressed water. Energy Conversion and Management 2006;47:3344-50.
80.Westcott PC. U.S.ethanol issues and developments" ERS Workshop: Global Biofuel Developments: Modeling the Effects on Agriculture, 2009.
81.Wilson GR, Edwards T, Corporan W, Freerks RL. Certification of Alternative Aviation Fuels and Blend Components. Energy Fuels 2013; 27:2, 962-66.
82.Wuebbles, M. Gupta, M. Ko. Evaluating the impacts of aviation on climate change. EOS Trans 2007;88:157-60.
83.Yu Y, Lou X, Wu H. Some recent advances in hydrolysis of biomass in hotcompressed water and its comparisons with other hydrolysis methods. Energy & Fuels 2008;22:46-60.
84.Zabaniotou A, Damartzis T. Thermochemical conversion of biomass to second generation biofuels through integrated process design-A review. Renewable and Sustainable Energy Reviews 2009;15:366-78.
85.Zhang B, Huang HJ, Ramaswamy S. Reaction kinetics of the hydrothermal treatment of lignin. Applied Biochemistry and Biotechnology 2008;147: 119-31.
86.Zhang He BJ, Y, Funk TL, Riskowski GL, Yin Y. Thermochemical conversion of swine manure: an alternative process for waste treatment and renewable energy production. American Society of Agricultural Engineers 2000; 43: 1827-33.
87.Zhu WW, Zong ZM, Yan HL, Zhao YP, Lu Y,Wei XY, Zhang D.Cornstalk liquefaction in methanol/water mixed solvents.Fuel Processing Technology 2014;117:1-7.
88.Zhua Z, Rosendahlb L, Saqib ST, Yu DH, Guanyi C.Hydrothermal liquefaction of barley straw to bio-crude oil: Effects of reaction temperature and aqueous phase recirculation.Applied Energy 2015;137:183-92.
89.萬皓鵬、李宏台,「定置型生質能源熱電應用系統」,台灣省鍋爐協會雙月刊第108期,2006。
90.吳耿東,李宏台,全球生質能源應用現況與未來展望,林業研究專訓,2007。
91.盧文章,林昀輝,李宏台,「能源報導」,經濟部能源局11期,1-40,2007。
92.古森本,「生質能源作物之開發與潛力」農業生技產業季刊,13期,46-53,2008。93.萬皓鵬,「生質物─後化石世代的重要能源與工業原料」,科學發展第497期,2014。