跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/07 03:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊惟勝
研究生(外文):YANG,WEI-SHENG
論文名稱:利用水熱法液化造紙廠製程排渣摻配廢食用油及酒精汽油產製液態燃料油之研究
論文名稱(外文):Liquefaction Conversion of Process Rejects from Wastepaper-based Paper Mill to Liquid Fuel Using Hydrothermal Technology Combined with Waste Cooking Oil and Ethanol
指導教授:謝哲隆
指導教授(外文):Shie, Je-Lueng
口試委員:張慶源陳奕宏楊錫賢
口試委員(外文):Chang,Ching-YuanChen,Yi-HungYang,Hsi-Hsien
口試日期:2016-05-25
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:環境工程學系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:157
中文關鍵詞:水熱液化次臨界造紙廠製程排渣大豆油
外文關鍵詞:hydrothermal liquefactionsubcriticalwastepaper-based paper millSoybean oil
相關次數:
  • 被引用被引用:4
  • 點閱點閱:232
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
本研究所使用的原料為台灣中部某造紙廠製程排渣(PRPM),具有高揮發分及高熱值之特性,適宜做為燃料使用。但是其存在高氧含量,混和成分複雜降低直接利用之效益。本研究嘗試使用高溫高壓水熱液氣化技術(HLG)轉化PRPM (HLGPR)、同技術下摻配大豆油轉化PRPM (HLGPRSO)、摻配生質柴油轉化PRPM (HLGPRBD)及摻配生質柴油及乙醇轉化PRPM (TLGPRBDE),將廢棄生質物於廢棄液體燃料中,共處理轉化成可商業化使用油品燃料。
在單獨HLGPR程序中,固相產物分析結果顯示其可提升殘渣產物熱效益品質。元素分析結果亦證實HLGPR可有效性脫氧,達到提升產物熱效益。在元素分析部分,延長時間可有效性脫氧,而持溫超過1 hr時會提升裂解效果。而FTIR結果亦顯示使用此程序C-O會消失,證明此程序確有脫氧之效果,SEM結果呈現較低溫條件下有較明顯的裂解產生。在GC/MS分析結果顯示,液相產物以醇類和酚類為主。醇類產物的含量則隨著持溫時間的增加而減少。模擬蒸餾分析以573 K持溫2 hr有較佳結果。延長持溫時間可有效裂解產物中的物質並提高產物之pH值。因此結果顯示其仍帶有高含量酚類、較低pH值與高分子量物質等缺點待克服。氣相產物部分,增加溫度可提升CO與CH4的產量,但對H2產量有所抑制。延長持溫時間CO2濃度會減少,但是也會造成其他氣相產物減少。產物回收率皆達到90 %以上。轉化率則落在33-48 %範圍之間。選擇最適化條件下的573 K持溫2 hr作為後續實驗之操作條件。
HLGPRSO程序中,固相產物分析結果顯示隨著大豆油添加量的增加,固相產物熱值亦則會隨之上升,但將大豆油含量增加至100 %時,熱值卻明顯下降,顯示有水含量時,對熱值有絕對影響。大豆油的添加會使揮發份增加,亦使固相產物的C與H含量增加,N及O含量下降,說明添加大豆油可有效幫助裂解,並顯示添加大豆油可有脫氧效果,且SEM圖形呈現在摻配油水比25:75條件下殘渣較為破碎,說明裂解效果較佳。液體產物分析顯示,大豆油的摻配比例越高,液體產物熱值則會越低,大豆油含量的增加會導致液體產物N和H含量也增加。在摻配條件油水比25:75下,可得到較接近商業油品之液相產物。氣體產物濃度會隨著大豆油的含量增加而增加,在摻配溶劑油水比75:25下達到最高氣體產量,因此具有液化與氣化同時進行之效果。產物回收率介於在88-98 %之間,而產率皆在85 %以上。產物轉化率則隨著大豆油含量的增加而增加,落在35- 93 %之間。證明摻配大豆油可明顯提升油品品質及轉化率。
HLGPRBD程序則更改摻配溶劑為中級生質柴油,結果顯示,固相產物的熱值,揮發分與H,O含量上升,而N、C、S含量降低,SEM結果殘渣呈現邊緣破裂化。液相產物的N及S含量減少,C含量增加,熱值則下降,模擬蒸餾結果顯示碳數分布較HLGPRSO佳。原因可能因中級生質柴油已經經過轉酯化,分子量已大幅下降導致。氣相產物以CO2¬為最大含量,氣體質量則有明顯下降,說明了HLGPRBD氣化效果較差。
TLGPRBDE程序中進一步添加乙醇後顯示會使固相產物揮發分降低,N含量上升,C與H含量下降,推測原因可能為乙醇在此操作條件下呈現超臨界狀態使裂解更為完全,液相產物熱值由6,392上升至7,123 kcal/kg,已適合作為燃料使用。液相產物酯類含量皆佔50 wt.%以上。模擬蒸餾結果顯示液相產物碳數分布較為均勻,品質最高,具有較佳燃燒特性。且將水更改為乙醇後氣化效果變好,氣體濃度增加。因此證明乙醇加速了液氣化反應的發生,是很好的液化溶劑。TLGPRBDE回收率介於87-97 wt. %之間,證明產物回收率相較於HLGPR具有實質性的提升。且此摻配比下油品模擬蒸餾品質最好。顯示固體生質廢棄物於油相生質燃料下進行液化程序有提升轉化率且形成可商業化使用燃料之潛力。

In this study, the raw material used was process rejects from a wastepaper-based paper mill (PRPM), and the source of PRPM was rejected organic waste from a paper mill located at central Taiwan. Due to the high volatile and heating value characteristic of PRPM, it is suitable for use as a fuel. However, there is a lot of oxygen and complicated composition, that decreased the fuel efficiency. The hydrothermal liquefaction and gasification (HLG) technology was used to convert PRPM (named as HLGPR), HLGPR with soybean oil as solvent (HLGPRSO), HLGPR with biodiesel as solvent (HLGPRBD) and HLGPR with biodiesel and ethanol as co-solvents (TLGPRBDE). The purpose of this study is to convert the waste biomass and bioliquid into commercial biofuels.
In the HLGPR process, it can improve the thermal efficiency of the product fuel quality. Elemental analysis results also confirmed the validity of deoxygenation, which can enhance the product characteristics. The GC/MS analysis results displayed that the liquid product contained most components of alcohols and phenols, and the alcohol components decreased with the increase of time. The recovery efficiency of products all reached above 90 % and the conversion efficiency were between 33-48 %. The followed operation conditions are chosen the optimum factors of HLGPR at 573 K and 2 hr.
In the HLGPRSO process, the heating value (HV) of the solid product increased with the increase of the ratio of soybean oil. However, HV decreased at 100% addition of soybean oil, this means that the co-existence of water is important. At the oil to water ratio of 25:75, the cracking of solid residue is more completely and the liquid product is close to the commercial fuel. The next test is followed this ratio. The recovery efficiencies of products were between 88-98%, the product efficiency was above 85%, and the conversion efficiency were 35-93%. This process proved that the addition of bio-oil in HLGPR can enhance the oil product quality and conversion efficiency.
In the HLGPRBD process, the HV of solid product increased, however, the deoxygenation ability decreased. The simulated distillation results of liquid product show that the low carbon number distribution is better than that of HLGPRSO.
Finally, in the TLGPRBDE process, the conversion of PRPM were enhanced as well as the volatile components, C and H ratios decreased obviously, the reason may be due to the supercritical ethanol cracking. The HV of the liquid product increased from 6392 to 7123 kcal/kg, and the ester content in the liquid product contained more than 50 wt.%. The simulated distillation results of liquid product showed that the carbon number distribution was more uniform, higher quality, and better combustion characteristics. After the replace of water to solvent of ethanol, the gasification effect was enhanced and the integrated mass of gaseous products also increased. The recovery efficiency of TLGPRBDE process reached to 87-97 wt.%, and it proved that the ethanol displayed a very special characteristic in the HLG technology.

目錄 I
圖目錄 V
縮寫說明 IX
第一章、前言 1
1.1 研究緣起 1
1.2 研究目的 1
第二章、文獻回顧 2
2.1 生質物介紹 2
2.2 造紙廠製程排渣 2
2.3 熱裂解技術介紹 3
2.4 液化技術介紹 6
2.4.1水分子在臨界狀態下的物理性質 6
2.4.2次臨界裂解液化技術 7
2.4.3液化技術於油品製造應用 7
2.4.4液化機制 8
2.5 生質物的水熱反應 8
2.5.1碳水化合物 8
2.5.2纖維素 9
2.5.3半纖維素 9
2.5.4澱粉 12
2.5.5醣類 12
2.5.6木質素 15
2.5.7脂類 16
2.5.8甘油 16
2.5.9脂肪酸 17
2.5.10各種生質物液化 18
2.6 轉酯化技術 20
2.7 催化劑的影響 20
2.7.1勻相催化劑 22
2.7.2非勻相催化劑 22
2.8 生質油品的應用 22
2.8.1生質航空燃油 22
2.8.1.1航空燃油特性法規標準 22
2.8.1.2航空燃油對環境之污染 24
2.8.1.3世界各國對航空業規範 26
2.8.2生質柴油 28
2.8.2.1生質柴油特性 28
2.8.3生質燃油 29
第三章、研究方法 30
3.1 研究流程圖 30
3.1.1 文獻的收集與探討 30
3.1.2 樣品的收集、前處理及基本特性分析 30
3.1.3 高溫高壓水熱液氣化實驗 30
3.1.4 摻配實驗 30
3.1.5 不同溶劑摻配水熱液氣化實驗 30
3.1.6 產物分析 30
3.2 樣品前處理 33
3.3 樣品基本特性分析 33
3.3.1 元素分析 33
3.3.2 近似分析 33
3.3.3 熱值分析 34
3.4 次臨界液化實驗 35
3.4.1 先期測試 35
3.5 實驗操作 35
3.6 轉酯化實驗 37
3.7 分析儀器 38
3.7.1 氣相層析質譜儀 (GC/MS) 38
3.7.2 氣相層析儀熱傳導偵測器 (GC/TCD) 39
3.7.3 燃燒彈熱卡計 40
3.7.4 傅立葉紅外線光譜儀(FTIR) 42
3.7.5 pH計 43
3.7.6 掃描式電子顯微鏡 (SEM) 44
3.7.7 元素分析 (EA) 45
3.8 評估指標 45
第四章、結果與討論 46
4.1 造紙廠製程排渣(PRPM)樣品特性分析結果 46
4.1.1近似分析 46
4.1.2 熱值分析 46
4.1.3 元素分析 46
4.1.4 掃描式電子顯微鏡(SEM)分析 46
4.1.5傅立葉紅外線光譜儀(FTIR)分析 46
4.2利用造紙廠製程排渣進行水熱液氣化實驗(HLGPR)產物分析 52
4.2.1 溫度對液化產物的影響 52
4.2.2持溫時間對液氣化後對產物的影響 89
4.3利用造紙廠製程排渣添加大豆油進行水熱液氣化實驗(HLGPRSO)產物分析 104
4.3.1固相產物 104
4.3.2 液相產物 111
4.3.3 氣相產物 121
4.3.4產物回收率與轉化率 124
4.4 利用造紙廠製程排渣添加生質油品進行水熱液氣化實驗產物分析 126
4.4.1固相產物 126
4.4.2液相產物 132
4.4.3氣相產物 137
4.4.4產物回收率與轉化率 140
第五章、結論與建議 142
5.1結論 142
5.2建議 144
第六章、參考文獻 145
附錄A 152

1.ACI Releases World Airport Traffic Report Media Release. Airports Council International, Montreal 2013; Available at: http://www.aci.aero/media/bc5239b4-07ac-4d1f-8cbb-db8f1b093d80/News/Releases/2013/PR_2013_08_28_WATR_Release_pdf.
2.Air transpot action group. Beginner's guide to aviation biofuels. ATAG, 2011.
3.Antal MJ, Mok WSL. Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from D-fructose and sucrose. Carbohydrate Research 1990;199:91-109.
4.Appell HR, Fu YC, Friedman S, Yavorsky PM, Wender I. Converting organic wastes to oil: a replenishable energy source. Report of Investigations 7560. Washington DC; 1980.
5.Asghari FS, Yoshida H. Acid catalyzed production of 5-hydroxymethyl furfural from D-fructose in subcritical water. Industrial & Engineering Chemistry Research 2006;45:2163-73.
6.Bühler W, Dinjus E, Ederer HJ, Kruse A, Mas C. Ionic reactions and pyrolysis of glycerol as competing reaction pathways in near- and supercritical catalytic dehydration of biomass-derived polyols in sub- and supercritical water. Journal of Supercritical Fluids 2002;22:37-53.
7.Behrendt F, Neubauer Y, Oevermann M, Wilmes B, Zobel N. Direct liquefaction of biomass review. Chemical Engineering Technology 2008;31:667-77.
8.Bermejo MD, Cocero MJ. Destruction of an industrial wastewater by supercritical water oxidation in a transpiring wall reactor. Journal of Hazardous Materials 2006;B137:965-71.
9.Biller P, Ross AB. Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresource Technology 2011;102:215-25.
10.Bobleter O. Hydrothermal degradation of polymers derived from plants. Polymer Science 1994;19:797-841.
11.Bonn G, Bobleter O. Determination of the hydrothermal degradation products of d-(U-14C) glucose and d-(U-14C) fructose by TLC. Journal of Radioanalytical Chemistry 1983;79:171 -7.
12.Bröll D, Kaul C, Krömer A, Krammer P, Richter T, Jung M. Chemistry in supercritical water. Angewandte Chemie International Edition in English 1999;38:2998-3014.
13.Bridgwater AV, Meier D, Radlein D. An overview of fast pyrolysis of biomass.Organic Geochemistry 1999;30:1479-93.
14.Chiaramontia D, Oasmaab A, Solantausta Y. Power Generation Using Fast Pyrolysis Liquids from Biomass. Renewable and Sustainable Energy Reviews 2007; 11: 1056-86.
15.Demirbas A. Thermochemical conversion of biomass to liquid products in the aqueous medium. Energy Sources 2005;27:1235-43.
16.Elliot DC, Phelps MR, Sealock LJ, Baker EG. Chemical processing in highpressure aqueous environments. 3. Continuous-flow reactor process development experiments for organics destruction. Industrial & Engineering Chemistry Research 1994;33:566-74
17.Elliot DC, Sealock LJ, Baker EG. Chemical processing in high-pressure aqueous environments. 2. Development of catalysts for gasification. Industrial & Engineering Chemistry Research 1993;32:1542-8.
18.Gupta KK, Rehman A, Sarviya RM. Bio-fuels for the gas turbine: A review. Renewable and Sustainable Energy Reviews.2010;14:2496-2955.
19.Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF, Lidén G, Zacchi G. Bioethanol-the fuel of tomorrow from the residues of today. Trends in Biotechnology 2006;24:549-56.
20.Heddle JF. Activated sludge treatment of slaughter house wastes with protein recovery. Water Research 1979;13:581-4.
21.Hodes M, Marrone PA, Hong GT, Smith KA, Tester JW. Salt precipitation and scale control in supercritical water oxidation e Part A: fundamentals and research. Journal of Supercritical Fluids 2004;29:265-88.
22.Holliday RL, King JW, List GR. Hydrolysis of vegetable oils in sub- and supercritical water. Industrial & Engineering Chemistry Research 1997;36:932-5.
23.Horvath A, Chester M. Environmental Life-cycle Assessment of Passenger Transportation An Energy, Greenhouse Gas and Criteria Pollutant Inventory of Rail and Air Transportation. Info: University of California Transportation Center, UC Berkeley.2008
24.IEO. International energy outlook. Liquid fuels Energy Information Administration 2009.
25.IPCC, Aviation and the Global Atmosphere: A Special Report of the Intergovernmental Panel on Climate Change (1999), Cambridge University Press Jump up Valuing the non-CO2 climate impacts of aviation Climate Change, 111 ( 3-4 ) s. 559-579 2012.
26.ITIA IATA 2014 Report on Alternative Fuels, 2014.
27.Jase B, Carleton A.M. The impacts of long-lived jet contrail 'outbreaks' on surface station diurnal temperature range. International Journal of Climatology.2015;35:4529-453.
28.Jena U, Das KC, Kastner JR.Comparison of the effects of Na2CO3, Ca3(PO4)2, and NiO catalysts on the thermochemical liquefaction of microalga Spirulina platensis.Applied Energ 2012;98:368-375.
29.Kabyemela BM, Adschiri T, Malaluan RM, Arai K. Glucose and fructose decomposition in subcritical and supercritical water: detailed reaction pathway, mechanisms, and kinetics. Industrial & Engineering Chemistry Research 1999;38:2888-95.
30.Kabyemela BM, Adschiri T, Malaluan RM, Arai K. Kinetics of glucose epimerization and decomposition in subcritical and supercritical water. Industrial & Engineering Chemistry Research 1997;36:1552-8.
31.Karagöz S, Bhaskar T, Muto A, Sakata Y, Oshiki T, Kishimoto T. Lowtemperature catalytic hydrothermal treatment of wood biomass: analysis of liquid products. Chemical Engineering Journal 2005(b);108:127-37.
32.Karagöz S, Bhaskar T, Muto A, Sakata Y. Comparative studies of oil compositions produced from sawdust, rice husk, lignin and cellulose by hydrothermal treatment. Fuel 2005(a);84:875-84.
33.Karagöz S, Bhaskar T, Muto A, Sakata Y. Hydrothermal upgrading of biomass:effect of K2CO3 concentration and biomass/water ratio on products distribution. Bioresource Technology 2006;97:90-8.
34.Keane, J. Briefing paper: The aviation industry, the European Union's Emissions Trading Scheme and Small and Vulnerable Economies. 2012
35.Kim Y, Mosier NS, Hendrickson R, Ezeji T, Blaschek H, Dien B. Composition of corn dry-grind ethanol by-products: DDGS, wet cake, and thin stillage. Bioresource Technology 2008;99:5165-76.
36.King JW, Holliday RL, List GR. Hydrolysis of soybean oil in a subcritical water flow reactor. Green Chemistry 1999;1:261-4.
37.Krammer P, Vogel H. Hydrolysis of esters in subcritical and supercritical water. Journal of Supercritical Fluids 2000;16:189-206.
38.Kritzer P, Dinjus E. An assessment of supercritical water oxidation (SCWO) existing problems, possible solutions and new reactor concepts. Chemical Engineering Journal 2001;83:207-14.
39.Kruse A, Dinjus E. Hot compressed water as reaction medium and reactant properties and synthesis reactions. Journal of Supercritical Fluids 2007(a);39:362-80.
40.Kruse A, Gawlik A. Biomass conversion in water at 330-410 C and 30-50 MPa. Identification of key compounds for indicating different chemical reaction pathways. Industrial & Engineering Chemistry Research 2003;42:267-79.
41.Kruse A, Maniam P, Spieler F. Influence of proteins on the hydrothermal gasification and liquefaction of biomass. 2. Model compounds. Industrial & Engineering Chemistry Research 2007(b);46:87-96.
42.Lehr V, Sarlea M, Ott L, Vogel H. Catalytic dehydration of biomass-derived polyols in sub- and supercritical water. Catalysis Today 2007;121:121-9.
43.Lewis, J.S., Niedzwiecki, R.W., Bahr, D.W., Bullock, S., Cumpsty, N., Dodds, W., DuBois, D., Epstein, A., Freguson, W.W., Fiorento, A., Gorbatko, A.A., Hagen D.E., Hart, P.J., Hayashi, S., Jamieson, J.B., Kerrebrock, J., Lecht, M., Lowrie,B., Miake- Lye, R.C., Mortlock, A.K., Moses,C., Renger, K., Sampath,S., Sanborn, J., Simon,B., Sorokin,A., Taylor, W., Waitz, I., Wey, C.C., Whitefield, P., Wilson, C.W., Wu, S., Aircraft technology and its relation to emissions, Aviation and the Global Atmosphere, Special Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge 1999;Chapter 7
44.Liu A, Park YK, Huang Z, Wang B, Ankumah RO, Biswas PK. Product identification and distribution from hydrothermal conversion of walnut shells.Energy & Fuels 2006;20:446-54.
45.Lu Y, Zhu Y,Li S, Zhang X,Guo L.Behavior of nickel catalysts in supercritical water gasification of glucose: Influence of support.biomass and bioenergy 2014;67:125-136.
46.Luijkx GCA, Rantwijk FV, Bekkum HV. Hydrothermal formation of 1,2,4-benzenetriol from 5 hydroxymethyl-2-furaldehyde and D-fructose. Carbohydrate Research 1993;242:131-9.
47.Marrone PA, Hodes M, Smith KA, Tester JW. Salt precipitation and scale control in supercritical water oxidation e Part B: commercial/full-scale applications. Journal of Supercritical Fluids 2004;29:289-312.
48.Matsumura Y, Minowa T, Potic B, Kersten SRA, Prins W, van Swaaij WPM, Biomass gasification in near- and super-critical water: status and prospects. Biomass and Bioenergy 2005;29:268-92.
49.McNeil BI, Matear RJ . Southern Ocean acidification: A tipping point at 450-ppm atmospheric CO2. Proceedings of the National Academy of Sciences 2008;105-48
50.Minowa T, Inoue S. Hydrogen production from biomass by catalytic gasification in hot compressed water. Renewable Energy 1999;16:1114-7.
51.Minowa T, Kondo T, Sudirjo S. Thermochemical liquefaction of Indonesian biomass residues. Biomass and Bioenergy 1998(c);14:517-24.
52.Minowa T, Murakami M, Dote Y, Ogi T, Yokoyama S. Oil production from garbage by thermochemical liquefaction. Biomass and Bioenergy 1995;8:117-20.
53.Minowa T, Ogi T. Hydrogen production from cellulose using a reduced nickel catalyst. Catalysis Today 1998b;45:411-6.
54.Minowa T, Zhen F, Ogi T. Cellulose decomposition in hot-compressed water with alkali or nickel catalyst. Journal of Supercritical Fluids 1998(b);13:253-9.
55.Mohammad B, Mokhtar B, Ahmad T, Ajay KD, Umashanker D.Hydrogen production via supercritical water gasification of bagasse using unpromoted and zinc promoted Ru/γ-Al2O3 nanocatalysts.Fuel Processing Technology 2014;123:140-48.
56.Nagamori M, Funazukuri T. Glucose production by hydrolysis of starch under hydrothermal conditions. Journal of Chemical Technology and Biotechnology 2004;79:229-33.
57.Onwudili JA, Williams PT. Hydrothermal Gasification and Oxidation as Effective Flameless Conversion Technologies for Organic Wastes. Journal of the Energy Institute 2008; 81:102-109.
58.Peterson AA, Vogel F, Lachance RP, Frling M, Antal MJ, Tester JW. Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. Energy and Environmental Science 2008;1:32-65.
59.Rajdeep S, Janelle W, Sushil A, Ravishankar M, Sneha N.Effect of temperature and Na2CO3 catalyst on hydrothermal liquefaction of algae.Algal Research 2015;12:80-90.
60.Rogalinski T, Liu K, Albrecht T, Brunner G. Hydrolysis kinetics of biopolymers in subcritical water. Journal of Supercritical Fluids 2008;46:335-41.
61.Russell JA, Miller RK, Motton PM. Formation of aromatic compounds from condensation reactions of cellulose degradation products. Biomass 1983;3:43-57.
62.Sasaki M, Adschiri T, Arai K. Kinetics of cellulose conversion at 25 MPa in sub- and supercritical water. AIChE Journal 2004;50:192-202.
63.Sasaki M, Fang Z, Fukushima Y, Adschiri T, Arai K. Dissolution and hydrolysis of cellulose in subcritical and supercritical water. Industrial & Engineering Chemistry Research 2000;39:2883-90.
64.Schmieder H, Abeln J, Boukis N, Dinjus E, Kruse A, Kluth M, et al. Hydrothermal gasification of biomass and organic wastes. Journal of Supercritical Fluids 2000;17:145-53.
65.Shie JL, Chang CY, Lin JP, Wu CH, Lee DJ, Chang CF. Oxidative Thermal Treatment of Oil Sludge at Low Heating Rates. Energy & Fuels 2004; 18, 1272-81.
66.Shie JL, Lin JP, Chang CY, Wu CH, Shih SM, Lee DJ. Pyrolysis of oil sludge with additives of catalytic solid wastes. Journal of Analytical and Applied Pyrolysis 2004;71(2), 695-707.
67.Shuping Z, Yulong W, Mingde Y, Kaleem I, Chun L, Tong J. Production and characterization of bio-oil from hydrothermal liquefaction of microalgae Dunaliella tertiolecta cake. Energy; 2010:32, 5406-11.
68.Sinag A, Kruse A, Rathert J. Influence of the heating rate and the type of catalyst on the formation of key intermediates and on the generation of gases during hydropyrolysis of glucose in supercritical water in a batch reactor. Industrial & Engineering Chemistry Research 2004;43:502-8.
69.Sinag A, Kruse A, Schwarzkopf V. Key compounds of the hydropyrolysis of glucose in supercritical water in the presence of K2CO3. Industrial & Engineering Chemistry Research 2003;42:3516-21.
70.Song C, Hu H, Zhu S, Wang G, Chen G. Nonisothermal catalytic liquefaction of corn stalk in subcritical and supercritical water. Energy & Fuels 2004;18:90-6.
71.Srokol Z, Bouche AG, Estrik AV, Strik RCJ, Maschmeyer T, Peters JA. Hydrothermal upgrading of biomass to biofuel; studies on some monosaccharide model compounds. Carbohydrate Research 2004;339:1717-26.
72.Steffen B, Flabianus H, Jaehoon K, Dong JS.Effect of heating rate on biomass liquefaction: Differences between subcritical water and supercritical ethanol. energy 2014;68:420-27.
73.Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology 2002;83:1-11.
74.Tekin K, Karagöz S. Non-catalytic and Catalytic Hydrothermal Liquefaction of Biomass. Res Chem Intermed 2013; 39, 485-98.
75.Toor SS, Rosendahl L, Rudolf A. Hydrothermal liquefaction of biomass: a review of subcritical water technologies. Energy 2011;36(5):2328-42.
76.Uematsu M, Franck EU. Static dielectric constant of water and steam. Journal of Physical and Chemical Reference Data 1980;9:1291-306.
77.Wahyudiono, Kanetake T, Sasaki M, Goto M. Decomposition of a lignin model compound under hydrothermal conditions. Chemical Engineering Technology 2007;30(8):1113-22.
78.Watanabe M, Aizawa Y, Iida T, Aida TM, Levy C, Sue K. Glucose reactions with acid and base catalysts in hot compressed water at 473 K. Carbohydrate Research 2005;340:1925-30.
79.Watanabe M, Iida T, Inomata H. Decomposition of a long chain saturated fatty acid with some additives in hot compressed water. Energy Conversion and Management 2006;47:3344-50.
80.Westcott PC. U.S.ethanol issues and developments" ERS Workshop: Global Biofuel Developments: Modeling the Effects on Agriculture, 2009.
81.Wilson GR, Edwards T, Corporan W, Freerks RL. Certification of Alternative Aviation Fuels and Blend Components. Energy Fuels 2013; 27:2, 962-66.
82.Wuebbles, M. Gupta, M. Ko. Evaluating the impacts of aviation on climate change. EOS Trans 2007;88:157-60.
83.Yu Y, Lou X, Wu H. Some recent advances in hydrolysis of biomass in hotcompressed water and its comparisons with other hydrolysis methods. Energy & Fuels 2008;22:46-60.
84.Zabaniotou A, Damartzis T. Thermochemical conversion of biomass to second generation biofuels through integrated process design-A review. Renewable and Sustainable Energy Reviews 2009;15:366-78.
85.Zhang B, Huang HJ, Ramaswamy S. Reaction kinetics of the hydrothermal treatment of lignin. Applied Biochemistry and Biotechnology 2008;147: 119-31.
86.Zhang He BJ, Y, Funk TL, Riskowski GL, Yin Y. Thermochemical conversion of swine manure: an alternative process for waste treatment and renewable energy production. American Society of Agricultural Engineers 2000; 43: 1827-33.
87.Zhu WW, Zong ZM, Yan HL, Zhao YP, Lu Y,Wei XY, Zhang D.Cornstalk liquefaction in methanol/water mixed solvents.Fuel Processing Technology 2014;117:1-7.
88.Zhua Z, Rosendahlb L, Saqib ST, Yu DH, Guanyi C.Hydrothermal liquefaction of barley straw to bio-crude oil: Effects of reaction temperature and aqueous phase recirculation.Applied Energy 2015;137:183-92.
89.萬皓鵬、李宏台,「定置型生質能源熱電應用系統」,台灣省鍋爐協會雙月刊第108期,2006。
90.吳耿東,李宏台,全球生質能源應用現況與未來展望,林業研究專訓,2007。
91.盧文章,林昀輝,李宏台,「能源報導」,經濟部能源局11期,1-40,2007。
92.古森本,「生質能源作物之開發與潛力」農業生技產業季刊,13期,46-53,2008。
93.萬皓鵬,「生質物─後化石世代的重要能源與工業原料」,科學發展第497期,2014。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top