|
參考文獻 1.H. Abe, et al., Computer-aided diagnosis in chest radiography: results of large-scale observer tests at the 1996-2001 RSNA scientific assemblies. Radiographics, 2003. 23(1): p. 255-65. 2.S. Katsuragawa and K. Doi, Computer-aided diagnosis in chest radiography. Comput Med Imaging Graph, 2007. 31(4-5): p. 212-23. 3.B. van Ginneken, B. M. ter Haar Romeny, and M. A. Viergever, Computer-aided diagnosis in chest radiography: a survey. IEEE Trans Med Imaging, 2001. 20(12): p. 1228-41. 4.G. Coppini, et al., A computer-aided diagnosis approach for emphysema recognition in chest radiography. Med Eng Phys, 2013. 35(1): p. 63-73. 5.B. van Ginneken, L. Hogeweg, and M. Prokop, Computer-aided diagnosis in chest radiography: beyond nodules. Eur J Radiol, 2009. 72(2): p. 226-30. 6.E. Bohn, et al., Predicting risk of mortality in dialysis patients: a retrospective cohort study evaluating the prognostic value of a simple chest X-ray. BMC Nephrol, 2013. 14: p. 263. 7.K. H. Chen, et al., Cardiothoracic ratio, malnutrition, inflammation, and two-year mortality in non-diabetic patients on maintenance hemodialysis. Kidney Blood Press Res, 2008. 31(3): p. 143-51. 8.R. R. Quinn, et al., Predicting the risk of 1-year mortality in incident dialysis patients: accounting for case-mix severity in studies using administrative data. Med Care, 2011. 49(3): p. 257-66. 9.R. Yotsueda, et al., Cardiothoracic Ratio and All-Cause Mortality and Cardiovascular Disease Events in Hemodialysis Patients: The Q-Cohort Study. Am J Kidney Dis, 2017. 70(1): p. 84-92. 10.T. H. Yen, et al., Cardiothoracic ratio, inflammation, malnutrition, and mortality in diabetes patients on maintenance hemodialysis. Am J Med Sci, 2009. 337(6): p. 421-8. 11.R. S. Loomba, et al., Cardiothoracic ratio for prediction of left ventricular dilation: a systematic review and pooled analysis. Future Cardiol, 2015. 11(2): p. 171-5. 12.K. Kajimoto, et al., Sex Differences in Left Ventricular Cavity Dilation and Outcomes in Acute Heart Failure Patients With Left Ventricular Systolic Dysfunction. Can J Cardiol, 2018. 34(4): p. 477-484. 13.Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton, ImageNet Classification with Deep Convolutional Neural Networks. NIPS, 2012. 14.Jia Deng, et al., ImageNet: A Large-Scale Hierarchical Image Database. CVPR09, 2009. 15.D. H. Hubel and T. N. Wiesel, Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex. J. physiology (London), 1962. 16.Kunihiko Fukushima, Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biology, 1980. 17.Y. LeCun, L. Bottou, and Y. Bengio, Gradient-Based Learning Applied to Document Recognition. IEEE, 1998. 18.J. Bouvrie, Notes on Convolutional Neural Networks. 2006. 19.C Szegedy, et al., Going deeper with convolutions. IEEE, 2015. 20.C. Szegedy, et al., Rethinking the Inception Architecture for Computer Vision. IEEE, 2016. 21.J. Redmon, et al., You Only Look Once: Unified, Real-Time Object Detection. IEEE, 2016. 22.J. Redmon and A. Farhadi, YOLO9000: Better, Faster, Stronger. IEEE, 2017. 23.J. Redmon and A. Farhadi, YOLOv3: An Incremental Improvement. 2018. 24.S. Ren, R Girshick K. He, and J. Sun, Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. NIPS, 2015. 25.M. Hayden and P. J. Nacher, History and physical principles of MRI. 2016. 26.T. M. Blodgett, C. C. Meltzer, and D. W. Townsend, PET/CT: Form and Function. Radiology, 2007. 27.A. Assmus, Early History of X Rays. 1995. 28.JF. Havlice and JC. Taenzer, Medical Ultrasonic Imaging: An Overview of Principles and Instrumentation. Proc. IEEE, 1979. 29.JS. Burchfield, M. Xie, and JA. Hil, Pathological ventricular remodeling: mechanisms: part 1 of 2. Circulation, 2013. 30.J. Canny, A Computational Approach to Edge Detection. IEEE, 1986. 31.T. Ojala, M. Pietikainen, and D. Harwood, Performance Evaluation of Texture Measures with Classification Based on Kullback Discrimination of Distributions. IEEE, 1994. 32.R. M. Haralick, K. Shanmugam, and IH. Dinstein, Textural features for image classification. IEEE Trans. Med. Imaging, 1973. 33.A. Hunter, et al., Elements of Morphology: Standard Terminology for the Ear. Am. J. Med. Genet., 2009. 34.JE. Allanson, et al., Elements of Morphology: Standard Terminology for the Head and Face. Am. J. Med. Genet., 2009. 35.JE. Allanson, et al., Elements of Morphology: Introduction. Am. J. Med. Genet., 2009. 36.Y. Furukawa and J. Ponce, Accurate, Dense, and Robust Multi-View Stereopsis. CVPR, 2007. 37.Z. Lei and Z. Yi, Big data analysis by infinite deep neural networks. J Res Dev, 2016. 38.ZH. Ling, et al., Deep Learning for Acoustic Modeling in Parametric Speech Generation. IEEE Trans. Signal Process., 2015. 39.D. Amodei, et al., Deep Speech 2: End-to-End Speech Recognition in English and Mandarin. 2016. 40.A. Hannun, et al., Deep speech: Scaling up end-to-end speech recognition. arXiv:1412.5567v2, 2014. 41.T. Young, D. Hazarika, and S. Poria, Recent Trends in Deep Learning Based Natural Language Processing. IEEE, 2018. 42.R. Collobert, et al., Natural Language Processing (Almost) from Scratch. JMLR, 2011. 43.S. Sun, C. Luo, and J. Chen, A review of natural language processing techniques for opinion mining systems. Inf Fusion, 2017. 44.M. Narvekar and P. Fargose, Weather Forecasting Using Artificial Neural Network. IJCA, 2015. 45.SD. Sawaitul, KP. Wagh, and PN. Chatur, Classification and Prediction of Future Weather by using Back Propagation Algorithm-An Approach. IJETAE, 2012. 46.AG. Salman, B. Kanigoro, and Y. Heryadi, Weather forecasting using deep learning techniques. ICACSIS 2015, 2015. 47.B. Lyu and A. Haque, Deep Learning Based Tumor Type Classification Using Gene Expression Data. Proc. ACM Int. Conf. Bioinf. Comput. Biol. Health Informat. (BCB), 2018. 48.P. Danaee, R. Ghaeini, and DA. Hendrix, A deep learning approach for cancer detection and relevant gene identification. PSB, 2017. 49.Y. Chen, et al., Gene expression inference with deep learning. Bioinformatics, 2016. 32(12): p. 1832–1839. 50.C. TU, et al., Network representation learning: an overview. 2017. 51.D. Shen, G. Wu, and HI. Suk, Deep Learning in Medical Image Analysis. Annu. Rev. Biomed. Eng, 2017. 52.JG. Lee, et al., Deep Learning in Medical Imaging: General Overview. KJR, 2017. 53.A. Hosny, C. Parmar, and J. Quackenbush, Artificial intelligence in radiology. Nat Rev Cancer, 2018. 54.JZ. Cheng, et al., Computer-Aided Diagnosis with Deep Learning Architecture: Applications to Breast Lesions in US Images and Pulmonary Nodules in CT Scans. Scientific reports, 2016. 55.J. Shiraishi, et al., Computer-Aided Diagnosis and Artificial Intelligence in Clinical Imaging. Seminars in nuclear medicine, 2011. 56.HC. Shin, et al., Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning. IEEE Trans. Med. Imaging, 2016: p. 1285-1298. 57.O. Ronneberger, P. Fischer, and T. Brox, U-Net: Convolutional Networks for Biomedical Image Segmentation. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015, 2015. 58.R. Girshick, et al., Rich feature hierarchies for accurate object detection and semantic segmentation. CVPR, 2014. 59.J.R.R. Uijlings, et al., Selective Search for Object Recognition. IJCV, 2013. 60.CC. Chang and CJ. Lin, LIBSVM: A Library for Support Vector Machines. ACM Trans Intell Syst Technol, 2011. 61.R. Girshick, Fast R-CNN. ICCV, 2015. 62.K. He, et al., Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Trans. Pattern Anal. Mach. Intell, 2015. 63.R. Sa, et al., Intervertebral disc detection in X-ray images using faster R-CNN. EMBC (2017), 2017. 64.B. Pardamean, TW. Cenggoro, and R. Rahutomo, Transfer learning from chest X-ray pre-trained convolutional neural network for learning mammogram data. Procedia Comput. Sci., 135 (2018), 2018: p. 400-407. 65.A. Ismail, T. Rahmat, and S. Aliman, CHEST X-RAY IMAGE CLASSIFICATION USING FASTER R-CNN. Malaysian J. Comput. Sci., 2019. 66.X. Wang, et al., ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases. CVPR, 2017. 67.A. Dutta and A. Zisserman, The VIA Annotation Software for Images, Audio and Video. proceedings of the 27th acm international conference on multimedia, 2019. 68.K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014. 69.K. He, et al., Deep Residual Learning for Image Recognition. CVPR, 2016. 70.P. Murugan, Feed forward and backward run in deep convolution neural network. arXiv preprint arXiv:1711.03278, 2017. 71.D. C. Ciresan, et al., Flexible, high performance convolutional neural networks for image classification. IJCAI Proceedings-International Joint Conference on Artificial Intelligence, 2011. 22: p. 1237. 72.J. Schmidhuber, Deep learning in neural networks: An overview. Neural networks, 2015. 61: p. 85–117. 73.A. Neubeck and L. Van Gool, Efficient Non-Maximum Suppression. IEEE, 2006. 74.N. Bodla, et al., Improving Object Detection With One Line of Code. CVPR, 2017. 75.S. Ruder, An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747, 2016. 76.JM. Bland and DG. Altman, Statistical methods for assessing agreement between two methods of clinical measurement. The lancet, 1986.
|