跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/09 06:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李建頡
研究生(外文):LI, JIAN-JIE
論文名稱:利用流場可視化技術比較在晶圓盒開門時晶圓盒內依不同迫淨形式造成流場及濕度之差異
論文名稱(外文):Use Flow Field Visualization Technique to Compare Different Purge in FOUP During Door Open Approaches Conditions
指導教授:胡石政
指導教授(外文):HU, SHIH-CHENG
口試委員:胡石政林廸朱紹舒江旭政
口試委員(外文):HU, SHIH-CHENGLIN, TICHU, SHAO-SHUJIANG, SYU-JHENG
口試日期:2020-07-27
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:能源與冷凍空調工程系
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:63
中文關鍵詞:晶圓傳送盒流場可視化質點影像測速技術設備前端模組綠光雷射
外文關鍵詞:Equipment Front-End Module (EFEM)Front Opening Unified Pod (FOUP)Flow Field VisualizationParticle Image Velocimetry (PIV)Diode-pumped Solid-state Laser (DPSSL)
相關次數:
  • 被引用被引用:1
  • 點閱點閱:391
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
近年來半導體積體線寬已進入奈米等級的要求,在半導體產業競爭的環境中,如何降低汙染,提高製程良率,將成為競爭的關鍵因素。研究指出,當晶圓 (Wafer) 在晶圓傳送盒(Front Opening Unified Pod,FOUP)門艙開啟時,微環境內轉入製程腔體過程中,容易受到微環境之流場、壓力及機台位置而造成影響,導致無塵室中水氣甚至是氣態分子污染物(Airborne Molecular Contamination,AMC)捲入至FOUP內部。以蝕刻製程為例,當晶圓在微環境(Mini-Environment)等待轉入濕洗製程時,會因為FOUP門艙開啟,使先前製程所殘留的氟化氫(HF)與無塵室中的水氣及氧氣逐漸產生成汙染物的氟離子,進而催化銅與氧反應,導致雙鑲嵌圖案銅損失,嚴重影響晶圓的製程良率,所以晶圓盒門扉開啟時的污染控制至關重要。
本研究以兩種不同迫淨方式,導流管迫淨(Diffuser Purge)及面型迫淨 (Panel Purge),於晶圓盒開門時設備前端模組配置不同,模擬氣流入侵晶圓盒的情形。兩種迫淨方式皆是由晶圓盒的後方和外部輸送壓縮乾空氣(Compressed Dry Air)至導流區中,分別產生由內而外的氣流迫淨,阻隔設備前端模組內偏斜的氣流入侵晶圓盒內部。實驗是以加熱使乙二醇(Ethylene glycol)霧化作為示蹤氣體(Tracer gas),並利用高感度攝影機紀錄煙霧在綠光雷射照射後,所建立的平面來做流場可視化技術,達到分析與監測之目的。為了量化流場可視化及佐證實驗,實驗中也使用溫溼度感測器進行對晶圓盒內相對濕度的紀錄。
實驗結果表明,面型迫淨方式的搭配在不同設備前端模組的工作配置下期效果優異於導流管迫淨方式,較有效阻隔外部氣流入侵晶圓盒。
In recent years, the semiconductor integrated line width has entered the nano-level requirement. In the competitive environment of the semiconductor industry, how to reduce pollution and improve the process yield will become a key factor in competition. The study pointed out that when the wafer (Wafer) is opened in the front opening unified pod (FOUP) door, the microenvironment is susceptible to the flow field, pressure and machine tool in the process of transferring into the process chamber. The impact of the location caused the moisture and even the airborne molecular contamination (AMC) in the clean room to be involved in the FOUP. Take the etching process as an example. When the wafer is waiting to be transferred to the wet cleaning process in the Mini-Environment, the FOUP door will open, causing the residual hydrogen fluoride (HF) from the previous process and the moisture in the clean room. And oxygen gradually produces fluoride ions that become pollutants, which in turn catalyze the reaction of copper and oxygen, resulting in the loss of copper in the dual damascene pattern, which seriously affects the wafer manufacturing process. Therefore, pollution control when the wafer cassette door is opened is very important.
In this study, two different forced cleaning methods, Diffuser Purge and Panel Purge, are used to simulate the airflow intrusion into the wafer cassette when the wafer cassette door is opened. The two forced purge methods are both from the rear and outside of the wafer cassette to deliver CDA (Compress Dry Air) to the diversion area, respectively to generate forced cleaning from the inside to the outside, blocking the deflection in the front module of the equipment The airflow invades the inside of the wafer cassette. The experiment uses heating to atomize Ethylene glycol as a tracer gas, and uses a high-sensitivity camera to record the smoke after the green laser is irradiated by the plane to create the flow field visualization technology. In order to quantify the, The relative humidity in the wafer box was also recorded during the experiment.
The experimental results show that the combination of the panel-type forced-purge method is better than the diffuser purge method in the working configuration of different equipment front-end modules, and it effectively prevents the external airflow from invading the wafer cassette.

目錄
摘要 i
ABSTRACT iii
目錄 v
表目錄 viii
誌謝 xii
第一章 緒論 1
1.1 研究背景及動機 1
1.2 潔淨室 2
1.2.1 潔淨室的定義 2
1.2.2 潔淨度之分級規範 2
1.2.3 潔淨室的種類 4
1.3 設備前端模組 7
1.3.1 微環境 9
1.3.2 前開式晶圓傳送盒 9
1.3.3 晶圓卸載模組 11
1.3.4 矽晶圓 12
1.4 氣態分子污染物 12
1.5 文獻回顧 14
1.6 研究目的 16
第二章 實驗設備及儀器 17
2.1 實驗設備 17
2.1.1 潔淨空調實驗室 17
2.1.2 設備前端模組 18
2.1.3 實驗用晶圓傳送盒 19
2.1.4 除濕機 20
2.1.5 壓縮乾空氣系統 21
2.1.6 示蹤氣體 22
2.1.7 雷射成像掃掠系統 24
2.1.8 影像紀錄設備 26
2.2 實驗儀器 27
2.2.1 熱線式風速計 27
2.2.2 電子式流量計 27
2.2.1 溫濕度計 28
2.2.2 轉速計 29
2.2.3 數位壓力計 29
2.2.4 微型多功能無線溫濕度感測器 30
第三章 實驗方法 31
3.1 實驗系統圖 31
3.2 實驗方法 34
3.3 實驗流程圖 37
3.4 理論分析 38
3.5 質點影像測速技術 39
3.6 相對濕度紀錄 40
3.7 實驗數據分析方法 41
第四章 結果與討論 42
4.1 流場可視化與溼度實驗結果 42
4.1.1 FFU:0.3m/s – Purge Flow Rate:130LPM(Middle plane) 42
4.1.2 FFU:0.3m/s – Purge Flow Rate:130LPM(Right side) 43
4.1.3 FFU:0.3m/s – Purge Flow Rate:200LPM(Middle plane) 44
4.1.4 FFU:0.3m/s – Purge Flow Rate:200LPM(Right side) 46
4.1.5 FFU:0.3m/s – Purge Flow Rate:300LPM(Middle plane) 46
4.1.6 FFU:0.3m/s – Purge Flow Rate:300LPM(Right side) 48
4.1.7 FFU:0.5m/s – Purge Flow Rate:130LPM(Middle plane) 48
4.1.8 FFU:0.5m/s – Purge Flow Rate:130LPM(Right side) 50
4.1.9 FFU:0.5m/s – Purge Flow Rate:200LPM(Middle plane) 50
4.1.10 FFU:0.5m/s – Purge Flow Rate:200LPM(Right side) 52
4.1.11 FFU:0.5m/s – Purge Flow Rate:300LPM(Middle plane)52
4.1.12 FFU:0.5m/s – Purge Flow Rate:300LPM(Right side) 54
4.2 阻擋效率表 55
第五章 結論與建議 57
5.1 結論 57
5.2 建議與未來實驗方向 58
參考文獻 59
符號彙編 62


[1]S. C. Hu, A. Shiue and Y. T. Yang "450mm FOUP/LPU system in advanced semiconductor manufacturing processes: A study on the minimization of oxygen content inside FOUP when the door is opened, " 2015 Joint e-Manufacturing and Design Collaboration Symposium (eMDC) & 2015 International Symposium on Semiconductor Manufacturing (ISSM), Taipei, Taiwan, 2015.
[2]J. Barker, S. Miner, W. Zhao, J. S. Kim, J. Moore, E. Ramanathan ,S. Case, and S. Waite, "Defectivity and Yield Impact From the AMC Inside the FOUP in Advanced Technologies, " IEEE Transactions on Semiconductor Manufacturing, vol. 30, no. 4, 2017, pp. 434-439.
[3]H. Kikyuama, N. Miki, K. Saka, J. Takano, I. Kawanabe, M. Miyashita, and T. Ohmi, "Principles of Wet Chemical Processing in ULSI Microfabrication, " IEEE Transactions on Semiconductor Manufacturing, vol. 4, no. 1, 1991, pp. 26-35.
[4]W. Den, H. Bai and Y. Kan, "Organic Airborne Molecular Contamination in Semiconductor Fabrication Clean Rooms, " Journal of The Electrochemical Society, vol. 153, issue 2, 2006, G149-G159.
[5]I. K. Lin, H. Bai, and B. J Wu, "Analysis of Relationship between Inorganic Gases and Fine Particles in Cleanroom Environment, " Aerosol and Air Quality Research, 2010, pp. 245–254.
[6]M. Lee, and S. J. Yook "Investigation of particulate contamination of heated wafers contained in a closed environment, " Journal of Aerosol Science, vol. 88, 2015, pp. 148-158.
[7]H. Tsao, T. Luoh, L. W. Yang, T. Yang, K. C. Chen, and C. Y. Lu "FOUP Environment Control and Condense Reduction, " 2012 Joint e-Manufacturing and Design Collaboration Symposium (eMDC) & 2012 International Symposium on Semiconductor Manufacturing (ISSM), Hsinchu, Taiwan, 2012.
[8]S. C. Hu, T. M. Wu, and H. C. Lin, and K. Hsu "Design and evaluation of a nitrogen purge system for the front opening unified pod (FOUP), " Applied Thermal Engineering, vol. 27, 2007 pp. 1386–1393.
[9]黃哲宇,18吋晶圓傳送盒迫淨方式比較,碩士論文,國立臺北科技大學能源與冷凍空調工程系碩士班,臺北,2014。
[10]阮彥閔,利用流場可視化技術量測300mm晶圓盒載卸模組(FOUP/LPU)開門時FOUP內部流場行為之研究,碩士論文,國立臺北科技大學能源與冷凍空調工程系碩士班,臺北,2014。
[11]W. Kang, and H. J. Sung "Large-scale structures of turbulent flows over an open cavity, " Journal of Fluids and Structures, vol. 25, Issue 8, 2009.
[12]S. C. Hu, T. Lin, B. R. Fu, and T. Y. Wang "Air curtain application in a purged unified pod, " Applied Thermal Engineering, vol. 111 2017 pp. 1179–1183.
[13]李哲瑋,晶圓傳送盒開門情況下內部相對濕度控制方法及其效益比較,碩士論文,國立臺北科技大學能源與冷凍空調工程系碩士班,臺北,2017。
[14]胡士嘉,利用光的散射原理開發氣膠可視化系統用於無塵室內監測及控制微粒污染,碩士論文,國立臺北科技大學機械與自動化碩士外國學生專班,臺北,2018。
[15]米氏散射-維基百科https://zh.wikipedia.org/wiki/%E7%B1%B3%E6%B0%8F%E6%95%A3%E5%B0%84
[16]HOW CLASSIFICATION IMPACTS THE DESIGN OF A CLEANROOM https://www.mecart-cleanrooms.com/learning-center/classification-impacts-design-cleanroom/
[17]Sumco的矽錠和晶圓芯片
https://asia.nikkei.com/Editor-s-Picks/Interview/Silicon-wafer-maker-cautious-despite-strong-chip-demand
[18]AMC - Airborne Molecular Contamination https://www.ionicon.com/technologies/details/amc-airborne-molecular-contamination
[19]ORCA-Flash 4.0 V3 Digital CMOS camera C13440-20CU Technical Note
[20] PIV-lab multipass
https://commons.wikimedia.org/wiki/File:PIVlab_multipass.jpg

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊