跳到主要內容

臺灣博碩士論文加值系統

訪客IP:216.73.216.176
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉采璇
研究生(外文):LIU, CAI-XUAN
論文名稱:毫米波同軸連接器之結構與性能匹配
論文名稱(外文):Structure and performance match for 2.92 mm millimeter wave coaxial connector
指導教授:翁芳柏翁芳柏引用關係
指導教授(外文):WENG, FANG-BOR
口試委員:沈家傑陳嘉鴻翁芳柏
口試委員(外文):SHEN, CHIA-CHIEHCHEN,JIA-HONGWENG, FANG-BOR
口試日期:2021-12-21
學位類別:碩士
校院名稱:元智大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:110
語文別:中文
論文頁數:72
中文關鍵詞:同軸連接器2.92 mm 轉接頭阻抗匹配
外文關鍵詞:Coaxial connector2.92 mm AdapterImpedance match
相關次數:
  • 被引用被引用:0
  • 點閱點閱:148
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
在5G將被廣泛應用的時代下,對於通訊傳輸必備的連接器要求也越來越高,毫米波同軸連接器的發展將會是高頻通訊系統必須重視的部分之一。
本論文研製之毫米波同軸連接器為IEEE Standard for Precision Coaxial Connectors規範之2.92 mm Type同軸連接器。依據IEEE規範,此連接器介面的導體內徑為2.92 mm,工作頻率範圍為0~40 GHz,其電壓駐波比最佳可達1.065:1且特性阻抗50歐姆。
實驗計畫為先使用CST STUDIO SUITE(三維電磁場分析)對連接器內、外導體及絕緣體進行電磁模擬。將內、外導體的不連續尺寸與絕緣體的材料進行交互變化,使之阻抗匹配可符合50歐姆。再以W廠之現有產品做為對照組,使用網路分析儀進行電壓駐波比量測,以此參數為特性比對基準。同時應用ANSYS Mechanical APDL對連接器結構進行ANSYS模擬分析。
測試結果雖無法達成IEEE定義之最佳規格,但已優於對照組W牌測試數據。

In the era that 5G is going to be widely used, requirements for connector, an indispensable element in communication technology, become higher than ever before. In particular, as far as high frequency communication system is concerned, millimeter-wave coaxial connector will be definitely necessary, serving as one of the main areas of emphasis.
This thesis studies millimeter-wave coaxial connector, which is 2.92 mm coaxial connector under the norm of IEEE Standard for Precision Coaxial Connectors. According to IEEE, the specification of 2.92 mm coaxial connector includes frequency ranging from DC to 40 GHz, impedance matched to 50Ω, Voltage Standing Wave Ratio of 1.065:1, and 2.92 mm inside diameter of inner conductor interface.
By means of CST STUDIO SUITE, a three-dimensional electromagnetic field simulation software, this study aimed to proceed with a series of simulation comparison for a 2.92 mm millimeter-wave coaxial connector’s inner conductor, insulator and connector body. Firstly, a mutual matching was conducted between surface of discontinuity sizes of inner conductor, insulator and connector body, and different insulator materials, whose purpose was to make connector’s impedance to match 50Ω. Furthermore, a control group, samples from W company’s current products, was used to make a VSWR comparison in the utilization of a network analyzer. In addition, ANSYS Mechanical APDL software was applied to do a simulation analysis on the stability of the connector’s internal structure.
The test result, though, did not thoroughly match a VSWR of 1.065:1 at the frequency ranging from DC to 40 GHz as defined by IEEE, it is close to the test data from W company’s products as the control group.

毫米波同軸連接器之結構與性能匹配 i
論文口試委員會審定書 ii
摘要 iii
ABSTRACT iv
致謝 vi
目錄 vii
表目錄 x
圖目錄 xi
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 同軸連接器簡介 3
1.4 阻抗匹配 4
1.5 電壓駐波比 5
1.6 時域反射 6
1.7 史密斯圖 8
1.8 趨膚深度 9
1.9 ANSYS APDL 基本原理 11
1.10 Von Mises準則 12
1.11 文獻回顧 13
第二章 實驗方法 17
2.1 實驗設計 17
2.2 操作條件 20
2.3 實驗組與對照組 21
2.4 同軸連接器結構 21
2.4.1 外導體 23
2.4.2 絕緣體 24
2.4.3 內導體 24
2.5 實驗設備 25
第三章 CST電磁模擬 27
3.1 第一段(空氣+內導體)模擬分析 29
3.2 第二段(PC+內導體)模擬分析 32
3.3 第三段(空氣+內導體)分析 35
3.4 第一段加第二段模擬分析 38
3.5 連接器第一段~第三段模擬分析 40
3.6 連接器第一段~第三段模擬分析改善 43
3.7 變更連接器絕緣體材質模擬分析改善 51
第四章 實作量測與改善 55
4.1 量測報告 56
4.2 ANSYS分析 59
4.3 CST分析 62
4.4 結構改善後實測 65
第五章 結論 68
參考文獻 69

[1]Lau Yee Fan, "67 GHz microwave sparkplug coaxial connector development," 2008 IEEE International RF and Microwave Conference, 2008, pp. 210-214.
[2]R. Kishikawa and M. Horibe, "Analysis of connector effects for 2.92 mm coaxial lines," 29th Conference on Precision Electromagnetic Measurements (CPEM 2014), 2014, pp. 580-581.
[3]M.A. Maury, “Microwave Coaxial Connector Technology: A continuing Evolution”, 1990.
[4]W. Cho, G. I. Kyung, D. Yoon, E. Kim, B. Shrestha and N. Kim, "Design of Coaxial Adaptor based on Discontinuity Theory using 3D Simulator," 2007 Asia-Pacific Microwave Conference, 2007, pp. 1-4.
[5]Y. Zhou, J. Gao and G. T. Flowers, "Modeling and Analysis of the Effect of Signal Frequency on the Contact Surface Temperature of Coaxial Connectors," 2019 IEEE Holm Conference on Electrical Contacts, 2019, pp. 270-277.
[6]Jian Zhu, Jinchun Gao, Gang Xie and Yuanan Liu, "FEM analysis of the impact of coaxial connector on high speed signal transmission," 2007 International Symposium on Communications and Information Technologies, 2007, pp. 116-120.
[7]R. Ji, G. T. Flowers, J. Gao, Z. Cheng and G. Xie, "High-Frequency Characterization and Modeling of Coaxial Connectors With Degraded Contact Surfaces," in IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 8, no. 3, pp. 447-455, March 2018.
[8]Q. C. Zhu and Y. Ji, "Modelling the pin gap effect in coaxial connectors," 2012 Conference on Precision electromagnetic Measurements, 2012, pp. 104-105,
[9]A. Lewandowski, L. J. Opalski, W. Wiatr, A. Gołaszewski and A. Abramowicz, "First-Order Modeling of Errors Due to Coaxial Connector Interface," in IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 2, pp. 787-799, Feb. 2019.
[10]J. Cheng, E. S. Li, W. Chou and K. Huang, "Improving the High-Frequency Performance of Coaxial-to-Microstrip Transitions," in IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 6, pp. 1468-1477, June 2011.
[11]J. Howard, C. Paraskevaidis and M. Mitas, "Improving VSWR and Bandwidth by Eliminating Steps in Coaxial Connectors," 2009 International Conference on Computing, Engineering and Information, 2009, pp. 237-239.
[12]X. Chen, L. Wang and M. Yu, "Thermal Effect Impact to Coaxial Connector in Microwave Connection Applications," 2020 IEEE Asia-Pacific Microwave Conference (APMC), 2020, pp. 852-854.
[13]D. Janik, J. T. Ascroft and R. F. Clark, "Measurement techniques and results of an intercomparison for RF power in a 3.5 mm coaxial line up to 26 GHz," in IEEE Transactions on Instrumentation and Measurement, vol. 48, no. 2, pp. 166-168, April 1999.
[14]IEEE Standard for Precision Coaxial Connectors (DC to 100 GHz), IEEE Std. 287-2007, Sep. 2007.
[15]HUBER+SUHNER AG, HUBER+SUHNER RF CONNECTOR GUIDE,4th edition, 2007,pp.9-133
[16]李明德(2011 / 06 / 25),「降低射频同轴连接器电压驻波比的方法探讨」,機電元件,第三十一卷,第三期,第33-42+59頁。
[17]李輝煌(2009),ANSYS工程分析基礎與觀念,楊明德發行,台北
[18]康淵,陳信吉(2006),ANSYS入門,陳本淵發行,台北
[19]Tektronix ,TDR Impedance Measurements:A Foundation for Signal Integrity,2008
[20]Agilent Technologies,Time Domain Reflectometry Theory ,Application Note 1304-2, Aug. 29, 2002
[21]Hugo Fellner-Feldegg,"Measurement of dielectrics in the time domain,"The Journal of Physical Chemistry, 1969 73 (3), pp.616-623
[22]黃子軒,「高頻背板連接器之母端訊號完整性分析與改善」,國立台北科技大學製造科技研究所,碩士學位論文,2019
[23]何鑫泰,「高頻連接器和纜線及PCB板匹配之設計、分析與實測」,中國文化大學工學院機械工程學系數位機電碩士班,碩士學位論文,2011
[24]彭璋陵,「應用於探針式同軸連接器結構之阻抗匹配設計」,景文科技大學電腦與通訊研究所,碩士學位論文,2014
[25]蔡木村,陳伯宜,林淳杰,曾春風編譯(1991),機械冶金,陳本源發行,台北

電子全文 電子全文(網際網路公開日期:20270104)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top