跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/14 05:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉秉翔
研究生(外文):LIU, BING-XIANG
論文名稱:添加麩醯胺及魚油之復甦液緩解創傷出血性休克大鼠標的器官氧化壓力的機制
論文名稱(外文):The mechanisms of glutamine- and fish oil- supplemented resuscitation fluids on alleviating oxidative stress of target organs in rats with trauma-hemorrhagic shock
指導教授:羅慧珍
指導教授(外文):LO, HUI-CHEN
口試委員:李建興徐泰浩
口試委員(外文):LEE, CHIEN-HSINGHSU, TAI-HAO
口試日期:2020-01-15
學位類別:碩士
校院名稱:輔仁大學
系所名稱:營養科學系碩士班
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:148
中文關鍵詞:創傷出血性休克復甦液麩醯胺魚油氧化壓力發炎反應
外文關鍵詞:trauma hemorrhagic shockresuscitationglutaminefish oiloxidative stressinflammation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:230
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
創傷出血性休克 (THR)為加護病房中重大創傷患者常見的症狀,常伴隨氧化壓力以及促發炎介質產生。研究指出麩醯胺可恢復THR大鼠肝臟ATP含量並減緩肝臟損傷。而n-3多元不飽和脂肪酸之代謝衍生物可減緩發炎反應。故本實驗欲探討添加麩醯胺及魚油之復甦液緩解創傷出血性休克大鼠標的器官氧化壓力的機制。雄性SD 大鼠分為六組,除正常對照組及插管假手術組外,其餘四組皆進行5公分腹部創傷手術及左頸動脈及右頸靜脈插管(THR大鼠)。THR大鼠動脈連續抽血10分鐘,使平均動脈壓降為30至35 mmHg。維持低血壓60分鐘,於10分鐘內輸入抽出的血液及同體積之乳酸林格氏液(LR)或同體積且分別或同時添加L-丙胺-L-麩醯胺酸(13.5 mmole/kg/day)及魚油(0.5 g/kg/day)之復甦液,並於連續慢速輸注添加或不添加L-丙胺-L-麩醯胺與魚油的復甦液持續42小時 (1.4 ml/hr)後犧牲。結果顯示,單獨補充麩醯胺顯著降低THR增加的腎臟CAT活性、肺臟、肝臟與腎臟TBARS含量、肺臟與肝臟TLR4表現量及肺臟pNF-κB表現量,且顯著增加THR降低的肝臟CAT活性及eNOS表現量;單獨補充魚油顯著降低THR增加的腎臟CAT活性、肝臟與腎臟TBARS含量、肺臟與肝臟TLR4表現量及肺臟pNF-κB表現量,且顯著增加THR降低的肝臟CAT活性;而合併補充麩醯胺及魚油顯著降低單獨給予麩醯胺或魚油的益處。綜上所述,單獨給予補充麩醯胺或魚油較合併補充更具有減緩THR誘導的氧化壓力、發炎反應以及器官損傷的能力。
Trauma hemorrhagic shock and reperfusion (THR) is an emergent condition accompanied with a cascade production of reactive oxygen species (ROS) and inflammatory mediators. Glutamine, a precursor of de novo antioxidant glutathione, has been shown to restore hepatic ATP depletion and reduce hepatic damage in THR rats. In addition, n-3 polyunsaturated fatty acids derived from fish oil are the precursors of pro-resolving mediators in inflammation resolution. Therefore the aim of this study is to investigate the mechanisms of glutamine- and fish oil- supplemented resuscitation fluids on alleviating oxidative stress of target organs in rats with trauma-hemorrhagic shock. Male Wistar rats were divided into 6 groups, that is, a normal healthy control group, an intubation sham-operated group, and four THR groups which rats were suffered from 5 cm midline laparotomy and catheterizations in the left carotid artery and right jugular vein; blood drawn from the left carotid artery to reach a mean arterial pressure 30 to 35 mmHg within 10 min and maintained hypovolemia for 60 minutes; and subsequently resuscitated with shed blood and equal volume of lactate Ringer’s solution with or without L-alanyl-L-glutamine (13.5 mmole/kg/day) and/or fish oil (0.5 g/kg/day) within 10 minutes and followed by continuous, low infusion rate of resuscitation fluids (~1.4 ml/h). Healthy and sham-operated rats were included as controls. After 42 hr of infusion, the single supplementation of glutamine significantly decreased THR-increased the pulmonary, hepatic and renal TBARS, pulmonary and hepatic TLR4, pulmonary pNF-κB and renal CAT, as well as increased the THR-decreased hepatic CAT and eNOS; the single supplementation of fish oil had significantly decreased THR-increased the renal CAT, the hepatic and kidney TBARS, the pulmonary and hepatic TLR4 and the pulmonary pNF-κB, as well as increased the THR-decreased hepatic CAT; the combination of glutamine and fish oil had significantly decreased the efficacies of glutamine or fish oil in THR rats. In summary, the supplementation of glutamine or fish oil is better than the combined supplementation in alleviating THR-induced oxidative stress and inflammatory response and organ damage in THR rats.
目錄
中文摘要 ii
Abstract iv
謝誌 vi
目錄 viii
表目錄 xii
圖目錄 xiii
ABBREVIATION xvi
CHAPTER 1 1
INTRODUCTION 1
CHAPTER 2 3
LITERATURE REVIEW 3
1. Physiological changes of hemorrhagic shock 5
2. Serological changes 6
3. Multiple organ dysfunction syndrome (MODS) 6
4. Pathophysiological mechanisms in THR 10
A. Oxidative stress 10
B. Antioxidant defense system 20
C. Hypoxia-induced cellular adaptation 25
D. Inflammatory response 30
E. Apoptosis 35
5. The strategy of resuscitation infusion 40
A. Types of resuscitation fluid 41
B. Perfusion rate of resuscitation fluid 44
6. Supplementations in resuscitation fluids 46
A. Arginine 46
B. Glutamine 47
C. polyunsaturated fatty acids (n-3 PUFA) 48
CHAPTER 3 50
AIMS AND HYPOTHESIS 50
CHAPTER 4 52
MATERIALS AND METHODS 52
1. Animal model 52
2. Composition of resuscitation fluids 53
3. Experimental design 54
4. Analytic measurements 56
A. Lipid peroxidation products in the target organs 56
B. Enzymatic antioxidants in the target organs 56
C. Non-enzymatic antioxidants in the target organs 58
D. Immunohistochemistry (IHC) stain 59
E. The extraction of cytosol and nuclear protein 60
F. Western blot analysis 61
G. Statistical analysis 62
CHAPTER 5 65
RESULTS 65
1. Body weight, MAP, and resuscitation fluids 65
2. Lipid peroxidation product, TBARS 66
A. The intestine 66
B. The lung 66
C. The liver 67
D. The kidney 67
3. The activities of antioxidant enzymes 69
A. The lung 69
B. The liver 69
C. The kidney 70
4. Non-enzymatic antioxidants 74
A. The lung 74
B. The liver 74
C. The kidney 75
5. Oxidative stress associated proteins 79
A. The lung 79
B. The liver 80
6. Protein of inflammatory signaling pathway 87
A. The lung 87
B. The liver 87
7. Proteins of apoptosis signaling pathway 93
A. The lung 93
B. The liver 93
CHAPTER 6 97
DISCUSSIONS 97
1. The effect of continuously infused with low rate of resuscitation fluids 98
2. The effect of trauma hemorrhagic shock and resuscitation (THR) 101
3. The effect of glutamine infusion in THR in different organs 103
4. The effect of fish oil infusion in THR in different organs 105
5. The effect of glutamine and fish oil infusion in THR in different organs 108
6. Experiment limitation 111
CHAPTER 7 112
CONCLUSION 112
CHAPTER 8 114
REFERENCES 114
APPENDIX 125


李裕秀(2014)。添加精胺酸、瓜胺酸、麩醯胺酸之復甦液對出血性休克大鼠發炎反應及標的器官損傷的影響。輔仁大學營養科學系碩士班碩士論文,新北市。 取自https://hdl.handle.net/11296/6c4q4g
吳怡蓁(2016)。添加麩醯胺及魚油之復甦液對創傷出血性休克大鼠發炎反應及標的器官損傷的影響。輔仁大學營養科學系碩士班碩士論文,新北市。 取自https://hdl.handle.net/11296/2266kb
Abraham, N. G. & Kappas, A. (2008). Pharmacological and clinical aspects of heme oxygenase. Pharmacol Rev 60, 79-127.
Aebi, H. E. (1963). Detection and fixation of radiation-produced peroxide by enzymes. Radiat Res Suppl 3, 130-152.
Ajami, M., Davoodi, S. H., Habibey, R., Namazi, N., Soleimani, M., Pazoki-Toroudi, H. (2013). Effect of DHA+EPA on oxidative stress and apoptosis induced by ischemia-reperfusion in rat kidneys. Fundam Clin Pharmacol 27, 593-602.
Aksu, U., Bezemer, R., Yavuz, B., Kandil, A., Demirci, C., Ince, C. (2012). Balanced vs unbalanced crystalloid resuscitation in a near-fatal model of hemorrhagic shock and the effects on renal oxygenation, oxidative stress, and inflammation. Resuscitation 83, 767-773.
Angele, M. K., Schneider, C. P., Chaudry, I. H. (2008). Bench-to-bedside review: latest results in hemorrhagic shock. Crit Care 12, 218.
Awad, S., Allison, S. P., Lobo, D. N. (2008). The history of 0.9% saline. Clin Nutr 27, 179-188.
Bergamini, C. M., Gambetti, S., Dondi, A., Cervellati, C. (2004). Oxygen, reactive oxygen species and tissue damage. Curr Pharm Des 10, 1611-1626.
Berger, M. M. & Chiolero, R. L. (2007). Antioxidant supplementation in sepsis and systemic inflammatory response syndrome. Crit Care Med 35, S584-590.
Bhattacharyya, S. & Varga, J. (2018). Endogenous ligands of TLR4 promote unresolving tissue fibrosis: Implications for systemic sclerosis and its targeted therapy. Immunol Lett 195, 9-17.
Bougle, A., Harrois, A., Duranteau, J. (2013). Resuscitative strategies in traumatic hemorrhagic shock. Ann Intensive Care 3, 1.
Bragin, D. E., Bragina, O. A., Kameneva, M. V., Nemoto, E. M. (2020). Resuscitation with Drag Reducing Polymers after Traumatic Brain Injury with Hemorrhagic Shock Reduces Microthrombosis and Oxidative Stress. Adv Exp Med Biol 1232, 39-45.
Bu, J., Dou, Y., Tian, X., Wang, Z., Chen, G. (2016). The Role of Omega-3 Polyunsaturated Fatty Acids in Stroke. Oxid Med Cell Longev 2016, 6906712.
Byrne, J., McGuinness, J., Chen, G., Hill, A. D., Redmond, M. J. (2011). Intravenous omega-3, a technique to prevent an excessive innate immune response to cardiac surgery in a rodent gut ischemia model. J Thorac Cardiovasc Surg 141, 803-807.
Chang, M., Tang, H., Liu, D., Li, Y., Zhang, L. (2016). Comparison of Melatonin, Hypertonic Saline, and Hydroxyethyl Starch for Resuscitation of Secondary Intra-Abdominal Hypertension in an Animal Model. PLoS One 11, e0161688.
Chang, R. & Holcomb, J. B. (2017). Optimal Fluid Therapy for Traumatic Hemorrhagic Shock. Crit Care Clin 33, 15-36.
Chelikani, P., Fita, I., Loewen, P. C. (2004). Diversity of structures and properties among catalases. Cell Mol Life Sci 61, 192-208.
Chen, L., Deng, H., Cui, H., Fang, J., Zuo, Z., Deng, J., Li, Y., Wang, X., Zhao, L. (2018). Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9, 7204-7218.
Childs, E. W., Tharakan, B., Byrge, N., Tinsley, J. H., Hunter, F. A., Smythe, W. R. (2008). Angiopoietin-1 inhibits intrinsic apoptotic signaling and vascular hyperpermeability following hemorrhagic shock. Am J Physiol Heart Circ Physiol 294, H2285-2295.
Choi, S. H., Suh, G. J., Kwon, W. Y., Kim, K. S., Park, M. J., Kim, T., Ko, J. I. (2017). Apocynin suppressed the nuclear factor-kappaB pathway and attenuated lung injury in a rat hemorrhagic shock model. J Trauma Acute Care Surg 82, 566-574.
Circu, M. L. & Aw, T. Y. (2012). Intestinal redox biology and oxidative stress. Semin Cell Dev Biol 23, 729-737.
Cooper, D. J., Myles, P. S., McDermott, F. T., Murray, L. J., Laidlaw, J., Cooper, G., Tremayne, A. B., Bernard, S. S., Ponsford, J. (2004). Prehospital hypertonic saline resuscitation of patients with hypotension and severe traumatic brain injury: a randomized controlled trial. JAMA 291, 1350-1357.
Cross, A. R. (2000). p40(phox) Participates in the activation of NADPH oxidase by increasing the affinity of p47(phox) for flavocytochrome b(558). Biochem J 349, 113-117.
Cruzat, V., Macedo Rogero, M., Noel Keane, K., Curi, R., Newsholme, P. (2018). Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation. Nutrients 10.
Dai, Y., Cao, Y., Zhang, Z., Vallurupalli, S., Mehta, J. L. (2017). Xanthine Oxidase Induces Foam Cell Formation through LOX-1 and NLRP3 Activation. Cardiovasc Drugs Ther 31, 19-27.
Dang, Y., Liu, T., Mei, X., Meng, X., Gou, X., Deng, B., Xu, H., Xu, L. (2017). Hyperoxygenated hydrogen-rich solution suppresses shock- and resuscitation-induced liver injury. J Surg Res 220, 363-371.
Di Mascio, P., Murphy, M. E., Sies, H. (1991). Antioxidant defense systems: the role of carotenoids, tocopherols, and thiols. Am J Clin Nutr 53, 194S-200S.
Du, Z., Jia, H., Liu, J., Zhao, X., Xu, W. (2015). Effects of three hydrogen-rich liquids on hemorrhagic shock in rats. J Surg Res 193, 377-382.
Duan, Y.-F., An, Y., Zhu, F., Jiang, Y. (2017). Remote ischemic preconditioning protects liver ischemia-reperfusion injury by regulating eNOS-NO pathway and liver microRNA expressions in fatty liver rats. Hepatobiliary & Pancreatic Diseases International 16, 387-394.
Durante, W. (2019). The Emerging Role of l-Glutamine in Cardiovascular Health and Disease. Nutrients 11.
Efrati, S., Berman, S., Ben Aharon, G., Siman-Tov, Y., Averbukh, Z., Weissgarten, J. (2008). Application of normobaric hyperoxia therapy for amelioration of haemorrhagic shock-induced acute renal failure. Nephrol Dial Transplant 23, 2213-2222.
Elbirt, K. K. & Bonkovsky, H. L. (1999). Heme oxygenase: recent advances in understanding its regulation and role. Proc Assoc Am Physicians 111, 438-447.
Eltzschig, H. K. & Eckle, T. (2011). Ischemia and reperfusion--from mechanism to translation. Nat Med 17, 1391-1401.
Epp, O., Ladenstein, R., Wendel, A. (1983). The refined structure of the selenoenzyme glutathione peroxidase at 0.2-nm resolution. Eur J Biochem 133, 51-69.
Esiobu, P. & Childs, E. W. (2018). A Rat Model of Hemorrhagic Shock for Studying Vascular Hyperpermeability. Methods Mol Biol 1717, 53-60.
Esposito, E., Mondello, S., Di Paola, R., Mazzon, E., Italiano, D., Paterniti, I., Mondello, P., Aloisi, C., Cuzzocrea, S. (2011). Glutamine contributes to ameliorate inflammation after renal ischemia/reperfusion injury in rats. Naunyn Schmiedebergs Arch Pharmacol 383, 493-508.
Finfer, S., Liu, B., Taylor, C., Bellomo, R., Billot, L., Cook, D., Du, B., McArthur, C., Myburgh, J., Investigators, S. T. (2010). Resuscitation fluid use in critically ill adults: an international cross-sectional study in 391 intensive care units. Crit Care 14, R185.
Gao, W., Meng, Q. M., Cui, X. G. (2017a). Budesonide instillation immediately after reperfusion ameliorates ischemia/reperfusion-induced injury in the transplanted lung of rat. Exp Lung Res 43, 439-446.
Gao, X., Zhou, X., Wang, H., Lv, N., Liu, Y., Guo, J. (2017b). Effects of heme oxygenase-1 recombinant Lactococcus lactis on the intestinal barrier of hemorrhagic shock rats. Brazilian Journal of Medical and Biological Research 50.
Gatta, A., Verardo, A., Bolognesi, M. (2012). Hypoalbuminemia. Intern Emerg Med 7 Suppl 3, S193-199.
Ghasemi, M., Nematbakhsh, M., Daneshmand, F., Moeini, M., Talebi, A. (2015). Role of nitric oxide in kidney and liver (as distance organ) function in bilateral renal ischemia-reperfusion: Effect of L-Arginine and NG-nitro-L-Arginine methyl ester. Adv Biomed Res 4, 233.
Gilmore, T. D. (2006). Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25, 6680-6684.
Gondek, S., Schroeder, M. E., Sarani, B. (2017). Assessment and Resuscitation in Trauma Management. Surg Clin North Am 97, 985-998.
Grant, D. M. (1991). Detoxification pathways in the liver. J Inherit Metab Dis 14, 421-430.
Grau-Carmona, T., Bonet-Saris, A., Garcia-de-Lorenzo, A., Sanchez-Alvarez, C., Rodriguez-Pozo, A., Acosta-Escribano, J., Minambres, E., Herrero-Meseguer, J. I., Mesejo, A. (2015). Influence of n-3 polyunsaturated fatty acids enriched lipid emulsions on nosocomial infections and clinical outcomes in critically ill patients: ICU lipids study. Crit Care Med 43, 31-39.
Grishina, G. V., Gerbut, K. A., Remizova, M. I., Selivanov, E. A. (2013). Use of nitric oxide producer L-arginine during infusion therapy of experimental hemorrhagic shock. Bull Exp Biol Med 154, 312-315.
Gutierrez, G., Reines, H. D., Wulf-Gutierrez, M. E. (2004). Clinical review: hemorrhagic shock. Crit Care 8, 373-381.
Hartmann, R., Licks, F., Schemitt, E. G., Colares, J. R., Da Silva, J., Moura, R. M., Zabot, G. P., Fillmann, H. S., Marroni, N. P. (2017). Effect of glutamine on liver injuries induced by intestinal ischemia-reperfusion in rats. Nutr Hosp 34, 548-554.
Hassan, M., Watari, H., AbuAlmaaty, A., Ohba, Y., Sakuragi, N. (2014). Apoptosis and molecular targeting therapy in cancer. Biomed Res Int 2014, 150845.
Hayyan, M., Hashim, M. A., AlNashef, I. M. (2016). Superoxide Ion: Generation and Chemical Implications. Chem Rev 116, 3029-3085.
Hissin, P. J. & Hilf, R. (1976). A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74, 214-226.
Hsu, J. T., Chen, T. H., Chiang, K. C., Kuo, C. J., Lin, C. J., Yeh, T. S. (2015). Role of p38 MAPK pathway in 17beta-estradiol-mediated attenuation of hemorrhagic shock-induced hepatic injury. J Appl Physiol (1985) 118, 187-192.
Hsu, J. T., Le, P. H., Lin, C. J., Chen, T. H., Kuo, C. J., Chiang, K. C., Yeh, T. S. (2017). Mechanism of salutary effects of melatonin-mediated liver protection after trauma-hemorrhage: p38 MAPK-dependent iNOS/HIF-1alpha pathway. Am J Physiol Gastrointest Liver Physiol 312, G427-G433.
Hubbard, W. J., Bland, K. I., Chaudry, I. H. (2004). The role of the mitochondrion in trauma and shock. Shock 22, 395-402.
Hutchings, S. D., Naumann, D. N., Hopkins, P., Mellis, C., Riozzi, P., Sartini, S., Mamuza, J., Harris, T., Midwinter, M. J., Wendon, J. (2018). Microcirculatory Impairment Is Associated With Multiple Organ Dysfunction Following Traumatic Hemorrhagic Shock: The MICROSHOCK Study. Crit Care Med 46, e889-e896.
Iqbal, S., Hayman, E. G., Hong, C., Stokum, J. A., Kurland, D. B., Gerzanich, V., Simard, J. M. (2016). Inducible nitric oxide synthase (NOS-2) in subarachnoid hemorrhage: Regulatory mechanisms and therapeutic implications. Brain Circ 2, 8-19.
Jacob, M. & Kumar, P. (2014). The challenge in management of hemorrhagic shock in trauma. Med J Armed Forces India 70, 163-169.
Jacobs, M. D. & Harrison, S. C. (1998). Structure of an IkappaBalpha/NF-kappaB complex. Cell 95, 749-758.
Jakobsen, R. P., Nielsen, T. H., Molstrom, S., Nordstrom, C. H., Granfeldt, A., Toft, P. (2019). Moderately prolonged permissive hypotension results in reversible metabolic perturbation evaluated by intracerebral microdialysis - an experimental animal study. Intensive Care Med Exp 7, 67.
Jiang, H., Hu, R., Sun, L., Chai, D., Cao, Z., Li, Q. (2014). Critical role of toll-like receptor 4 in hypoxia-inducible factor 1alpha activation during trauma/hemorrhagic shocky induced acute lung injury after lymph infusion in mice. Shock 42, 271-278.
Jin, Y., Zhao, X., Zhang, H., Li, Q., Lu, G., Zhao, X. (2016). Modulatory effect of silymarin on pulmonary vascular dysfunction through HIF-1alpha-iNOS following rat lung ischemia-reperfusion injury. Exp Ther Med 12, 1135-1140.
Johansson, M. E., Ambort, D., Pelaseyed, T., Schutte, A., Gustafsson, J. K., Ermund, A., Subramani, D. B., Holmen-Larsson, J. M., Thomsson, K. A., Bergstrom, J. H., van der Post, S., Rodriguez-Pineiro, A. M., Sjovall, H., Backstrom, M., Hansson, G. C. (2011). Composition and functional role of the mucus layers in the intestine. Cell Mol Life Sci 68, 3635-3641.
Jost, P. J. & Ruland, J. (2007). Aberrant NF-kappaB signaling in lymphoma: mechanisms, consequences, and therapeutic implications. Blood 109, 2700-2707.
Kalogeris, T., Bao, Y., Korthuis, R. J. (2014). Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning. Redox Biol 2, 702-714.
Kao, M. C., Yang, C. H., Sheu, J. R., Huang, C. J. (2015). Cepharanthine mitigates pro-inflammatory cytokine response in lung injury induced by hemorrhagic shock/resuscitation in rats. Cytokine 76, 442-448.
Karpuzoglu, E. & Ahmed, S. A. (2006). Estrogen regulation of nitric oxide and inducible nitric oxide synthase (iNOS) in immune cells: implications for immunity, autoimmune diseases, and apoptosis. Nitric Oxide 15, 177-186.
Kavanagh, E., Rodhe, J., Burguillos, M. A., Venero, J. L., Joseph, B. (2014). Regulation of caspase-3 processing by cIAP2 controls the switch between pro-inflammatory activation and cell death in microglia. Cell Death Dis 5, e1565.
Kim, M., Lorinsky, M. K., Gold, C. A., Lahey, S. J., Fusco, D. S., Rosinski, D. J., Pawlak, D., Liang, B. T. (2019). Usefulness of Circulating Caspase-3 p17 and Caspase-1 p20 Peptides and Cardiac Troponin 1 During Cardioplegia to Gauge Myocardial Preservation. Am J Cardiol 123, 899-904.
Kim, M. H. & Kim, H. (2017). The Roles of Glutamine in the Intestine and Its Implication in Intestinal Diseases. Int J Mol Sci 18.
Kirk, S. J. & Barbul, A. (1990). Role of arginine in trauma, sepsis, and immunity. JPEN J Parenter Enteral Nutr 14, 226S-229S.
Klebanoff, S. J. (2005). Myeloperoxidase: friend and foe. J Leukoc Biol 77, 598-625.
Koksal, G. M., Dikmen, Y., Erbabacan, E., Aydin, S., Cakatay, U., Sitar, M. E., Altindas, F. (2016). Hyperoxic oxidative stress during abdominal surgery: a randomized trial. J Anesth 30, 610-619.
Kooij, A., Schiller, H. J., Schijns, M., Van Noorden, C. J., Frederiks, W. M. (1994). Conversion of xanthine dehydrogenase into xanthine oxidase in rat liver and plasma at the onset of reperfusion after ischemia. Hepatology 19, 1488-1495.
Lee, J. W., Bae, S. H., Jeong, J. W., Kim, S. H., Kim, K. W. (2004). Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions. Exp Mol Med 36, 1-12.
Li, J., Li, L., Wang, S., Zhang, C., Zheng, L., Jia, Y., Xu, M., Zhu, T., Zhang, Y., Rong, R. (2018). Resveratrol Alleviates Inflammatory Responses and Oxidative Stress in Rat Kidney Ischemia-Reperfusion Injury and H2O2-Induced NRK-52E Cells via the Nrf2/TLR4/NF-kappaB Pathway. Cell Physiol Biochem 45, 1677-1689.
Li, J. M., Mullen, A. M., Yun, S., Wientjes, F., Brouns, G. Y., Thrasher, A. J., Shah, A. M. (2002). Essential role of the NADPH oxidase subunit p47(phox) in endothelial cell superoxide production in response to phorbol ester and tumor necrosis factor-alpha. Circ Res 90, 143-150.
Li, S., Tan, H. Y., Wang, N., Zhang, Z. J., Lao, L., Wong, C. W., Feng, Y. (2015a). The Role of Oxidative Stress and Antioxidants in Liver Diseases. Int J Mol Sci 16, 26087-26124.
Li, X., Zhang, X., Yang, E., Zhang, N., Cao, S., Zhou, Y. (2015b). Fish oil-supplemented parenteral nutrition could alleviate acute lung injury, modulate immunity, and reduce inflammation in rats with abdominal sepsis. Nutr Res 35, 784-791.
Li, Y., Guo, M., Shen, J., Zheng, L., Wang, J., Wang, P., Li, J. (2014). Limited fluid resuscitation attenuates lung and intestine injury caused by hemorrhagic shock in rats. J Invest Surg 27, 81-87.
Li, Y., Wang, X., Li, N., Li, J. (2012). Fish oil improves hemodynamic stabilization and inflammation after resuscitation in a rat model of hemorrhagic shock. Lipids in health and disease 11, 5.
Lin, B., Liu, Y., Li, T., Zeng, K., Cai, S., Zeng, Z., Lin, C., Chen, Z., Gao, Y. (2015). Ulinastatin mediates protection against vascular hyperpermeability following hemorrhagic shock. Int J Clin Exp Pathol 8, 7685-7693.
Lin, K. H., Liu, C. L., Kuo, W. W., Paul, C. R., Chen, W. K., Wen, S. Y., Day, C. H., Wu, H. C., Viswanadha, V. P., Huang, C. Y. (2016). Early Fluid Resuscitation by Lactated Ringer's Solution Alleviate the Cardiac Apoptosis in Rats with Trauma-Hemorrhagic Shock. PLoS One 11, e0165406.
Liu, F. C., Chaudry, I. H., Yu, H. P. (2017). Hepatoprotective Effects of Corilagin Following Hemorrhagic Shock are Through Akt-Dependent Pathway. Shock 47, 346-351.
Liu, F. C., Zheng, C. W., Yu, H. P. (2016). Maraviroc-Mediated Lung Protection following Trauma-Hemorrhagic Shock. Biomed Res Int 2016, 5302069.
Longo, L., Sinigaglia-Fratta, L. X., Weber, G. R., Janz-Moreira, A., Kretzmann, N. A., Grezzana-Filho Tde, J., Possa-Marroni, N., Corso, C. O., Schmidt-Cerski, C. T., Reverbel-da-Silveira, T., Alvares-da-Silva, M. R., dos-Santos, J. L. (2016). Hypothermia is better than ischemic preconditioning for preventing early hepatic ischemia/reperfusion in rats. Ann Hepatol 15, 110-120.
Loreto, C., La Rocca, G., Anzalone, R., Caltabiano, R., Vespasiani, G., Castorina, S., Ralph, D. J., Cellek, S., Musumeci, G., Giunta, S., Djinovic, R., Basic, D., Sansalone, S. (2014). The role of intrinsic pathway in apoptosis activation and progression in Peyronie's disease. Biomed Res Int 2014, 616149.
Lucas, M. L., Rhoden, C. R., Rhoden, E. L., Zettler, C. G., Mattos, A. A. (2015). Effects of L-arginine and L-NAME on ischemia-reperfusion in rat liver. Acta Cir Bras 30, 345-352.
Madigan, M. C., Kemp, C. D., Johnson, J. C., Cotton, B. A. (2008). Secondary abdominal compartment syndrome after severe extremity injury: are early, aggressive fluid resuscitation strategies to blame? J Trauma 64, 280-285.
Malbrain, M., Van Regenmortel, N., Saugel, B., De Tavernier, B., Van Gaal, P. J., Joannes-Boyau, O., Teboul, J. L., Rice, T. W., Mythen, M., Monnet, X. (2018). Principles of fluid management and stewardship in septic shock: it is time to consider the four D's and the four phases of fluid therapy. Ann Intensive Care 8, 66.
Marklund, S. & Marklund, G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47, 469-474.
Mathy-Hartert, M., Bourgeois, E., Grulke, S., Deby-Dupont, G., Caudron, I., Deby, C., Lamy, M., Serteyn, D. (1998). Purification of myeloperoxidase from equine polymorphonuclear leucocytes. Can J Vet Res 62, 127-132.
Matsumura, F., Yamaguchi, Y., Goto, M., Ichiguchi, O., Akizuki, E., Matsuda, T., Okabe, K., Liang, J., Ohshiro, H., Iwamoto, T., Yamada, S., Mori, K., Ogawa, M. (1998). Xanthine oxidase inhibition attenuates kupffer cell production of neutrophil chemoattractant following ischemia-reperfusion in rat liver. Hepatology 28, 1578-1587.
Matsuo, S., Saiki, Y., Adachi, O., Kawamoto, S., Fukushige, S., Horii, A., Saiki, Y. (2015). Single-dose rosuvastatin ameliorates lung ischemia-reperfusion injury via upregulation of endothelial nitric oxide synthase and inhibition of macrophage infiltration in rats with pulmonary hypertension. J Thorac Cardiovasc Surg 149, 902-909.
McSwain, N. E., Champion, H. R., Fabian, T. C., Hoyt, D. B., Wade, C. E., Eastridge, B. J., Proctor, K. G., Rasmussen, T. E., Roussel, R. R., Butler, F. K., Holcomb, J. B., Schreiber, M. A., Shackford, S. R., Blackbourne, L. H. (2011). State of the art of fluid resuscitation 2010: prehospital and immediate transition to the hospital. J Trauma 70, S2-10.
Mihara, R., Takasu, A., Maemura, K., Minami, T. (2018). Prolonged severe hemorrhagic shock at a mean arterial pressure of 40 mmHg does not lead to brain damage in rats. Acute Med Surg 5, 350-357.
Mladenov, M., Gokik, M., Hadzi-Petrushev, N., Gjorgoski, I., Jankulovski, N. (2015). The relationship between antioxidant enzymes and lipid peroxidation in senescent rat erythrocytes. Physiol Res 64, 891-896.
Mondello, S., Galuppo, M., Mazzon, E., Domenico, I., Mondello, P., Carmela, A., Cuzzocrea, S. (2010). Glutamine treatment attenuates the development of ischaemia/reperfusion injury of the gut. Eur J Pharmacol 643, 304-315.
Morgan, T. J., Venkatesh, B., Hall, J. (2004). Crystalloid strong ion difference determines metabolic acid-base change during acute normovolaemic haemodilution. Intensive Care Med 30, 1432-1437.
Morris, C. R., Hamilton-Reeves, J., Martindale, R. G., Sarav, M., Ochoa Gautier, J. B. (2017). Acquired Amino Acid Deficiencies: A Focus on Arginine and Glutamine. Nutr Clin Pract 32, 30S-47S.
Murphy, C. V., Schramm, G. E., Doherty, J. A., Reichley, R. M., Gajic, O., Afessa, B., Micek, S. T., Kollef, M. H. (2009). The importance of fluid management in acute lung injury secondary to septic shock. Chest 136, 102-109.
Myburgh, J., Cooper, D. J., Finfer, S., Bellomo, R., Norton, R., Bishop, N., Kai Lo, S., Vallance, S. (2007). Saline or albumin for fluid resuscitation in patients with traumatic brain injury. N Engl J Med 357, 874-884.
Myburgh, J. A. & Mythen, M. G. (2013). Resuscitation fluids. N Engl J Med 369, 1243-1251.
Newsholme, P., Homem De Bittencourt, P. I., C, O. H., De Vito, G., Murphy, C., Krause, M. S. (2009). Exercise and possible molecular mechanisms of protection from vascular disease and diabetes: the central role of ROS and nitric oxide. Clin Sci (Lond) 118, 341-349.
Nikolian, V. C., Pan, B., Mesar, T., Dennahy, I. S., Georgoff, P. E., Duan, X., Liu, B., Wu, X., Duggan, M. J., Alam, H. B., Li, Y. (2017). Lung Protective Effects of Low-Volume Resuscitation and Pharmacologic Treatment of Swine Subjected to Polytrauma and Hemorrhagic Shock. Inflammation 40, 1264-1274.
Nita, M. & Grzybowski, A. (2016). The Role of the Reactive Oxygen Species and Oxidative Stress in the Pathomechanism of the Age-Related Ocular Diseases and Other Pathologies of the Anterior and Posterior Eye Segments in Adults. Oxid Med Cell Longev 2016, 3164734.
Ohkawa, H., Ohishi, N., Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95, 351-358.
Okutan, H., Kiris, I., Adiloglu, A. K., Savas, C., Kapucuoglu, N., Altuntas, I., Akturk, O. (2008). The effect of Nomega-nitro-L-arginine methyl ester and L-arginine on lung injury induced by abdominal aortic occlusion-reperfusion. Surg Today 38, 30-37.
Oliveira Filho, L. D., Saad, K. R., Saad, P. F., Koike, M. K., Silva, S. M., Montero, E. F. (2015). Effect of N-acetylcysteine in hearts of rats submitted to controlled hemorrhagic shock. Rev Bras Cir Cardiovasc 30, 173-181.
Owattanapanich, N., Chittawatanarat, K., Benyakorn, T., Sirikun, J. (2018). Risks and benefits of hypotensive resuscitation in patients with traumatic hemorrhagic shock: a meta-analysis. Scand J Trauma Resusc Emerg Med 26, 107.
Paglia, D. E. & Valentine, W. N. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70, 158-169.
Peng, B., Guo, Q. L., He, Z. J., Ye, Z., Yuan, Y. J., Wang, N., Zhou, J. (2012). Remote ischemic postconditioning protects the brain from global cerebral ischemia/reperfusion injury by up-regulating endothelial nitric oxide synthase through the PI3K/Akt pathway. Brain Res 1445, 92-102.
Phaniendra, A., Jestadi, D. B., Periyasamy, L. (2015). Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem 30, 11-26.
Pineiro-Carrero, V. M. & Pineiro, E. O. (2004). Liver. Pediatrics 113, 1097-1106.
Porter, A. G. & Janicke, R. U. (1999). Emerging roles of caspase-3 in apoptosis. Cell Death Differ 6, 99-104.
Poss, K. D. & Tonegawa, S. (1997). Reduced stress defense in heme oxygenase 1-deficient cells. Proc Natl Acad Sci U S A 94, 10925-10930.
Potenza, M. A., Sgarra, L., Nacci, C., Leo, V., De Salvia, M. A., Montagnani, M. (2019). Activation of AMPK/SIRT1 axis is required for adiponectin-mediated preconditioning on myocardial ischemia-reperfusion (I/R) injury in rats. PLoS One 14, e0210654.
Quesnelle, K. M., Bystrom, P. V., Toledo-Pereyra, L. H. (2015). Molecular responses to ischemia and reperfusion in the liver. Arch Toxicol 89, 651-657.
Ratliff, B. B., Abdulmahdi, W., Pawar, R., Wolin, M. S. (2016). Oxidant Mechanisms in Renal Injury and Disease. Antioxid Redox Signal 25, 119-146.
Sahoo, S., Meijles, D. N., Pagano, P. J. (2016). NADPH oxidases: key modulators in aging and age-related cardiovascular diseases? Clin Sci (Lond) 130, 317-335.
Santus, P., Corsico, A., Solidoro, P., Braido, F., Di Marco, F., Scichilone, N. (2014). Oxidative stress and respiratory system: pharmacological and clinical reappraisal of N-acetylcysteine. COPD 11, 705-717.
Seifi, B., Kadkhodaee, M., Ranjbaran, M., Bakhshi, E. (2018). Nephroprotection through the Akt/eNOS pathway by centrally administered erythropoietin in a rat model of fixed-volume hemorrhage. Life Sci 193, 180-185.
Shao, B., Oda, M. N., Oram, J. F., Heinecke, J. W. (2010). Myeloperoxidase: an oxidative pathway for generating dysfunctional high-density lipoprotein. Chem Res Toxicol 23, 447-454.
Shaw, A. D., Bagshaw, S. M., Goldstein, S. L., Scherer, L. A., Duan, M., Schermer, C. R., Kellum, J. A. (2012). Major complications, mortality, and resource utilization after open abdominal surgery: 0.9% saline compared to Plasma-Lyte. Ann Surg 255, 821-829.
Sies, H. (2015). Oxidative stress: a concept in redox biology and medicine. Redox Biol 4, 180-183.
Sims, C. A. & Baur, J. A. (2017). The grapes and wrath: using resveratrol to treat the pathophysiology of hemorrhagic shock. Ann N Y Acad Sci 1403, 70-81.
Slaughter, A. L., D'Alessandro, A., Moore, E. E., Banerjee, A., Silliman, C. C., Hansen, K. C., Reisz, J. A., Fragoso, M., Wither, M. J., Bacon, A. W., Moore, H. B., Peltz, E. D. (2016). Glutamine metabolism drives succinate accumulation in plasma and the lung during hemorrhagic shock. J Trauma Acute Care Surg 81, 1012-1019.
Sordi, R., Chiazza, F., Collotta, D., Migliaretti, G., Colas, R. A., Vulliamy, P., Brohi, K., Dalli, J., Collino, M., Thiemermann, C. (2019). Resolvin D1 Attenuates the Organ Injury Associated With Experimental Hemorrhagic Shock. Ann Surg.
Sordi, R., Chiazza, F., Johnson, F. L., Patel, N. S., Brohi, K., Collino, M., Thiemermann, C. (2015). Inhibition of IkappaB Kinase Attenuates the Organ Injury and Dysfunction Associated with Hemorrhagic Shock. Mol Med 21, 563-575.
Su, S. T., Yeh, C. L., Hou, Y. C., Pai, M. H., Yeh, S. L. (2017). Dietary glutamine supplementation enhances endothelial progenitor cell mobilization in streptozotocin-induced diabetic mice subjected to limb ischemia. J Nutr Biochem 40, 86-94.
Sun, S., Zhao, B., Qi, M., Yao, Y., Xu, L., Ji, R., Chen, W., Wang, J., Huang, S., Ma, L., Chen, Y., Yang, Z., Sheng, H., Fei, J., Chen, E., Mao, E. (2019). Tudca Ameliorates Liver Injury Via Activation of SIRT1-FXR Signaling in a Rat Hemorrhagic Shock Model. Shock.
Takahashi, T., Shimizu, H., Morimatsu, H., Maeshima, K., Inoue, K., Akagi, R., Matsumi, M., Katayama, H., Morita, K. (2009). Heme Oxygenase-1 is an Essential Cytoprotective Component in Oxidative Tissue Injury Induced by Hemorrhagic Shock. J Clin Biochem Nutr 44, 28-40.
Tawa, P., Hell, K., Giroux, A., Grimm, E., Han, Y., Nicholson, D. W., Xanthoudakis, S. (2004). Catalytic activity of caspase-3 is required for its degradation: stabilization of the active complex by synthetic inhibitors. Cell Death Differ 11, 439-447.
Trefts, E., Gannon, M., Wasserman, D. H. (2017). The liver. Curr Biol 27, R1147-R1151.
Turgeon, J., Dussault, S., Maingrette, F., Groleau, J., Haddad, P., Perez, G., Rivard, A. (2013). Fish oil-enriched diet protects against ischemia by improving angiogenesis, endothelial progenitor cell function and postnatal neovascularization. Atherosclerosis 229, 295-303.
Uzuner, K., Tuncel, N., Aydin, Y., Tuncel, M., Gurer, F., Benli, P., Ak, D. (1995). The effect of vasoactive intestinal peptide (VIP) on superoxide dismutase and catalase activities in renal tissues of rats exposed to hemorrhagic ischemia-reperfusion. Peptides 16, 911-915.
Veith, N. T., Histing, T., Menger, M. D., Pohlemann, T., Tschernig, T. (2017). Helping prometheus: liver protection in acute hemorrhagic shock. Ann Transl Med 5, 206.
Vergnaud, S., Paclet, M. H., El Benna, J., Pocidalo, M. A., Morel, F. (2000). Complementation of NADPH oxidase in p67-phox-deficient CGD patients p67-phox/p40-phox interaction. Eur J Biochem 267, 1059-1067.
Wallace, M. A. (1998). Anatomy and physiology of the kidney. AORN J 68, 800, 803-816, 819-820; quiz 821-804.
Wang, B., Wu, X.-W., Guo, M.-X., Li, M.-L., Xu, X.-B., Jin, X.-X., Zhang, X.-H. (2016). Effects of ω-3 fatty acids on toll-like receptor 4 and nuclear factor-κB p56 in lungs of rats with severe acute pancreatitis. World journal of gastroenterology 22, 9784.
Wang, B., Yang, R. N., Zhu, Y. R., Xing, J. C., Lou, X. W., He, Y. J., Ding, Q. L., Zhang, M. Y., Qiu, H. (2017). Involvement of xanthine oxidase and paraoxonase 1 in the process of oxidative stress in nonalcoholic fatty liver disease. Mol Med Rep 15, 387-395.
Wang, H., Guan, Y., Karamercan, M. A., Ye, L., Bhatti, T., Becker, L. B., Baur, J. A., Sims, C. A. (2015). Resveratrol Rescues Kidney Mitochondrial Function Following Hemorrhagic Shock. Shock 44, 173-180.
Ward, D. T., Lawson, S. A., Gallagher, C. M., Conner, W. C., Shea-Donohue, T. (2000). Sustained nitric oxide production via l-arginine administration ameliorates effects of intestinal ischemia-reperfusion. J Surg Res 89, 13-19.
Warren, M., Subramani, K., Schwartz, R., Raju, R. (2017). Mitochondrial dysfunction in rat splenocytes following hemorrhagic shock. Biochim Biophys Acta Mol Basis Dis 1863, 2526-2533.
Waters, J. H. (2014). Role of the massive transfusion protocol in the management of haemorrhagic shock. Br J Anaesth 113 Suppl 2, ii3-8.
Watson, R. S., Crow, S. S., Hartman, M. E., Lacroix, J., Odetola, F. O. (2017). Epidemiology and Outcomes of Pediatric Multiple Organ Dysfunction Syndrome. Pediatr Crit Care Med 18, S4-S16.
Weibel, E. R. (2017). Lung morphometry: the link between structure and function. Cell Tissue Res 367, 413-426.
Wen, Z., Fan, L., Li, Y., Zou, Z., Scott, M. J., Xiao, G., Li, S., Billiar, T. R., Wilson, M. A., Shi, X., Fan, J. (2014). Neutrophils counteract autophagy-mediated anti-inflammatory mechanisms in alveolar macrophage: role in posthemorrhagic shock acute lung inflammation. J Immunol 193, 4623-4633.
Wu, G. & Morris, S. M., Jr. (1998). Arginine metabolism: nitric oxide and beyond. Biochem J 336 ( Pt 1), 1-17.
Wu, R., Dong, W., Zhou, M., Zhang, F., Marini, C. P., Ravikumar, T. S., Wang, P. (2007). Ghrelin attenuates sepsis-induced acute lung injury and mortality in rats. Am J Respir Crit Care Med 176, 805-813.
Xiang, M., Yin, L., Li, Y., Xiao, G., Vodovotz, Y., Billiar, T. R., Wilson, M. A., Fan, J. (2011). Hemorrhagic shock activates lung endothelial reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase via neutrophil NADPH oxidase. Am J Respir Cell Mol Biol 44, 333-340.
Yamada, N., Martin, L. B., Zechendorf, E., Purvis, G. S. D., Chiazza, F., Varrone, B., Collino, M., Shepherd, J., Heinbockel, L., Gutsmann, T., Correa, W., Brandenburg, K., Marx, G., Schuerholz, T., Brohi, K., Thiemermann, C. (2018). Novel Synthetic, Host-defense Peptide Protects Against Organ Injury/Dysfunction in a Rat Model of Severe Hemorrhagic Shock. Ann Surg 268, 348-356.
Yanala, U. R., Johanning, J. M., Pipinos, II, High, R. R., Larsen, G., Velander, W. H., Carlson, M. A. (2018). Fluid administration rate for uncontrolled intraabdominal hemorrhage in swine. PLoS One 13, e0207708.
Yang, G., Peng, X., Hu, Y., Lan, D., Wu, Y., Li, T., Liu, L. (2016). 4-Phenylbutyrate Benefits Traumatic Hemorrhagic Shock in Rats by Attenuating Oxidative Stress, Not by Attenuating Endoplasmic Reticulum Stress. Crit Care Med 44, e477-491.
Yang, H., Antoine, D. J., Andersson, U., Tracey, K. J. (2013). The many faces of HMGB1: molecular structure-functional activity in inflammation, apoptosis, and chemotaxis. J Leukoc Biol 93, 865-873.
Yang, L. & Dong, X. (2017). Crocin attenuates hemorrhagic shock-induced oxidative stress and organ injuries in rats. Environ Toxicol Pharmacol 52, 177-182.
Yang, R., Harris, W. S., Vernon, K., Thomas, A. M., Qureshi, N., Morrison, D. C., Van Way, C. W., 3rd. (2010). Prefeeding with omega-3 fatty acids suppresses inflammation following hemorrhagic shock. JPEN J Parenter Enteral Nutr 34, 496-502.
Yang, R., Martin-Hawver, L., Woodall, C., Thomas, A., Qureshi, N., Morrison, D., Van Way, C., 3rd. (2007a). Administration of glutamine after hemorrhagic shock restores cellular energy, reduces cell apoptosis and damage, and increases survival. JPEN J Parenter Enteral Nutr 31, 94-100.
Yang, R., Martin-Hawver, L., Woodall, C., Thomas, A., Qureshi, N., Morrison, D., Van Way III, C. (2007b). Administration of glutamine after hemorrhagic shock restores cellular energy, reduces cell apoptosis and damage, and increases survival. Journal of Parenteral and Enteral Nutrition 31, 94-100.
Yao, H., Ago, T., Kitazono, T., Nabika, T. (2017). NADPH Oxidase-Related Pathophysiology in Experimental Models of Stroke. Int J Mol Sci 18.
Yao, J. K. & Reddy, R. D. (2005). Metabolic investigation in psychiatric disorders. Mol Neurobiol 31, 193-203.
Yao, W., Han, X., Zhang, Y., Guan, J., Ge, M., Chen, C., Wu, S., Chen, J., Luo, G., Huang, P., Hei, Z. (2018). Intravenous Anesthetic Protects Hepatocyte from Reactive Oxygen Species-Induced Cellular Apoptosis during Liver Transplantation In Vivo. Oxid Med Cell Longev 2018, 4780615.
Ye, Z., Guo, Q., Xia, P., Wang, N., Wang, E., Yuan, Y. (2012). Sevoflurane postconditioning involves an up-regulation of HIF-1alpha and HO-1 expression via PI3K/Akt pathway in a rat model of focal cerebral ischemia. Brain Res 1463, 63-74.
Yu, T. C., Yang, F. L., Hsu, B. G., Wu, W. T., Chen, S. C., Lee, R. P., Subeq, Y. M. (2014). Deleterious effects of aggressive rapid crystalloid resuscitation on treatment of hyperinflammatory response and lung injury induced by hemorrhage in aging rats. J Surg Res 187, 587-595.
Zabot, G. P., Carvalhal, G. F., Marroni, N. P., Hartmann, R. M., da Silva, V. D., Fillmann, H. S. (2014). Glutamine prevents oxidative stress in a model of mesenteric ischemia and reperfusion. World J Gastroenterol 20, 11406-11414.
Zettel, K., Korff, S., Zamora, R., Morelli, A. E., Darwiche, S., Loughran, P. A., Elson, G., Shang, L., Salgado-Pires, S., Scott, M. J., Vodovotz, Y., Billiar, T. R. (2017). Toll-Like Receptor 4 on both Myeloid Cells and Dendritic Cells Is Required for Systemic Inflammation and Organ Damage after Hemorrhagic Shock with Tissue Trauma in Mice. Front Immunol 8, 1672.
Zhang, L., Tian, F., Gao, X., Wang, X., Wu, C., Li, N., Li, J. (2016). N-3 Polyunsaturated Fatty Acids Improve Liver Lipid Oxidation-Related Enzyme Levels and Increased the Peroxisome Proliferator-Activated Receptor alpha Expression Level in Mice Subjected to Hemorrhagic Shock/Resuscitation. Nutrients 8, 237.
Zhang, L., Wang, W., Qiao, Q. Q., Bu, X. S., Tang, L. H., Jia, Y. F., Xia, Z. Y., Meng, Q. T. (2019). [Dexmedetomidine preconditioning protects against lung injury in hemorrhagic shock rats]. Rev Bras Anestesiol 69, 160-167.
Zhao, Q., Wu, J., Hua, Q., Lin, Z., Ye, L., Zhang, W., Wu, G., Du, J., Xia, J., Chu, M., Hu, X. (2016a). Resolvin D1 mitigates energy metabolism disorder after ischemia-reperfusion of the rat lung. J Transl Med 14, 81.
Zhao, Q., Wu, J., Lin, Z., Hua, Q., Zhang, W., Ye, L., Wu, G., Du, J., Xia, J., Chu, M., Hu, X. (2016b). Resolvin D1 Alleviates the Lung Ischemia Reperfusion Injury via Complement, Immunoglobulin, TLR4, and Inflammatory Factors in Rats. Inflammation 39, 1319-1333.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊