跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.10) 您好!臺灣時間:2025/10/01 05:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:駱育壎
研究生(外文):Yu-Hsun Lo
論文名稱:PML蛋白在NFAT轉錄活化上扮演角色之探討
論文名稱(外文):The role of promyelocytic leukemia ( PML) protein in transcriptional activation of nuclear factor of activated T cell
指導教授:賴明宗賴明宗引用關係
指導教授(外文):Ming-Zong Lai
學位類別:博士
校院名稱:國立陽明大學
系所名稱:微生物及免疫學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
中文關鍵詞:轉錄活化
外文關鍵詞:PML
相關次數:
  • 被引用被引用:0
  • 點閱點閱:835
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
Promyelocytic leukemia protein (簡稱 PML ) 是一種腫瘤抑制蛋白。雖然它參與了許多不同生理功能但是其複雜的作用機制仍未被完全瞭解。PML主要位於細胞核中形成特殊的斑點狀構造,稱為PML nuclear bodies。 除了PML外,PML nuclear bodies中也存在其他調節性蛋白,例如 p53, Daxx,CREB binding protein(CBP)及small ubiquitin-related modifier(SUMO-1)。Nuclear factor of activated T cells (簡稱NFAT) 是T細胞中重要的轉錄因子,可以調控T細胞中關鍵的生理功能。本論文的實驗發現,PML是NFAT活化作用中,一個未預料到的伙伴。PML可以在T細胞及293細胞中,專一性的加強NFAT的轉錄活性。同時在PML基因剔除的胚胎纖維原細胞中,NFATc的轉錄活性幾乎消失,而消失的NFAT活性,可以藉由重新表現PML在PML基因剔除的胚胎纖維原細胞中而恢復。相反的,PML並不能加強NF-kB的轉錄活性。進一步實驗發現,sumoylated 的PML是其主導的NFAT 活性加強所必需,而這種加強能力並不是因為減弱Daxx的轉錄抑制作用所導致。此外,PML異構體對於NFAT轉錄活性加強作用具有選擇性。PML-I及PML-VI可以加強NFAT的活性,但是PML-IV則對NFAT無作用。在共同免疫沈澱法實驗結果中證明了NFAT與PML-I,PML-IV及PML-VI之間的結合能力。進一步由GST結合實驗中發現,NFATc蛋白上NFAT-homology region (NHR)可以直接與PML蛋白上RING finger,B-boxes結合。而在活化的T細胞核中,NFATc與PML重疊於PML nuclear bodies的位置。雖然PML過量表現不會增加NFATc在核內的含量,但是減少PML的表現,確實降低了NFATc在核內的存在。而一些NFAT活性所主導的基因之表現,也會受到PML的調控。 進一步由染色質免疫沈澱(ChIP) 及DNA吸附沈澱(DAPA) 的結果確認,PML 會藉由與NFATc的結合,進而結合在基因啟動子上。而當細胞內PML減少時,也降低了NFAT及CBP結合在基因啟動子的量。因此我們推測PML可能藉由穩定CBP及NFAT所形成之轉錄複合體,進而促使NFAT的轉錄活性達到最佳化。本論文的研究顯示,在PML複雜的生理功能中,PML與NFAT之間未預期的活化調控,展現了新的作用機制。
Abstract
The promyelocytic leukemia protein (PML) is a tumor suppressor. It is involved in many different physiological functions but the complicated action mechanisms are not yet fully understood. PML localizes in the nucleus to form speckles called PML nuclear bodies, containing regulatory proteins, such as p53, Daxx, CREB binding protein (CBP) and small ubiquitin-related modifier(SUMO-1). Nuclear factor of activated T cell (NFAT) is an important transcription factor, regulates many key T cell functions. In this study, we found that NFAT is an unexpected partner of PML: PML specifically enhanced the transcription activation of NFAT in T cells and 293 cells. In PML-null mouse embryonic fibroblasts, no transcription activity of NFAT could be detected, while PML expression restored NFAT activation. In constrast, PML was not regulated for NF-�羠 transcription. Sumoylation of PML was essential for PML to promote the transcription activity of NFAT. The additive effect of PML was not due to sequestration of Daxx by PML. There was a selective requirement of PML isoform in NFAT activation. PML-I and PML-VI, but not PML-IV, enhanced NFAT transactivation. The potential interaction between NFAT and PML was demonstrated by co-immunoprecipitation of NFATc with PML-I, PML-IV, or PML-VI. GST pull down assay further illustrated a direct binding between the NFAT-homology region (NHR) of NFATc and the RING finger, B-boxes of PML. Inside nucleus of activated T cells, NFATc was found co-localized with PML speckles. Even though PML overexpression did not increase nuclear localization of NFATc, knockdown of PML was moderately reduced nuclear presence of NFAT. Some, but not all, of NFAT activity-mediated genes expression were regulated by PML. The interaction of PML with NFATc in vivo was further confirmed by chromatin immunoprecipitation (ChIP) and DNA affinity precipitation assay (DAPA) analysis. Knockdown of PML was also associated with reduced promoter binding of NFAT and CBP. It is suggested that part of mechanisms of underlying enhancement of NFATc transactivation mediated by PML is due to stabilization of NFAT-CBP transcriptional complex. The unexpected coupling of PML with NFAT reveals a novel mechanism underlying the diverse physiological functions of PML.
目錄
中文摘要........................................3
英文摘要……………………………………………………6
第一章、緒論………………………………………………8
1、PML之簡介………………………………………………8
1.1 PML發現......................................8
1.2 PML蛋白結構、分佈及修飾...............................................................9
1.3 PML蛋白功能……………………………………………………....10
2、NFAT之簡介……………………………………………………13
2.1 NFAT家族成員…………………………………………………….13
2.2 NFAT結構…………………………………………………………13
2.3 NFAT的活化與調控..........................................................................14
2.4 NFAT在T細胞的功能......................................................................16
3、研究目的及方向………………………………………………...18
第二章、 材料及方法……………………………………………….19
2.1 細胞株與培養...................................................................................19
2.2 藥品及試劑………………………………………………………...19
2.3 抗體………………………………………………………………..20
2.4 質體構築…………………………………………………………...20
2.5 質體DNA轉染……………………………………………………..21
2.6 CAT酵素活性分析…………………………………………………23
2.7 病毒感染法…………………………………………………………23
2.8 細胞核萃取液之製備………………………………………………..25
2.9 西方墨點法…………………………………………………………25
2.10 免疫沈澱法………………………………………………………...26
2.11 GST結合分析…………………………………………………….26
2.12 共軛焦顯微鏡分析…………………………………………………27
2.13 RNA純化及反轉錄聚合酶反應……………………………………..28
2.14 即時聚合酶連鎖反應(Real-time PCR)………………………………..30
2.15 酵素免疫分析……………………………………………………..30
2.16 DNA吸附沈澱分析………………………………………………...31
2.17 染色質免疫沈澱…………………………………………………...31
第三章、結果.………………………………………………………..34
3.1 PML在T細胞活化時參與IL-CAT活化……………………………....34
3.2 PML在T細胞活化時加強NFAT-CAT的活化…………………………34
3.3 PML加強NFAT的轉錄活性………………………………………….35
3.4細胞內PML蛋白質的含量與NFAT的轉錄活性息息相關……………...36
3.5 無法被sumoylated的PML突變種不會增加NFAT的轉錄活性………...37
3.6 轉錄抑制因子Daxx在PML主導的NFAT活性所扮演的角色………….38
3.7 PML異構體對於NFAT轉錄活性的影響………………………………38
3.8 PML可與NFAT結合…………………………………………………39
3.9 PML影響核內NFAT含量之探討……………………………………...42
3.10 降低PML表現促使部分NFAT標的基因表現量下降…………………43
3.11 PML、NFAT及CBP同時結合在NFAT標的基因啟動子………………44
第四章、討論………………………………………………………….45
結果圖表……………………………………………………………….51
附圖…………………………………………………………………….83
參考文獻……………………………………………………………….91
Alcalay, M., Tomassoni, L., Colombo, E., Stoldt, S., Grignani, F., Fagioli, M., Szekely, L., Helin, K., and Pelicci, P.G. (1998). The promyelocytic leukemia gene product (PML) forms stable complexes with the retinoblastoma protein. Mol Cell Biol 18, 1084-1093.
Anandasabapathy, N., Ford, G.S., Bloom, D., Holness, C., Paragas, V., Seroogy, C., Skrenta, H., Hollenhorst, M., Fathman, C.G., and Soares, L. (2003). GRAIL: an E3 ubiquitin ligase that inhibits cytokine gene transcription is expressed in anergic CD4+ T cells. Immunity 18, 535-547.
Avots, A., Buttmann, M., Chuvpilo, S., Escher, C., Smola, U., Bannister, A.J., Rapp, U.R., Kouzarides, T., and Serfling, E. (1999). CBP/p300 integrates Raf/Rac-signaling pathways in the transcriptional induction of NF-ATc during T cell activation. Immunity 10, 515-524.
Beals, C.R., Sheridan, C.M., Turck, C.W., Gardner, P., and Crabtree, G.R. (1997). Nuclear export of NF-ATc enhanced by glycogen synthase kinase-3. Science 275, 1930-1934.
Bernardi, R., and Pandolfi, P.P. (2007). Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nature reviews 8, 1006-1016.
Bernardi, R., Scaglioni, P.P., Bergmann, S., Horn, H.F., Vousden, K.H., and Pandolfi, P.P. (2004). PML regulates p53 stability by sequestering Mdm2 to the nucleolus. Nature cell biology 6, 665-672.
Bischof, O., Kirsh, O., Pearson, M., Itahana, K., Pelicci, P.G., and Dejean, A. (2002). Deconstructing PML-induced premature senescence. The EMBO journal 21, 3358-3369.
Boddy, M.N., Duprez, E., Borden, K.L., and Freemont, P.S. (1997). Surface residue mutations of the PML RING finger domain alter the formation of nuclear matrix-associated PML bodies. Journal of cell science 110 ( Pt 18), 2197-2205.
Borden, K.L., Lally, J.M., Martin, S.R., O'Reilly, N.J., Solomon, E., and Freemont, P.S. (1996). In vivo and in vitro characterization of the B1 and B2 zinc-binding domains from the acute promyelocytic leukemia protooncoprotein PML. Proceedings of the National Academy of Sciences of the United States of America 93, 1601-1606.
Borrow, J., Goddard, A.D., Sheer, D., and Solomon, E. (1990). Molecular analysis of acute promyelocytic leukemia breakpoint cluster region on chromosome 17. Science 249, 1577-1580.
Breitman, T.R., Selonick, S.E., and Collins, S.J. (1980). Induction of differentiation of the human promyelocytic leukemia cell line (HL-60) by retinoic acid. Proceedings of the National Academy of Sciences of the United States of America 77, 2936-2940.
Bruno, S., Ghiotto, F., Fais, F., Fagioli, M., Luzi, L., Pelicci, P.G., Grossi, C.E., and Ciccone, E. (2003). The PML gene is not involved in the regulation of MHC class I expression in human cell lines. Blood 101, 3514-3519.
Buschbeck, M., Uribesalgo, I., Ledl, A., Gutierrez, A., Minucci, S., Muller, S., and Di Croce, L. (2007). PML4 induces differentiation by Myc destabilization. Oncogene 26, 3415-3422.
Chang, K.S., Fan, Y.H., Andreeff, M., Liu, J., and Mu, Z.M. (1995). The PML gene encodes a phosphoprotein associated with the nuclear matrix. Blood 85, 3646-3653.
Chelbi-Alix, M.K., Quignon, F., Pelicano, L., Koken, M.H., and de The, H. (1998). Resistance to virus infection conferred by the interferon-induced promyelocytic leukemia protein. Journal of virology 72, 1043-1051.
Chow, C.W., Rincon, M., and Davis, R.J. (1999). Requirement for transcription factor NFAT in interleukin-2 expression. Mol Cell Biol 19, 2300-2307.
Chuvpilo, S., Jankevics, E., Tyrsin, D., Akimzhanov, A., Moroz, D., Jha, M.K., Schulze-Luehrmann, J., Santner-Nanan, B., Feoktistova, E., Konig, T., et al. (2002). Autoregulation of NFATc1/A expression facilitates effector T cells to escape from rapid apoptosis. Immunity 16, 881-895.
Collins, S.J., Robertson, K.A., and Mueller, L. (1990). Retinoic acid-induced granulocytic differentiation of HL-60 myeloid leukemia cells is mediated directly through the retinoic acid receptor (RAR-alpha). Mol Cell Biol 10, 2154-2163.
Condemine, W., Takahashi, Y., Zhu, J., Puvion-Dutilleul, F., Guegan, S., Janin, A., and de The, H. (2006). Characterization of endogenous human promyelocytic leukemia isoforms. Cancer research 66, 6192-6198.
Crabtree, G.R., and Clipstone, N.A. (1994). Signal transmission between the plasma membrane and nucleus of T lymphocytes. Annual review of biochemistry 63, 1045-1083.
Crowder, C., Dahle, O., Davis, R.E., Gabrielsen, O.S., and Rudikoff, S. (2005). PML mediates IFN-alpha-induced apoptosis in myeloma by regulating TRAIL induction. Blood 105, 1280-1287.
de The, H., Chomienne, C., Lanotte, M., Degos, L., and Dejean, A. (1990). The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus. Nature 347, 558-561.
Doucas, V., Tini, M., Egan, D.A., and Evans, R.M. (1999). Modulation of CREB binding protein function by the promyelocytic (PML) oncoprotein suggests a role for nuclear bodies in hormone signaling. Proceedings of the National Academy of Sciences of the United States of America 96, 2627-2632.
Dyck, J.A., Maul, G.G., Miller, W.H., Jr., Chen, J.D., Kakizuka, A., and Evans, R.M. (1994). A novel macromolecular structure is a target of the promyelocyte-retinoic acid receptor oncoprotein. Cell 76, 333-343.
el-Deiry, W.S., Tokino, T., Velculescu, V.E., Levy, D.B., Parsons, R., Trent, J.M., Lin, D., Mercer, W.E., Kinzler, K.W., and Vogelstein, B. (1993). WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817-825.
Fagioli, M., Alcalay, M., Pandolfi, P.P., Venturini, L., Mencarelli, A., Simeone, A., Acampora, D., Grignani, F., and Pelicci, P.G. (1992). Alternative splicing of PML transcripts predicts coexpression of several carboxy-terminally different protein isoforms. Oncogene 7, 1083-1091.
Fagioli, M., Alcalay, M., Tomassoni, L., Ferrucci, P.F., Mencarelli, A., Riganelli, D., Grignani, F., Pozzan, T., Nicoletti, I., Grignani, F., et al. (1998). Cooperation between the RING + B1-B2 and coiled-coil domains of PML is necessary for its effects on cell survival. Oncogene 16, 2905-2913.
Ferbeyre, G., de Stanchina, E., Querido, E., Baptiste, N., Prives, C., and Lowe, S.W. (2000). PML is induced by oncogenic ras and promotes premature senescence. Genes & development 14, 2015-2027.
Feske, S., Draeger, R., Peter, H.H., Eichmann, K., and Rao, A. (2000). The duration of nuclear residence of NFAT determines the pattern of cytokine expression in human SCID T cells. J Immunol 165, 297-305.
Feske, S., Muller, J.M., Graf, D., Kroczek, R.A., Drager, R., Niemeyer, C., Baeuerle, P.A., Peter, H.H., and Schlesier, M. (1996). Severe combined immunodeficiency due to defective binding of the nuclear factor of activated T cells in T lymphocytes of two male siblings. European journal of immunology 26, 2119-2126.
Fogal, V., Gostissa, M., Sandy, P., Zacchi, P., Sternsdorf, T., Jensen, K., Pandolfi, P.P., Will, H., Schneider, C., and Del Sal, G. (2000). Regulation of p53 activity in nuclear bodies by a specific PML isoform. The EMBO journal 19, 6185-6195.
Garcia-Rodriguez, C., and Rao, A. (1998). Nuclear factor of activated T cells (NFAT)-dependent transactivation regulated by the coactivators p300/CREB-binding protein (CBP). The Journal of experimental medicine 187, 2031-2036.
Gerritsen, M.E., Williams, A.J., Neish, A.S., Moore, S., Shi, Y., and Collins, T. (1997). CREB-binding protein/p300 are transcriptional coactivators of p65. Proceedings of the National Academy of Sciences of the United States of America 94, 2927-2932.
Goddard, A.D., Borrow, J., Freemont, P.S., and Solomon, E. (1991). Characterization of a zinc finger gene disrupted by the t(15;17) in acute promyelocytic leukemia. Science 254, 1371-1374.
Goddard, A.D., Yuan, J.Q., Fairbairn, L., Dexter, M., Borrow, J., Kozak, C., and Solomon, E. (1995). Cloning of the murine homolog of the leukemia-associated PML gene. Mamm Genome 6, 732-737.
Guo, A., Salomoni, P., Luo, J., Shih, A., Zhong, S., Gu, W., and Pandolfi, P.P. (2000). The function of PML in p53-dependent apoptosis. Nature cell biology 2, 730-736.
Gwack, Y., Sharma, S., Nardone, J., Tanasa, B., Iuga, A., Srikanth, S., Okamura, H., Bolton, D., Feske, S., Hogan, P.G., et al. (2006). A genome-wide Drosophila RNAi screen identifies DYRK-family kinases as regulators of NFAT. Nature 441, 646-650.
Heissmeyer, V., Macian, F., Im, S.H., Varma, R., Feske, S., Venuprasad, K., Gu, H., Liu, Y.C., Dustin, M.L., and Rao, A. (2004). Calcineurin imposes T cell unresponsiveness through targeted proteolysis of signaling proteins. Nat Immunol 5, 255-265.
Hodge, M.R., Ranger, A.M., Charles de la Brousse, F., Hoey, T., Grusby, M.J., and Glimcher, L.H. (1996). Hyperproliferation and dysregulation of IL-4 expression in NF-ATp-deficient mice. Immunity 4, 397-405.
Hofmann, T.G., and Will, H. (2003). Body language: the function of PML nuclear bodies in apoptosis regulation. Cell death and differentiation 10, 1290-1299.
Ishov, A.M., Sotnikov, A.G., Negorev, D., Vladimirova, O.V., Neff, N., Kamitani, T., Yeh, E.T., Strauss, J.F., 3rd, and Maul, G.G. (1999). PML is critical for ND10 formation and recruits the PML-interacting protein daxx to this nuclear structure when modified by SUMO-1. The Journal of cell biology 147, 221-234.
Jain, J., Burgeon, E., Badalian, T.M., Hogan, P.G., and Rao, A. (1995). A similar DNA-binding motif in NFAT family proteins and the Rel homology region. J Biol Chem 270, 4138-4145.
Jenkins, M.K., Chen, C.A., Jung, G., Mueller, D.L., and Schwartz, R.H. (1990). Inhibition of antigen-specific proliferation of type 1 murine T cell clones after stimulation with immobilized anti-CD3 monoclonal antibody. J Immunol 144, 16-22.
Jensen, K., Shiels, C., and Freemont, P.S. (2001). PML protein isoforms and the RBCC/TRIM motif. Oncogene 20, 7223-7233.
Joe, Y., Jeong, J.H., Yang, S., Kang, H., Motoyama, N., Pandolfi, P.P., Chung, J.H., and Kim, M.K. (2006). ATR, PML, and CHK2 play a role in arsenic trioxide-induced apoptosis. J Biol Chem 281, 28764-28771.
Kakizuka, A., Miller, W.H., Jr., Umesono, K., Warrell, R.P., Jr., Frankel, S.R., Murty, V.V., Dmitrovsky, E., and Evans, R.M. (1991). Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RAR alpha with a novel putative transcription factor, PML. Cell 66, 663-674.
Kamitani, T., Kito, K., Nguyen, H.P., Wada, H., Fukuda-Kamitani, T., and Yeh, E.T. (1998a). Identification of three major sentrinization sites in PML. J Biol Chem 273, 26675-26682.
Kamitani, T., Nguyen, H.P., Kito, K., Fukuda-Kamitani, T., and Yeh, E.T. (1998b). Covalent modification of PML by the sentrin family of ubiquitin-like proteins. J Biol Chem 273, 3117-3120.
Ko, L.J., and Prives, C. (1996). p53: puzzle and paradigm. Genes & development 10, 1054-1072.
Koken, M.H., Puvion-Dutilleul, F., Guillemin, M.C., Viron, A., Linares-Cruz, G., Stuurman, N., de Jong, L., Szostecki, C., Calvo, F., Chomienne, C., et al. (1994). The t(15;17) translocation alters a nuclear body in a retinoic acid-reversible fashion. The EMBO journal 13, 1073-1083.
Le, X.F., Yang, P., and Chang, K.S. (1996). Analysis of the growth and transformation suppressor domains of promyelocytic leukemia gene, PML. J Biol Chem 271, 130-135.
Lee, M., and Park, J. (2006). Regulation of NFAT activation: a potential therapeutic target for immunosuppression. Molecules and cells 22, 1-7.
Li, H., and Chen, J.D. (2000). PML and the oncogenic nuclear domains in regulating transcriptional repression. Current opinion in cell biology 12, 641-644.
Li, H., Leo, C., Zhu, J., Wu, X., O'Neil, J., Park, E.J., and Chen, J.D. (2000). Sequestration and inhibition of Daxx-mediated transcriptional repression by PML. Mol Cell Biol 20, 1784-1796.
Lin, D.Y., Lai, M.Z., Ann, D.K., and Shih, H.M. (2003). Promyelocytic leukemia protein (PML) functions as a glucocorticoid receptor co-activator by sequestering Daxx to the PML oncogenic domains (PODs) to enhance its transactivation potential. J Biol Chem 278, 15958-15965.
Loh, C., Shaw, K.T., Carew, J., Viola, J.P., Luo, C., Perrino, B.A., and Rao, A. (1996). Calcineurin binds the transcription factor NFAT1 and reversibly regulates its activity. J Biol Chem 271, 10884-10891.
Lopez-Rodriguez, C., Aramburu, J., Jin, L., Rakeman, A.S., Michino, M., and Rao, A. (2001). Bridging the NFAT and NF-kappaB families: NFAT5 dimerization regulates cytokine gene transcription in response to osmotic stress. Immunity 15, 47-58.
Luo, C., Burgeon, E., Carew, J.A., McCaffrey, P.G., Badalian, T.M., Lane, W.S., Hogan, P.G., and Rao, A. (1996a). Recombinant NFAT1 (NFATp) is regulated by calcineurin in T cells and mediates transcription of several cytokine genes. Mol Cell Biol 16, 3955-3966.
Luo, C., Burgeon, E., and Rao, A. (1996b). Mechanisms of transactivation by nuclear factor of activated T cells-1. The Journal of experimental medicine 184, 141-147.
Luo, C., Shaw, K.T., Raghavan, A., Aramburu, J., Garcia-Cozar, F., Perrino, B.A., Hogan, P.G., and Rao, A. (1996c). Interaction of calcineurin with a domain of the transcription factor NFAT1 that controls nuclear import. Proceedings of the National Academy of Sciences of the United States of America 93, 8907-8912.
Macian, F. (2005). NFAT proteins: key regulators of T-cell development and function. Nature reviews 5, 472-484.
Macian, F., Garcia-Cozar, F., Im, S.H., Horton, H.F., Byrne, M.C., and Rao, A. (2002). Transcriptional mechanisms underlying lymphocyte tolerance. Cell 109, 719-731.
Macian, F., Lopez-Rodriguez, C., and Rao, A. (2001). Partners in transcription: NFAT and AP-1. Oncogene 20, 2476-2489.
Masuda, E.S., Imamura, R., Amasaki, Y., Arai, K., and Arai, N. (1998). Signalling into the T-cell nucleus: NFAT regulation. Cellular signalling 10, 599-611.
Masuda, E.S., Liu, J., Imamura, R., Imai, S.I., Arai, K.I., and Arai, N. (1997). Control of NFATx1 nuclear translocation by a calcineurin-regulated inhibitory domain. Mol Cell Biol 17, 2066-2075.
McCaffrey, P.G., Luo, C., Kerppola, T.K., Jain, J., Badalian, T.M., Ho, A.M., Burgeon, E., Lane, W.S., Lambert, J.N., Curran, T., et al. (1993). Isolation of the cyclosporin-sensitive T cell transcription factor NFATp. Science 262, 750-754.
Melchior, F. (2000). SUMO--nonclassical ubiquitin. Annual review of cell and developmental biology 16, 591-626.
Moller, A., Sirma, H., Hofmann, T.G., Rueffer, S., Klimczak, E., Droge, W., Will, H., and Schmitz, M.L. (2003). PML is required for homeodomain-interacting protein kinase 2 (HIPK2)-mediated p53 phosphorylation and cell cycle arrest but is dispensable for the formation of HIPK domains. Cancer research 63, 4310-4314.
Muller, S., Matunis, M.J., and Dejean, A. (1998). Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus. The EMBO journal 17, 61-70.
Northrop, J.P., Ho, S.N., Chen, L., Thomas, D.J., Timmerman, L.A., Nolan, G.P., Admon, A., and Crabtree, G.R. (1994). NF-AT components define a family of transcription factors targeted in T-cell activation. Nature 369, 497-502.
Novak, T.J., White, P.M., and Rothenberg, E.V. (1990). Regulatory anatomy of the murine interleukin-2 gene. Nucleic acids research 18, 4523-4533.
Okamura, H., Aramburu, J., Garcia-Rodriguez, C., Viola, J.P., Raghavan, A., Tahiliani, M., Zhang, X., Qin, J., Hogan, P.G., and Rao, A. (2000). Concerted dephosphorylation of the transcription factor NFAT1 induces a conformational switch that regulates transcriptional activity. Molecular cell 6, 539-550.
Okamura, H., Garcia-Rodriguez, C., Martinson, H., Qin, J., Virshup, D.M., and Rao, A. (2004). A conserved docking motif for CK1 binding controls the nuclear localization of NFAT1. Mol Cell Biol 24, 4184-4195.
Pearson, M., Carbone, R., Sebastiani, C., Cioce, M., Fagioli, M., Saito, S., Higashimoto, Y., Appella, E., Minucci, S., Pandolfi, P.P., et al. (2000). PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature 406, 207-210.
Pearson, M., and Pelicci, P.G. (2001). PML interaction with p53 and its role in apoptosis and replicative senescence. Oncogene 20, 7250-7256.
Peng, S.L., Gerth, A.J., Ranger, A.M., and Glimcher, L.H. (2001). NFATc1 and NFATc2 together control both T and B cell activation and differentiation. Immunity 14, 13-20.
Polyak, K., Xia, Y., Zweier, J.L., Kinzler, K.W., and Vogelstein, B. (1997). A model for p53-induced apoptosis. Nature 389, 300-305.
Rao, A., Luo, C., and Hogan, P.G. (1997). Transcription factors of the NFAT family: regulation and function. Annu Rev Immunol 15, 707-747.
Rengarajan, J., Tang, B., and Glimcher, L.H. (2002). NFATc2 and NFATc3 regulate T(H)2 differentiation and modulate TCR-responsiveness of naive T(H)cells. Nat Immunol 3, 48-54.
Reymond, A., Meroni, G., Fantozzi, A., Merla, G., Cairo, S., Luzi, L., Riganelli, D., Zanaria, E., Messali, S., Cainarca, S., et al. (2001). The tripartite motif family identifies cell compartments. The EMBO journal 20, 2140-2151.
Rowley, J.D., Golomb, H.M., and Dougherty, C. (1977a). 15/17 translocation, a consistent chromosomal change in acute promyelocytic leukaemia. Lancet 1, 549-550.
Rowley, J.D., Golomb, H.M., Vardiman, J., Fukuhara, S., Dougherty, C., and Potter, D. (1977b). Further evidence for a non-random chromosomal abnormality in acute promyelocytic leukemia. International journal of cancer 20, 869-872.
Scaglioni, P.P., Yung, T.M., Cai, L.F., Erdjument-Bromage, H., Kaufman, A.J., Singh, B., Teruya-Feldstein, J., Tempst, P., and Pandolfi, P.P. (2006). A CK2-dependent mechanism for degradation of the PML tumor suppressor. Cell 126, 269-283.
Schwartz, R.H. (2003). T cell anergy. Annu Rev Immunol 21, 305-334.
Serfling, E., Berberich-Siebelt, F., and Avots, A. (2007). NFAT in lymphocytes: a factor for all events? Sci STKE 2007, pe42.
Serfling, E., Chuvpilo, S., Liu, J., Hofer, T., and Palmetshofer, A. (2006). NFATc1 autoregulation: a crucial step for cell-fate determination. Trends in immunology 27, 461-469.
Shaw, J.P., Utz, P.J., Durand, D.B., Toole, J.J., Emmel, E.A., and Crabtree, G.R. (1988). Identification of a putative regulator of early T cell activation genes. Science 241, 202-205.
Shen, T.H., Lin, H.K., Scaglioni, P.P., Yung, T.M., and Pandolfi, P.P. (2006). The mechanisms of PML-nuclear body formation. Molecular cell 24, 331-339.
Terui, Y., Saad, N., Jia, S., McKeon, F., and Yuan, J. (2004). Dual role of sumoylation in the nuclear localization and transcriptional activation of NFAT1. J Biol Chem 279, 28257-28265.
Torii, S., Egan, D.A., Evans, R.A., and Reed, J.C. (1999). Human Daxx regulates Fas-induced apoptosis from nuclear PML oncogenic domains (PODs). The EMBO journal 18, 6037-6049.
Vallian, S., Gaken, J.A., Gingold, E.B., Kouzarides, T., Chang, K.S., and Farzaneh, F. (1998). Modulation of Fos-mediated AP-1 transcription by the promyelocytic leukemia protein. Oncogene 16, 2843-2853.
von Mikecz, A., Zhang, S., Montminy, M., Tan, E.M., and Hemmerich, P. (2000). CREB-binding protein (CBP)/p300 and RNA polymerase II colocalize in transcriptionally active domains in the nucleus. The Journal of cell biology 150, 265-273.
Wang, J., Shiels, C., Sasieni, P., Wu, P.J., Islam, S.A., Freemont, P.S., and Sheer, D. (2004). Promyelocytic leukemia nuclear bodies associate with transcriptionally active genomic regions. The Journal of cell biology 164, 515-526.
Wang, Z.G., Delva, L., Gaboli, M., Rivi, R., Giorgio, M., Cordon-Cardo, C., Grosveld, F., and Pandolfi, P.P. (1998a). Role of PML in cell growth and the retinoic acid pathway. Science 279, 1547-1551.
Wang, Z.G., Ruggero, D., Ronchetti, S., Zhong, S., Gaboli, M., Rivi, R., and Pandolfi, P.P. (1998b). PML is essential for multiple apoptotic pathways. Nature genetics 20, 266-272.
Weinberg, R.A. (1995). The retinoblastoma protein and cell cycle control. Cell 81, 323-330.
Wolfe, S.A., Zhou, P., Dotsch, V., Chen, L., You, A., Ho, S.N., Crabtree, G.R., Wagner, G., and Verdine, G.L. (1997). Unusual Rel-like architecture in the DNA-binding domain of the transcription factor NFATc. Nature 385, 172-176.
Wu, C.C., Hsu, S.C., Shih, H.M., and Lai, M.Z. (2003a). Nuclear factor of activated T cells c is a target of p38 mitogen-activated protein kinase in T cells. Mol Cell Biol 23, 6442-6454.
Wu, W.S., Vallian, S., Seto, E., Yang, W.M., Edmondson, D., Roth, S., and Chang, K.S. (2001). The growth suppressor PML represses transcription by functionally and physically interacting with histone deacetylases. Mol Cell Biol 21, 2259-2268.
Wu, W.S., Xu, Z.X., and Chang, K.S. (2002a). The promyelocytic leukemia protein represses A20-mediated transcription. J Biol Chem 277, 31734-31739.
Wu, W.S., Xu, Z.X., Hittelman, W.N., Salomoni, P., Pandolfi, P.P., and Chang, K.S. (2003b). Promyelocytic leukemia protein sensitizes tumor necrosis factor alpha-induced apoptosis by inhibiting the NF-kappaB survival pathway. J Biol Chem 278, 12294-12304.
Wu, W.S., Xu, Z.X., Ran, R., Meng, F., and Chang, K.S. (2002b). Promyelocytic leukemia protein PML inhibits Nur77-mediated transcription through specific functional interactions. Oncogene 21, 3925-3933.
Xanthoudakis, S., Viola, J.P., Shaw, K.T., Luo, C., Wallace, J.D., Bozza, P.T., Luk, D.C., Curran, T., and Rao, A. (1996). An enhanced immune response in mice lacking the transcription factor NFAT1. Science 272, 892-895.
Yang, S., Kuo, C., Bisi, J.E., and Kim, M.K. (2002). PML-dependent apoptosis after DNA damage is regulated by the checkpoint kinase hCds1/Chk2. Nature cell biology 4, 865-870.
Yoeli-Lerner, M., Yiu, G.K., Rabinovitz, I., Erhardt, P., Jauliac, S., and Toker, A. (2005). Akt blocks breast cancer cell motility and invasion through the transcription factor NFAT. Molecular cell 20, 539-550.
Yoshida, H., Nishina, H., Takimoto, H., Marengere, L.E., Wakeham, A.C., Bouchard, D., Kong, Y.Y., Ohteki, T., Shahinian, A., Bachmann, M., et al. (1998). The transcription factor NF-ATc1 regulates lymphocyte proliferation and Th2 cytokine production. Immunity 8, 115-124.
Zhong, S., Muller, S., Ronchetti, S., Freemont, P.S., Dejean, A., and Pandolfi, P.P. (2000a). Role of SUMO-1-modified PML in nuclear body formation. Blood 95, 2748-2752.
Zhong, S., Salomoni, P., and Pandolfi, P.P. (2000b). The transcriptional role of PML and the nuclear body. Nature cell biology 2, E85-90.
Zhou, B., Cron, R.Q., Wu, B., Genin, A., Wang, Z., Liu, S., Robson, P., and Baldwin, H.S. (2002). Regulation of the murine Nfatc1 gene by NFATc2. J Biol Chem 277, 10704-10711.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top