|
1. Schengrund, C. L., Gangliosides: glycosphingolipids essential for normal neural development and function. Trends Biochem. Sci. 2015, 40, 397-406. 2. Varki, A.; Gagneux, P., Multifarious roles of sialic acids in immunity. Ann. NY. Acad. Sci. 2012, 1253, 16-36. 3. Ohtsubo, K.; Marth, J. D., Glycosylation in cellular mechanisms of health and disease. Cell 2006, 126, 855-867. 4. Marth, J. D.; Grewal, P. K., Mammalian glycosylation in immunity. Nat. Rev. Immunol 2008, 8, 874-887. 5. Varki, A.; Lowe, J. B., Biological Roles of Glycans. In Essentials of Glycobiology, 2009. 6. Saldova, R.; Royle, L.; Radcliffe, C. M.; Hamid, U. M. A.; Evans, R.; Arnold, J. N.; Banks, R. E.; Hutson, R.; Harvey, D. J.; Antrobus, R.; Petrescu, S. M.; Dwek, R. A.; Rudd, P. M., Ovarian cancer is associated with changes in glycosylation in both acute-phase proteins and IgG. Glycobiology 2007, 17, 1344-1356. 7. Miyoshi, E.; Nakano, M., Fucosylated haptoglobin is a novel marker for pancreatic cancer: Detailed analyses of oligosaccharide structures. Proteomics 2008, 8, 3257-3262. 8. Comunale, M. A.; Wang, M. J.; Hafner, J.; Krakover, J.; Rodemich, L.; Kopenhaver, B.; Long, R. E.; Junaidi, O.; Di Bisceglie, A. M.; Block, T. M.; Mehta, A. S., Identification and Development of Fucosylated Glycoproteins as Biomarkers of Primary Hepatocellular Carcinoma. J. Proteome Res. 2009, 8, 595-602. 9. Saldova, R.; Fan, Y.; Fitzpatrick, J. M.; Watson, R. W.; Rudd, P. M., Core fucosylation and alpha2-3 sialylation in serum N-glycome is significantly increased in prostate cancer comparing to benign prostate hyperplasia. Glycobiology 2011, 21, 195-205. 10. Cotton, S.; Azevedo, R.; Gaiteiro, C.; Ferreira, D.; Lima, L.; Peixoto, A.; Fernandes, E.; Neves, M.; Neves, D.; Amaro, T.; Cruz, R.; Tavares, A.; Rangel, M.; Silva, A. M. N.; Santos, L. L.; Ferreira, J. A., Targeted O-glycoproteomics explored increased sialylation and identified MUC16 as a poor prognosis biomarker in advanced-stage bladder tumours. Mol. Oncol. 2017, 11, 895-912. 11. Heimburg-Molinaro, J.; Lum, M.; Vijay, G.; Jain, M. T.; Almogren, A.; Rittenhouse-Olson, K., Cancer vaccines and carbohydrate epitopes. Vaccine 2011, 29, 8802-8826. 12. Springer, G. F., Immunoreactive T and Tn epitopes in cancer diagnosis, prognosis, and immunotherapy. J. Mol. Med. 1997, 75, 594-602. 13. Fu, C.; Zhao, H.; Wang, Y.; Cai, H.; Xiao, Y.; Zeng, Y.; Chen, H., Tumor-associated antigens: Tn antigen, sTn antigen, and T antigen. HLA 2016, 88, 275-286. 14. Cazet, A.; Julien, S.; Bobowski, M.; Burchell, J.; Delannoy, P., Tumour-associated carbohydrate antigens in breast cancer. Breast Cancer Res. 2010, 12, 204. 15. Puisieux, A.; Brabletz, T.; Caramel, J., Oncogenic roles of EMT-inducing transcription factors. Nat. Cell Biol. 2014, 16, 488-94. 16. Ye, J.; Wei, X.; Shang, Y.; Pan, Q.; Yang, M.; Tian, Y.; He, Y.; Peng, Z.; Chen, L.; Chen, W.; Wang, R., Core 3 mucin-type O-glycan restoration in colorectal cancer cells promotes MUC1/p53/miR-200c-dependent epithelial identity. Oncogene 2017, 36, 6391-6407. 17. Kawasaki, Y.; Ito, A.; Withers, D. A.; Taima, T.; Kakoi, N.; Saito, S.; Arai, Y., Ganglioside DSGb5, preferred ligand for Siglec-7, inhibits NK cell cytotoxicity against renal cell carcinoma cells. Glycobiology 2010, 20, 1373-1379. 18. Kawasaki, Y.; Ito, A.; Kakoi, N.; Shimada, S.; Itoh, J.; Mitsuzuka, K.; Arai, Y., Ganglioside, Disialosyl Globopentaosylceramide (DSGb5), Enhances the Migration of Renal Cell Carcinoma Cells. Tohoku J. Exp. Med. 2015, 236, 1-7. 19. Itoh, J.; Ito, A.; Shimada, S.; Kawasaki, Y.; Kakoi, N.; Saito, H.; Mitsuzuka, K.; Watanabe, M.; Satoh, M.; Saito, S.; Arai, Y., Clinicopathological significance of ganglioside DSGb5 expression in renal cell carcinoma. Glycoconjugate J 2017, 34, 267-273. 20. Blix, F. G.; Gottschalk, A.; Klenk, E., Proposed Nomenclature in the Field of Neuraminic and Sialic Acids. Nature 1957, 179, 1088-1088. 21. Crocker, P. R.; Varki, A., Siglecs in the immune system. Immunology 2001, 103, 137-145. 22. Varki, A., Sialic acids in human health and disease. Trends Mol. Med. 2008, 14, 351-360. 23. Fuster, M. M.; Esko, J. D., The sweet and sour of cancer: Glycans as novel therapeutic targets. Nat. Rev. Cancer 2005, 5, 526-542. 24. Colley, K. J.; Kitajima, K.; Sato, C., Polysialic acid: Biosynthesis, novel functions and applications. Crit. Rev. Biochem. Mol. 2014, 49, 498-532. 25. Janas, T.; Janas, T., Membrane oligo- and polysialic acids. Bba-Biomembranes 2011, 1808, 2923-2932. 26. Li, S. P.; Hsiao, W. C.; Yu, C. C.; Chien, W. T.; Lin, H. J.; Huang, L. D.; Lin, C. H.; Wu, W. L.; Wu, S. H.; Lin, C. C., Characterization of Meiothermus taiwanensis Galactokinase and its Use in the One-Pot Enzymatic Synthesis of Uridine Diphosphate-Galactose and the Chemoenzymatic Synthesis of the Carbohydrate Antigen Stage Specific Embryonic Antigen-3. Adv. Synth. Catal. 2014, 356, 3199-3213. 27. Litterer, L. A.; Schnurr, J. A.; Plaisance, K. L.; Storey, K. K.; Gronwald, J. W.; Somers, D. A., Characterization and expression of Arabidopsis UDP-sugar pyrophosphorylase. Plant Physiol. Biochem. 2006, 44, 171-180. 28. Zhang, J. B.; Kowal, P.; Fang, J. W.; Andreana, P.; Wang, P. G., Efficient chemoenzymatic synthesis of globotriose and its derivatives with a recombinant alpha-(1 -> 4)-galactosyltransferase. Carbohydr. Res. 2002, 337, 969-976. 29. Morley, T. J.; Withers, S. G., Chemoenzymatic Synthesis and Enzymatic Analysis of 8-Modified Cytidine Monophosphate-Sialic Acid and Sialyl Lactose Derivatives. J. Am. Chem. Soc. 2010, 132, 9430-9437. 30. Knorst, M.; Fessner, W. D., CMP-sialate synthetase from Neisseria meningitidis - Overexpression and application to the synthesis of oligosaccharides containing modified sialic acids. Adv. Synth. Catal. 2001, 343, 698-710. 31. Yu, H.; Chokhawala, H.; Karpel, R.; Yu, H.; Wu, B. Y.; Zhang, J. B.; Zhang, Y. X.; Jia, Q.; Chen, X., A multifunctional Pasteurella multocida sialyltransferase: A powerful tool for the synthesis of sialoside libraries. J. Am. Chem. Soc. 2005, 127, 17618-17619. 32. Benakli, K.; Zha, C.; Kerns, R. J., Oxazolidinone Protected 2-Amino-2-deoxy-d-glucose Derivatives as Versatile Intermediates in Stereoselective Oligosaccharide Synthesis and the Formation of α-Linked Glycosides. J. Am. Chem. Soc. 2001, 123, 9461-9462. 33. Tanaka, H.; Nishiura, Y.; Takahashi, T., Stereoselective synthesis of oligo-alpha-(2,8)-sialic acids. J. Am. Chem. Soc. 2006, 128, 7124-7125. 34. Hsu, C. H.; Chu, K. C.; Lin, Y. S.; Han, J. L.; Peng, Y. S.; Ren, C. T.; Wu, C. Y.; Wong, C. H., Highly Alpha-Selective Sialyl Phosphate Donors for Efficient Preparation of Natural Sialosides. Chem-Eur. J. 2010, 16, 1754-1760. 35. Xu, H. F.; Lu, Y. C.; Zhou, Y. X.; Ren, B.; Pei, Y. X.; Dong, H.; Pei, Z. C., Regioselective Benzylation of Diols and Polyols by Catalytic Amounts of an Organotin Reagent. Adv. Synth. Catal. 2014, 356, 1735-1740. 36. Dong, H.; Zhou, Y. X.; Pan, X. L.; Cui, F. C.; Liu, W.; Liu, J. Y.; Ramstrom, O., Stereoelectronic Control in Regioselective Carbohydrate Protection. J. Org. Chem. 2012, 77, 1457-1467. 37. Muramatsu, W., Chemo- and Regioselective Monosulfonylation of Nonprotected Carbohydrates Catalyzed by Organotin Dichloride under Mild Conditions. J. Org. Chem. 2012, 77, 8083-8091. 38. Muramatsu, W.; Yoshimatsu, H., Regio- and Stereochemical Controlled Koenigs-Knorr-Type Monoglycosylation of Secondary Hydroxy Groups in Carbohydrates Utilizing the High Site Recognition Ability of Organotin Catalysts. Adv. Synth. Catal. 2013, 355, 2518-2524. 39. Gouliaras, C.; Lee, D.; Chan, L. N.; Taylor, M. S., Regioselective Activation of Glycosyl Acceptors by a Diarylborinic Acid-Derived Catalyst. J. Am. Chem. Soc. 2011, 133, 13926-13929. 40. Lee, D.; Taylor, M. S., Borinic Acid-Catalyzed Regioselective Acylation of Carbohydrate Derivatives. J. Am. Chem. Soc. 2011, 133, 3724-3727. 41. Chan, L. N.; Taylor, M. S., Regioselective Alkylation of Carbohydrate Derivatives Catalyzed by a Diarylborinic Acid Derivative. Org. Lett. 2011, 13, 3090-3093. 42. Lee, D.; Williamson, C. L.; Chan, L. N.; Taylor, M. S., Regioselective, Borinic Acid-Catalyzed Monoacylation, Sulfonylation and Alkylation of Diols and Carbohydrates: Expansion of Substrate Scope and Mechanistic Studies. J. Am. Chem. Soc. 2012, 134, 8260-8267. 43. Wu, C. S.; Yen, C. J.; Chou, R. H.; Li, S. T.; Huang, W. C.; Ren, C. T.; Wu, C. Y.; Yu, Y. L., Cancer-Associated Carbohydrate Antigens as Potential Biomarkers for Hepatocellular Carcinoma. Plos. One 2012, 7. 44. Shimada, S.; Ito, A.; Kawasaki, Y.; Kakoi, N.; Taima, T.; Mitsuzuka, K.; Watanabe, M.; Saito, S.; Arai, Y., Ganglioside disialosyl globopentaosylceramide is an independent predictor of PSA recurrence-free survival following radical prostatectomy. Prostate Cancer P. D. 2014, 17, 199-205. 45. 黃思瑜, 國立清華大學化學研究所, 碩士論文, 民國106年. 46. 蕭偉鎮, 國立清華大學化學研究所, 博士論文, 民國103年. 47. Hronowski, L. J. J.; Szarek, W. A.; Hay, G. W.; Krebs, A.; Depew, W. T., Synthesis and Binding of D-Galactose-Terminated Ligands to Human and Rabbit Asialoglycoprotein Receptor .1. Synthesis and Characterization of 1-O-Beta-Lactosyl-(R,S)-Glycerols and 1,3-Di-O-Beta-Lactosylglycerol. Carbohydr. Res. 1989, 190, 203-218. 48. Allen, J. R.; Danishefsky, S. J., New applications of the n-pentenyl glycoside method in the synthesis and immunoconjugation of fucosyl GM(1): A highly tumor-specific antigen associated with small cell lung carcinoma. J. Am. Chem. Soc. 1999, 121, 10875-10882. 49. Crich, D.; Li, W. J., O-sialylation with N-acetyl-5-N,4-O-carbonyl-protected thiosialoside donors in dichloromethane: Facile and selective cleavage of the oxazolidinone ring. J. Org. Chem. 2007, 72, 2387-2391. 50. Lehtila, R. L.; Lehtila, J. O.; Roslund, M. U.; Leino, R., Selectively protected galactose derivatives for the synthesis of branched oligosaccharides. Tetrahedron 2004, 60, 3653-3661. 51. Shafer, C. M.; Molinski, T. F., Practical synthesis of 2,6-dideoxy-D-lyxo-hexose ("2-deoxy-D-fucose'') from D-galactose. Carbohydr. Res. 1998, 310, 223-228. 52. 官亭君, 國立清華大學化學研究所, 博士論文, 民國103年. 53. 林虹君, 國立清華大學化學研究所, 博士論文, 民國104年. 54. Maki, Y.; Mima, T.; Okamoto, R.; Izumi, M.; Kajihara, Y., Semisynthesis of Complex-Type Biantennary Oligosaccharides Containing Lactosamine Repeating Units from a Biantennary Oligosaccharide Isolated from a Natural Source. J. Org. Chem. 2018, 83, 443-451.
|