跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/04 15:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝佳芯
研究生(外文):HSIEH, CHIA-HSIN
論文名稱:低功耗12-T SRAM晶片設計
論文名稱(外文):VLSI Designs for Low-Power 12-T SRAM
指導教授:許明華許明華引用關係
指導教授(外文):SHEU, MING-HWA
口試委員:劉紹宗吳建明林進發
口試委員(外文):LIU, SHAO-TSUNGWU, CHIEN-MINGLIN, JIN-FA
口試日期:2019-07-30
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:89
中文關鍵詞:次臨界電壓操作低功率靜態隨機存取記憶體
外文關鍵詞:Sub-threshold voltageLow powerSRAM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:483
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
靜態隨機存取記憶體(SRAM)大量被使用在系統單晶片中,且應用於高效能的處理器、IoT、AI等,且伴隨著製程技術不斷的進步而漏電流會越來越大,使得SRAM操作在次臨界電壓之設計具有挑戰性,像是傳統6T有讀干擾(Read Disturb)、半選擇(Half-Select)問題;而RD-8T增加額外讀取路徑,看似解決傳統6T的讀干擾問題,但RD-8T為單端讀取設計,因此讀取位元線(RBL)容易受到漏電流的影響,使得感測放大器判別錯誤。然而為了使SRAM能在低電壓操作更穩定,因此,本論文提出一個PNN-12T SRAM之cell設計可操作於次臨界電壓,使用控制訊號電路(Control Signal Circuit)設計來輔助寫、讀與保持模式之低電壓操作,當寫入操作模式時,控制訊號電路會將中間跨耦合(cross couple)反相器切斷下拉的路徑,且同時提供額外的放電路徑來改善寫入的能力(write ability);另外,在寫的操作模式時,控制訊號電路提供額外的充電路徑,使得該半選擇細胞元(cell)所儲存的節點(Q/QB)更穩定;當讀取操作模式時,控制訊號電路會將中間跨耦合(cross couple)反相器開啟下拉的路徑,且讀取的放電路徑不會經過細胞元(cell)中的儲存節點來消除讀的干擾。除此之外,在1Kb記憶體細胞元面積下,提出12顆電晶體的佈局設計可以比FD-10T提出的10顆電晶體的面積節省6.71%,與PCA-12T的面積節省15.72%,而本設計為1Kb SRAM macros (32 rows * 32 columns)的架構由TSMC-40nmGP製程實現,在250mV,能量消耗所提出設計PNN-12T SRAM比DFL-10T少了75.34%,在350mV,能量消耗所提出設計PNN-12T SRAM比PCA-12T少了83.25%。
There has large usage of low-power SRAM in System-on-Chip (SoC) for high performance processor, IoT and AI applications. With the continuous advancement of process technology, the transistor has large leakage currents, so that the design of sub-threshold operation SRAM becomes more challenge, and its area cost becomes bigger. For example, the 6T SRAM cell suffered the read disturb and half-select issue. RD-8T added external read path, which seemed to solve the read disturb problem of the 6T. However, it had the single-end structure, and the read bitline (RBL) affected by leakage currents, which made the sensing amplifier identify failure. In order to make the sub-threshold operation SRAM more stable and much low power, a PNN 12T-cell SRAM architecture for sub-threshold operation is proposed. The control signal circuit is used to reduce operation power in write/read and hold modes. When the SRAM is in writing mode, the porposed control signal circuit can cut the pull-down path of the cross couple inverter, and makes the bit cell be easier to write the data. Even more, the proposed circuit provides an extra discharge path to improve the write-ability at the same time. In addition, the proposed control circuit provides a charging path to improve the stability of storage node for the half-selected cell. When the read mode, the control circuit will open the pull-down path of the cross couple inverter, and the read discharge path will not pass through the storage node of the cell to eliminate the read disturb. The proposed design with 1Kb memory can achieve 6.71% and 15.72% area saving compared with FD-10T and PCA-12T. The 1-Kb SRAM macros (32 rows*32 columns) architecture is implemented based on TSMC-40nm GP process. At 250mV, the energy consumption of our work is less than the DFL-10T by 75.34%. At 350mV, the energy consumption of our work is less than the PCA-12T by 83.25%.
摘要 i
Abstract ii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1-1 研究動機與目的 1
1-2 功率消耗分析 2
1-3 設計流程 7
1-4 論文架構 9
第二章 靜態隨機存取記憶體相關介紹 10
2-1 介紹 10
2-2 SRAM周邊電路 13
2-2.1 解碼器 15
2-2.2 預充電路 16
2-2.3 寫入驅動器 17
2-2.4 感測放大器 18
2-2.5 控制電路 19
2-3 次臨界記憶體之相關文獻 20
2-3.1 傳統6T SRAM設計 20
2-3.2 RD-8T SRAM設計[8] 24
2-3.3 FD-10T SRAM設計[9] 27
2-3.4 PPN-10T SRAM設計[11] 31
2-3.5 PCA-12T SRAM設計[10] 34
2-3.6 DFL-10T SRAM設計[12] 37
2-3.7 Differential-10T SRAM設計(雲科) 40
第三章 提出的12T SRAM記憶體設計 44
3-1 提出12T之工作原理與設計 44
3-1.1 寫模式操作 46
3-1.2 讀模式操作 47
3-1.3 控制訊號電路(Control Signal Circuit,CSC) 48
3-1.4 寫入操作之半選擇狀態分析 51
第四章 晶片實現驗證 54
4-1 模擬結果 54
4-2 結論 64
參考文獻 65
附錄 67

[1] A. Bellaouar, and M. I. Elmasry, “Low-Power Digital VLSI Design Circuits and Systems,” Readind, MA: Kluwer Academic Publisher, 1995.
[2] S. Ahmad, M. K. Gupta, N. Alam, and M. Hasan, “Single-Ended Schmitt-Trigger-Based Robust Low-Power SRAM Cell,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 8, pp. 2634-2642, Aug. 2016.
[3] N. Yadav, A. P. Shah, and S. K. Vishvakarma, “Stable, Reliable, and Bit-Interleaving 12T SRAM for Space Applications: A Device Circuit Co-Design,” IEEE Transactions on Semiconductor Manufacturing, vol. 30, no. 3, pp.276-284, Aug. 2017.
[4] W. Choi, and J. Park, “A charge-recycling assist technique for reliable and low power SRAM design,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 63, no. 8, pp. 1164-1175, Aug. 2016.
[5] K. Zhang, et al., “A 3-GHz 70-Mb SRAM in 65-nm CMOS technology with integrated column-based dynamic power supply,” IEEE Journal of Solid-State Circuits, vol. 41, no. 1, pp. 146-151, Jan. 2006.
[6] C. B. Kushwah, and S. K. Vishvakarma, “A Single-Ended With Dynamic Feedback Control 8T Subthreshold SRAM Cell,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 1, pp. 373-377, Jan. 2016.
[7] C.-T. Chuang, et al., “High-performance SRAM in nanoscale CMOS: Design challenges and techniques,” 2007 IEEE International Workshop on Memory Technology, Design and Testing, pp. 4-12, Dec. 2007.
[8] Chang, Leland, et al., “An 8T-SRAM for variability tolerance and low-voltage operation in high-performance caches,” IEEE Journal of Solid-State Circuits, vol. 43, no. 4, pp. 956 – 963, Apr. 2008.
[9] I. J. Chang, J.-J. Kim, S. P. Park, and K. Roy, “A 32 kb 10T sub-threshold SRAM array with bit-interleaving and differential read scheme in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 44, no. 2, pp. 650–658, Feb. 2009.
[10] Y.-W. Chiu, and Y.-H. Hu, “40 nm bit-interleaving 12T subthreshold SRAM with data-aware write-assist,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 61, no. 9, pp. 2578-2585, Sept. 2014.
[11] C.-H. Lo, and S.-Y. Huang, “P-P-N Based 10T SRAM Cell for Low-Leakage and Resilient Subthreshold Operation,” IEEE Journal of Solid-State Circuits, vol. 46, no. 3, pp. 695-704, Mar. 2011.
[12] Y.-C. Chien, and J.-S. Wang, “A 0.2 V 32-Kb 10T SRAM With 41 nW Standby Power for IoT Applications,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 8, pp. 2443-2454, Aug. 2018.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 高速相位可調式直接數位式頻率合成器與低功率SRAM設計
2. 改良6T SRAM最低操作電壓與存取速度之新型雙軌獨立控制輔助電路設計
3. 高效能資料儲存積體電路之設計與實現
4. 低成本之感測放大正反器和低電壓靜態隨機存取記憶體之晶片設計
5. 具高恢復良率、低儲存能耗與快速恢復之3D-堆疊8T1C非揮發性靜態隨機存取記憶體應用於低功耗之可攜式裝置
6. 靜態雜訊容忍度基準之臨界電壓靜態隨機存取記憶體細胞元與陣列設計
7. 四十奈米雙端10T次臨界電壓交錯位元擺放靜態隨機存取記憶體設計與分析
8. 一個0.4伏特單次存取能量消耗4.76微微焦耳11.6百萬赫芝1千位元靜態隨機存取記憶體具有提出的單端存取7個電晶體記憶單元並使用寫入與讀取偵測技術
9. 應用於電池管理系統之低功率跨域高壓資料傳送電路與補償讀取迴轉率之5T靜態隨機存取記憶體
10. 互補式面穿隧場效電晶體之結構設計與低功耗電路應用探討
11. 次微米內嵌式記憶體之低功耗設計
12. 具有低功耗與寫入輔助技術的40奈米製程256Kb 6T 靜態隨機存取記憶體
13. 具有偵測讀取漏電流且有製程、電壓、溫度變異容忍性與高功率效益之次臨界電壓隨機存取記憶體
14. 近/次臨界靜態隨機存取記憶體為基礎的先進先出記憶體設計於近身無線網路的設計和實作
15. 具有交錯存取架構的超低能耗靜態隨機存取記憶體
 
無相關期刊