|
1.Anthony (2003), “SpamBayes Background Reading,” available online at http://spambayes.sourceforge.net/background.html 2.Arentz, W. A., and Olstad, B., “Classifying Offensive Sites Based on Image Content,” Computer Vision and Image Understanding, 94, 2004, pp.295-310. 3.Baeza-Yates, R. and Ribeiro-Neto, B. (1999), Modern Information Retrieval, ACM press, a Division of the Association for Computing Machinary Inc. 4.Balkin, J. M., Noveck, B. S., and Roosevelt, K., “Filtering the Internet: A Best Practices Model,” Information Society Project at Yale Law School, September 1999. 5.Bertino, E., Ferrari, E., and Perego, A., “MaX: An Access Control System for Digital Libraries and the Web,” Proceedings of the 26th Annual International Computer Software and Applications Conference (COMPSAC), 2002, pp.945-950. 6.Bertino, E., Ferrari, E., and Perego, A., “Content-based Filtering of Web Documents: the MaX system and the EUFORBIA project,” International Journal of Information Security, Vol. 2, No. 1, 2003, pp. 45-58. 7.Bogofilter, available online at http://bogofilter.sourceforge.net/ 8.Bosson, A., Cawley, G.. C., Chan, Y., and Harvey, R., “Non-retrieval: Blocking Pornographic Images,” Proceedings of the International Conference on Image and Video Retrieval, 2002, pp.50-60. 9.Brin, S., and Page, L., “The Anatomy of a Large Scale Hypertextual Web Search Engine,” Computer Networks and ISDN Systems, Vol. 30, Issue 1-7, 1998, pp.107-117. 10.Bushman, B. J., and Cantor, J., “Media Ratings for Violence and Sex,” American Psychologist, Vol. 58, No. 2, 2003, pp. 130-141. 11.Cao, L. L., Li, X. L., Yu, N. H. and Liu, Z. K., “Naked People Retrieval Based on Adaboost Learning,” IEEE Proceedings of the First International Conference on Machine Learning and Cybernetics, 2002, pp.1133-1138. 12.Casella, G.., and Berger, R. L. (2001), Statistical Inference (2nd edition), Wadsworth Pub. Co. 13.Chakrabarti, S., Dom, B. E., Gibson, D., Kumar, R., Raghavan, P., Rajagopalam, S., and Tomkins, A., “Experiments in Topic Distillation,” ACM SIGIR Workshop on Hypertext Information Retrieval, 1998, pp.1-7 14.Chakrabarti, S., Dom, B. E., Gibson, D., Kleinberg, J., Kumar, R., Raghavan, P., Rajagopalam, S., and Tomkins, A., “Mining the Link Structure of the World wide Web,” IEEE Computer, Vol.32, Issue 2, 1999. 15.Chakrabarti, S., Dom, B. E., Kumar, S. R., Raghavan, P., Rajagopalam, S., Tomkins, A., Gibson, D., and Kleinberg, J., “Mining the Web’s Link Structure,” IEEE Computer, Vol.32, Issue 8, 1999, pp. 60-67. 16.Chan, Y., Harvey, R., and Smith, D., “Building Systems to Block Pornography,” Challenge of Image Retrieval, 1999, pp.1-9. 17.Chen, M. S., Park, J. S., and Yu, P. S., “Efficient Data Mining for Path Traversal Patterns,” IEEE Transactions on Knowledge and Data engineering, Vol. 10, No. 2, 1998, pp.209-221. 18.Chen, R.C. (2003), “Combined Text and Image Features for Web Content Rating: An Application in Pornographic Web Pages Filtering, ” National Science Council Research Project (NSC92-2626-E-324-001) (in Chinese) 19.Chiu, C.C., Wang, M. H., and Lai, H. S., “Analysis of Inappropriate Information Prevention in TANET,” Proceedings of the Taiwan Academic Network Conference (TANET), 2003, pp. 919 – 924. (in Chinese) 20.Chiu, C.C., Wang, M. H., and Lai, H. S., “Analysis of Inappropriate Information Prevention,” Proceedings of the Taiwan Academic Network Conference (TANET), 2004, pp. 591-596. (in Chinese) 21.Chiu, C. C. (1999), A Study of Using Criminal Linguistics and Data Retrieval – Applied to Erotic Literature on Internet, A Thesis Submitted to Department of Information Management, Central Police University. 22.Chiu, J. M. (2004), Internet Pornography Filtering With Combination of Image- Based and Text-Based Classification, A Thesis Submitted to Department of Computer Science and Information Engineering, National Central University. 23.Ding, C., Chi, C. H., Deng, J. and Dong, C. L., “Centralized Content Based Web Filtering and Blocking: How Far Can It Go,” IEEE International Conference on Systems, Man, and Cybernetics (SMC), Vol. 2, 1999, pp. 115-119. 24.Duan, L., Cui, G.., Gao, W., and Zhang, H., ”Adult Image Detection Method Base-On Skin Color Model and Support Vector Machine,” The fifth Asian Conference on Computer Vision(ACCV), 2002, pp.797-780. 25.Forsyth, D. A., and Fleck, M. M., “Identifying Nude Pictures,” Proceedings of the Third IEEE Workshop on Applications of Computer Vision(WACV), 1996, pp.103-108 26.Forsyth, D. A., and Fleck, M. M., “Automatic Detection of Human Nudes,” Journal of Computer Vision, Vol. 32, Issue 1, 1999, pp.63-77. 27.Goodwin, S., and Vidgen, R., “Content, Content, Everywhere…..Time to Stop and Think? The Process of Web Content Management,” Computing and Control Engineering Journal, Vol. 13, Issue 2, 2002, pp. 66-70. 28.Government Information Office(GIO), Republic of China, available online at http://www.gio.gov.tw/ 29.Government Information Office, Republic of China , Project For Promoting Internet Content Rating System, available online at http://info.gio.gov.tw/public/Attachment/451214545571.doc 30.Graham, P. (August, 2002), “A Plan for Spam,” available online at http://www.paulgraham.com/spam.html 31.Hammami, M., Chahir, Y., and Chen, L., “WebGuard : Web Based Adult Content Detection and Filtering System”, IEEE/WIC International Conference on Web Intelligence(WI), 2003, pp.574 – 578. 32.Hammami, M., and Chen, L., “WebGuard: Web Adult Content Detection and Filtering System,” International Journal of Business Data Communication and Networking, Vol. 1, No. 1, 2005, pp.17-32. 33.Henzinger, M. R., “Hyperlink Analysis for the Web,” IEEE Internet Computing, Vol. 5, No. 1, 2001, pp. 45-50. 34.Ho, C. T. (2004), A Study of Web Pages Classification Based on Image and Text Features, A Thesis Submitted to Department of Information Management, Chaoyung University 35.Hu, G..Y. (2004), The Study on Naked People Image Detection Based on Skin Color, A Thesis Submitted to Department of Engineering Science, National Cheng Kung University. 36.Internet Facts, available online at http://www.virteches.net/internet-facts.htm 37.Jiao, F., Gao, W., Duan, L., and Cui, G.., “Detecting Adult Images Using Multiple Features,” Info-tech and Info-net Proceedings (ICII), Vol.3, 2001, pp.378 – 383. 38.Kleinberg, J. M., “Authoritative Sources in a Hyperlinked Environment,” Journal of the ACM, Vol. 46, No. 5, 1999, pp. 604 – 632. 39.Kuo, Y. M. (2001), Pornographic Image Detection using Neural Network for the Determination Skin Chroma Chart, A Thesis Submitted to Department of Electrical Engineering, National Cheng Kung University. 40.Lee, P.Y., Hui, S. C., and Fong, A.C. M., “Neural Networks for Web Content Filtering,” IEEE Intelligent Systems, Vol. 17, Issue 5, 2002, pp.48-57. 41.Lee, P.Y., Hui, S.C., and Fong, A. C. M., “A Structural and Content-based Analysis for Web Filtering,” Internet Research: Electronic Networking Applications and Policy, Vol. 13, Issue 1, 2003, pp. 27-37. 42.Lyman, P. , and Hal, R. V. (2003), "How Much Information", available online at http://www.sims.berkeley.edu/how-much-info-2003 43.Meagher, P. (October 7, 2003), “Apply Prob. Models to Web Data Using PHP,” available online at http://www-106.ibm.com/developerworks/library/wa-probab/?ca=dgr-lnxw16PDL . 44.Meyer, T.A., and Whateley, B., “SpamBayes: Effective Open-source, Bayesian Based, Email Classification System,” First Conference on Email and Anti-Spam (CEAS), 2004, pp. 1-8. 45.Perkowitz, M., and Etzioni, O., “Adaptive Web Site: An AI Challenge,” International Joint Conference on Artificial Intelligence (IJCAI), 1997, pp. 1-6. 46.Platform for Internet Content Selection (PICS), available online at http://www.w3c.org/PICS/ 47.Robinson, G.., “A Statistical Approach to the Spam Problem,” Linux journal, Vol. 2003, issue 107. pp. 1-9. 48.Robinson, G. (April 28, 2004), “Handling Redundancy in Email Token Probabilities, Version 0.94,” available online at http://www.garyrobinson.net/2004/04/improved_chi.html 49.Robinson, G. (May 3, 2004), “Why Chi? Motivations for the Use of Fisher’s Inverse Chi-Square Procedure in Spam Classification, Version 0.93,” available online at http://www.garyrobinson.net/2004/05/why_chi.html 50.Ross, S. M. (2004), Introduction to Probability and Statistics for Engineers and Scientists (3rd edition), Elsevier Inc. 51.Schafer, J. B., Konstan, J. and Riedl, J., “Electronic Commerce Recommender Applications,” Journal of Data Mining and Knowledge Discovery, Vol. 5, No. 1/2, 2000, pp. 115-152. 52.Schettini, R., Brambilla, C., Cusano, C., and Ciocca, G.., “On the Detection of Pornographic Digital images,” Proceedings of SPIE, Visual Communications and Image Processing, 2003. 53.Smith, D., Harvey, R., Chen, Y., and Bangham, A., “Classifying Web Pages by Content,” IEE European Workshop on Distributed Imaging, 1999, Vol. 99/109, pp.8/1-8/7. 54.Sobek, M. (2002), “Additional Factors Influencing PageRank,” available online at http://pr.efactory.de/e-further-factors.shtml. 55.SpamBayes : Bayesian anti-spam classifier written in Python, available online at http://spambayes.sourceforge.net/index.html 56.Taiwan Internet Content Rating Promotion Foundation (TICRPF), available online at http://ticrpf.iicm.org.tw/ 57.The Internet Contenting Rating Association (ICRA), available online at http://www.icra.org/ 58.The MathWorks, available online at http://www.mathworks.com/ 59.The PHP Math Library Project, available online at http://www.phpmath.com/home 60.Torres, L., and Vila, J., “Automatic Face Recognition for Video Indexing Application,” Pattern Recognition, Vol. 35, Issue 3, 2002, pp. 615-625. 61.Wang, T. H., Chen, S. H., Tsai, H. M., Lin, C. N., Lee, H. L., “Application on Inappropriate Information Prevention Using Majority Effect” Proceedings of the Taiwan Academic Network Conference (TANET), 2004, pp. 602 – 607. (in Chinese) 62.Weinberg, J. (1997), ”Rating the Net,” available online at http://www.law.wayne.edu/weinberg/rating.htm 63.World Wide Web Consortium (W3C), available online at http://www.w3c.org/ 64.Yang, L.C. (2001), A Study on Log-Based Web Access Filtering, A Thesis Submitted to Department of Computer Science and Information Engineering, National Taiwan University.
|