跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.57) 您好!臺灣時間:2025/10/02 02:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:潘俊宏
研究生(外文):Jyun-Hong Pan
論文名稱:三重週期最小曲面晶格之機械強度分析
論文名稱(外文):Mechanical Strength of Triply Periodic Minimal Surface Lattices Subjected to Three-Point Bending
指導教授:李泓原
指導教授(外文):Hung-Yuan Li
口試委員:郭承憲常閎智
口試委員(外文):Cheng-Hsien KuoHung-Chih Chang
口試日期:2022-07-06
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:模具工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:76
中文關鍵詞:三明治結構三重週期最小曲面相對密度有限元素分析三點彎曲試驗失效模式
外文關鍵詞:sandwich panel structuretriply period minimal surfacerelative densityfinite element analysisthree-point bending testfailure modes
相關次數:
  • 被引用被引用:1
  • 點閱點閱:835
  • 評分評分:
  • 下載下載:54
  • 收藏至我的研究室書目清單書目收藏:1
由晶格結構所構成的三明治結構(SPS)不僅能有效達到減省材料使用率外,更能維持結構所需的強度。本研究對於在不同相對密度條件下由不同類型的三重週期最小曲面(TPMS)晶格所構成的三明治結構進行機械強度的研究與探討。此研究中,三明治結構是由上、下薄板與20×5×1個晶格所組成,晶格類型為Schwarz’s Primitive (SP)、 Scherk’s surface 2 (S2)、 Schoen I-WP(I-WP)與Schoen F-RD (F-RD)等四種為主。透過有限元素分析(FEA)法,獲得在不同相對密度條件下由不同形狀的三重週期最小曲面晶格所構成的三明治結構在三點彎曲試驗下其結構之機械性能,並與計算結果作相互驗證。其結果證明,透過方程式與數值分析之間的結果差異均低於21%。在對比四種類型晶格對於三明治結構的影響當中,由SP晶格所構成的三明治結構與其餘三種相比,所受到變形的影響為最低,而由F-RD晶格所構成的三明治結構在材料達到降伏前所能承受力量為最佳。此外也透過方程式與數值分析等方法預測潛在於三明治結構中的機械失效模式。研究結果中同時發現,最主要影響結構機械性能的因素為晶格幾何形狀以及相對密度的大小。除此之外,TPMS晶格能有效分散應力,避免應立集中現象的發生。
Sandwich panel structure (SPS) with lattice core can considerably lower material consumption and simultaneously maintain adequate mechanical property. In this study, different types of TPMS lattices inside a SPS were analysed comprehensively. Each SPS comprised two face sheets and a core filled with 20×5×1 TPMS lattices. The types of TPMS lattices considered included the Schwarz primitive (SP), Scherk’s surface 2 (S2), Schoen I-graph-wrapped package (I-WP), and Schoen face-centred cubic rhombic dodecahedron (F-RD). Finite element analysis was applied to determine the mechanical performance of different TPMS lattices at different relative densities inside the SPS under a three-point bending test, and the results were compared with the values calculated from analytical equations. The results showed a difference of less than 21% between the analytical and numerical results for the deformation. SP had the smallest deformation among the TPMS lattices, and F-RD had the highest allowable load. Different failure modes were proposed to predict potential failure mechanisms. The results indicated that the mechanical performances of the TPMS lattices were mainly influenced by the lattice geometry and relative density. Additionally, TPMS lattices can disperse the stress to avoid stress concentration occurs.
摘要
Abstract
誌謝
目錄
圖目錄
表目錄
符號表
第一章 緒論
1.1 前言
1.2 積層製造
1.2.1 積層製造種類
1.2.2 三重週期最小曲面結構(TPMS)
1.3 文獻回顧
1.3.1 三重週期最小曲面(TPMS)的由來及其結構優勢
1.3.2 三明治結構(Sandwich Panel Structure, SPS)
1.3.3 晶格參數的影響
1.3.4 分析方法
1.4 研究動機與目的
第二章 研究理論
2.1 三重週期最小曲面生成原理
2.2 相對密度
2.3 三明治結構
2.3.1 總變形量(The total deformation)
2.3.2 三明治的重量
2.4 失效模式(Failure modes)
第三章 實驗方法與數值分析
3.1 實驗流程與規劃
3.2 晶格建模方法
3.3 三明治結構之設計
3.4 有限元素分析
3.4.1 薄殼模型建構
3.4.2 材料及邊界參數設定
第四章 結果與討論
4.1 重量差異
4.2 變形量結果
4.3 不同形狀之三重週期最小曲面晶格比較
4.3.1 總變形量
4.3.2 最大容許負荷力量
4.4 失效模式
4.5 實驗驗證
第五章 結論與未來展望
5.1 結論
5.2 未來展望
第六章 參考文獻

[1]A. A. Alafaghani, A. Qattawi, B. Alrawi, and A. Guzman, 2017, “Experimental Optimization of Fused Deposition Modelling Processing Parameters: A Design-for-Manufacturing Approach”, Procedia Manufacturing, vol. 10, pp. 791-803.
[2]M. Rismalia, S. C. Hidajat, I. G. R. Permana, B. Hadisujoto, M. Muslimin, and F. Triawan, 2019, “Infill pattern and density effects on the tensile properties of 3D printed PLA material”, Journal of Physics: Conference Series, vol. 1402, pp. 1-7.
[3]謝孟丞,2021年,隨機與規則晶格強度分析,國立高雄應用科技大學模具工程系,碩博士論文。
[4]M. Kouach, 2019, “Methods for modelling lattice structures”, Sweden: KTH Royal Institute of Technology School of Engineering Sciences, pp. 1-28.
[5]J. Bird, 2012, “Exploring the 3D printing opportunity”, Financial Times.
[6]ASTM. Additive manufacturing-General principles-Terminology. ASTD Int 2015; ISO/ASTM 529001:1-19.
[7]李柏霖,2015年,非牛頓黏彈流體擠出角度與性質之研究,國立高雄應用科技大學模具工程系,碩博士論文。
[8]洪南洋,2020年,3D列印講座入門篇。
[9]AddMaker,2021年,不只有 FDM、SLA!七種常見 3D 列印成型技術原理大集合。
[10]D. Kim, S. Shin, W. Chung, C. Shin, and K. Lim, 2019, “Application of 3D Printing Technology in Seismic Physical Modeling”. Journal of the Korean Society of Mineral and Energy Resources Engineers, vol. 56, pp. 260-269.
[11]葉雲鵬、鄭正元,2020年,“智慧機械與數位製造3D列印的發展”,科儀新知,第222卷,頁92-103。
[12]左家靜、莊宸、金必耀,2014年,“大家一起做多孔螺旋型與鑽石型三度週期最小曲面的串珠模型(上)—立體幾何介紹”,臺灣化學教育,第3卷,頁336~344。
[13]H. A. Schwarz, 1890, “Gesammelte Mathematische Abhandlungen”, Springer Berlin: Heidelberg, vol. 1, pp. 1-346.
[14]A. Aremu, I. Maskery, C. Tuck, I. Ashcroft, R. Wildman, and R. Hague, 2014, “A comparative finite element study of cubic unit cells for selective laser melting”, International Solid Freeform Fabrication Symposium, pp. 1238-1249.
[15]D. J. Yoo, 2014, “Advanced porous scaffold design using multi-void triply periodic minimal surface models with high surface area to volume ratios”, International Journal of Precision Engineering and Manufacturing, vol. 15, pp. 1657-1666.
[16]李展碩,2019年,三重週期最小曲面結構的力學性能研究,中國廣州大學建築科學與工程,碩士論文。
[17]L.J. Gibson and M.F. Ashby, 1989, “The design of Sandwich panels with foam cores”, Oxford: Pergamon Press, pp. 241-257.
[18]J. Austermann, A. J. Redmann, V. Dahmen, A. L. Quintanilla, S. J. Mecham, and T. A. Osswald, 2019, “Fiber-Reinforced Composite Sandwich Structures by Co-Curing with Additive Manufactured Epoxy Lattices”, Journal of Composites Science, vol. 3, pp. 1-13.
[19]Z. Liu, H. Chen, and S. Xing, 2020, “Mechanical performances of metal-polymer sandwich structures with 3D-printed lattice cores subjected to bending load”, Archives of Civil and Mechanical Engineering, vol. 20, pp. 1-19.
[20]L. J. Gibson and M.F. Ashby, 1997, “Cellular Solids: Structure and Properties 2 ed.”, Cambridge: Cambridge University Press, pp. 1-532.
[21]D. W. Abueidda, M. Elhebeary, C.-S. Shiang, S. Pang, R. K. Abu Al-Rub, and I. M. Jasiuk, 2019, “Mechanical properties of 3D printed polymeric Gyroid cellular structures: Experimental and finite element study”. Materials & Design, vol. 165, pp. 1-9.
[22]N. Kladovasilakis, K. Tsongas, and D. Tzetzis, 2021, “Mechanical and FEA-Assisted Characterization of Fused Filament Fabricated Triply Periodic Minimal Surface Structures”, Journal of Composites Science, vol. 5, pp. 1-20.
[23]G. İrsel, 2019, “The effect of using shell and solid models in structural stress analysis”, Vibroengineering PROCEDIA2019, vol. 27, pp. 115-120.
[24]U. Simsek, A. Akbulut, C. E. Gayir, C. Basaran, and P. Sendur, 2021, “Modal characterization of additively manufactured TPMS structures: comparison between different modeling methods”, The International Journal of Advanced Manufacturing Technology, vol. 115, pp. 657-674.
[25]E. A. Lord and A. L. Mackay, 2003, “Periodic minimal surfaces of cubic symmetry”, Current Science, vol. 85, pp. 346-362.
[26]H. G. von Schnering and R. Nesper, 1991, “Nodal surfaces of Fourier series: Fundamental invariants of structured matter”, Zeitschrift für Physik B Condensed Matter, vol. 83, pp. 407-412.
[27]N. Muna and A, 2018, “Patterson. Simple 3-D Visualization of Some Common Mathematical Minimal Surfaces using MATLAB”, Illinois Digital Environment for Access to Learning and Scholarship, pp. 1-11.
[28]M. Mohammed, 2018, Design of Three-Dimensional, “Triply Periodic Unit Cell Scaffold Structures for Additive Manufacturing”, Journal of Mechanical Design, vol. 140, pp. 1-10.
[29]S. Whitehead, 2019, “Triply Periodic Minimal Surfaces”, Westminster University School of Architecture.
[30]R. Cormoş, G. Jiga, H. Petrescu, and A. Hadăr, 2018, “Analytical and numerical evaluation of honeycomb core compression elastic modulus”, AIP Conference Proceedings, vol. 1932, pp. 1-9.
[31]S. M. Zaharia, L. A. Enescu, and M. A. Pop, 2020, “Mechanical Performances of Lightweight Sandwich Structures Produced by Material Extrusion-Based Additive Manufacturing”, Polymers, vol. 12, pp. 1-19.
[32]E. W. Andrews and N. A. Moussa, 2009, “Failure mode maps for composite sandwich panels subjected to air blast loading”, International Journal of Impact Engineering, vol. 36, pp. 418-425.
[33]ASTM, “Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials”, ASTD INT 2003, D790-03, pp. 1-11.
[34]張紅松、胡仁喜、康士廷,2010年,ANSYS12.0有限元分析從入門到精通,中國北京機械工業出版社。
[35]陳精一,2004年,ANSYS 7.0電腦輔助工程實務分析,全華科技圖書股份有限公司。
[36]I. Maskery, N. T. Aboulkhair, A. O. Aremu, C. J. Tuck, and I. A. Ashcroft, 2017, “Compressive failure modes and energy absorption in additively manufactured double gyroid lattices”, Additive Manufacturing, vol. 16, pp. 24-29.
[37]E. Buenrostro and D. Whisler, 2018, “Impact response of a low-cost randomly oriented fiber foam core sandwich panel”, Journal of Composite Materials, vol. 52, pp. 1-16.
[38]A. Farrokhabadi, S. Ahmad Taghizadeh, H. Madadi, H. Norouzi, and A. Ataei, 2020, “Experimental and numerical analysis of novel multi-layer sandwich panels under three point bending load”, Composite Structures vol. 250, pp. 1-11.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top