|
References
Amador-Noguez, D., Yagi, K., Venable, S., and Darlington, G. (2004). Gene expression profile of long-lived Ames dwarf mice and Little mice. Aging cell 3, 423-441. Arkblad, E.L., Tuck, S., Pestov, N.B., Dmitriev, R.I., Kostina, M.B., Stenvall, J., Tranberg, M., and Rydstrom, J. (2005). A Caenorhabditis elegans mutant lacking functional nicotinamide nucleotide transhydrogenase displays increased sensitivity to oxidative stress. Free radical biology & medicine 38, 1518-1525. Behrends, C., Sowa, M.E., Gygi, S.P., and Harper, J.W. (2010). Network organization of the human autophagy system. Nature 466, 68-76. Brenmoehl, J., and Hoeflich, A. (2013). Dual control of mitochondrial biogenesis by sirtuin 1 and sirtuin 3. Mitochondrion. Chavez, V., Mohri-Shiomi, A., Maadani, A., Vega, L.A., and Garsin, D.A. (2007). Oxidative stress enzymes are required for DAF-16-mediated immunity due to generation of reactive oxygen species by Caenorhabditis elegans. Genetics 176, 1567-1577. Chen, D., Bruno, J., Easlon, E., Lin, S.J., Cheng, H.L., Alt, F.W., and Guarente, L. (2008). Tissue-specific regulation of SIRT1 by calorie restriction. Genes & development 22, 1753-1757. Cheng, Z., Tsuda, M., Kishita, Y., Sato, Y., and Aigaki, T. (2013). Impaired energy metabolism in a Drosophila model of mitochondrial aconitase deficiency. Biochemical and biophysical research communications 433, 145-150. Cupp, J.R., and McAlister-Henn, L. (1991). NAD(+)-dependent isocitrate dehydrogenase. Cloning, nucleotide sequence, and disruption of the IDH2 gene from Saccharomyces cerevisiae. The Journal of biological chemistry 266, 22199-22205. Cupp, J.R., and McAlister-Henn, L. (1992). Cloning and characterization of the gene encoding the IDH1 subunit of NAD(+)-dependent isocitrate dehydrogenase from Saccharomyces cerevisiae. The Journal of biological chemistry 267, 16417-16423. DePina, A.S., Iser, W.B., Park, S.S., Maudsley, S., Wilson, M.A., and Wolkow, C.A. (2011). Regulation of Caenorhabditis elegans vitellogenesis by DAF-2/IIS through separable transcriptional and posttranscriptional mechanisms. BMC physiology 11, 11. Dupuy, D., Bertin, N., Hidalgo, C.A., Venkatesan, K., Tu, D., Lee, D., Rosenberg, J., Svrzikapa, N., Blanc, A., Carnec, A., et al. (2007). Genome-scale analysis of in vivo spatiotemporal promoter activity in Caenorhabditis elegans. Nature biotechnology 25, 663-668. Edwards, C.B., Copes, N., Brito, A.G., Canfield, J., and Bradshaw, P.C. (2013). Malate and fumarate extend lifespan in Caenorhabditis elegans. PloS one 8, e58345. Fire A, Xu S., Montgomery MK., Kostas SA., Driver SE., Mello CC., (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-811. Gambichler, T., Sand, M., and Skrygan, M. (2013). Loss of 5-hydroxymethylcytosine and ten-eleven translocation 2 protein expression in malignant melanoma. Melanoma research 23, 218-220. Greer, E.L., Dowlatshahi, D., Banko, M.R., Villen, J., Hoang, K., Blanchard, D., Gygi, S.P., and Brunet, A. (2007). An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Current biology : CB 17, 1646-1656. Guan, S., Li, P., Luo, J., Li, Y., Huang, L., Wang, G., Zhu, L., Fan, H., Li, W., and Wang, L. (2010). A deuterohemin peptide extends lifespan and increases stress resistance in Caenorhabditis elegans. Free radical research 44, 813-820. Hamilton, B., Dong, Y., Shindo, M., Liu, W., Odell, I., Ruvkun, G., and Lee, S.S. (2005). A systematic RNAi screen for longevity genes in C. elegans. Genes & development 19, 1544-1555. Hansen, M., Chandra, A., Mitic, L.L., Onken, B., Driscoll, M., and Kenyon, C. (2008). A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS genetics 4, e24 Hashimoto, T., Horikawa, M., Nomura, T., and Sakamoto, K. (2010). Nicotinamide adenine dinucleotide extends the lifespan of Caenorhabditis elegans mediated by sir-2.1 and daf-16. Biogerontology 11, 31-43. Hashimoto, Y., Ookuma, S., and Nishida, E. (2009). Lifespan extension by suppression of autophagy genes in Caenorhabditis elegans. Genes to cells : devoted to molecular & cellular mechanisms 14, 717-726. Hosamani, R., and Muralidhara (2013). Acute exposure of Drosophila melanogaster to paraquat causes oxidative stress and mitochondrial dysfunction. Archives of insect biochemistry and physiology 83, 25-40. Jazwinski, S.M. (2013). The retrograde response: when mitochondrial quality control is not enough. Biochimica et biophysica acta 1833, 400-409. Jia, K., and Levine, B. (2007). Autophagy is required for dietary restriction-mediated life span extension in C. elegans. Autophagy 3, 597-599. Kenyon, C.J. (2010). The genetics of ageing. Nature 464, 504-512. Kil, I.S., Lee, Y.S., Bae, Y.S., Huh, T.L., and Park, J.W. (2004). Modulation of NADP(+)-dependent isocitrate dehydrogenase in aging. Redox report : communications in free radical research 9, 271-277. LaMothe, J.M., Hepple, R.T., and Zernicke, R.F. (2003). Selected contribution: Bone adaptation with aging and long-term caloric restriction in Fischer 344 x Brown-Norway F1-hybrid rats. Journal of applied physiology 95, 1739-1745. Lapierre, L.R., Melendez, A., and Hansen, M. (2012). Autophagy links lipid metabolism to longevity in C. elegans. Autophagy 8, 144-146. Lee, S.M., Koh, H.J., Park, D.C., Song, B.J., Huh, T.L., and Park, J.W. (2002). Cytosolic NADP(+)-dependent isocitrate dehydrogenase status modulates oxidative damage to cells. Free radical biology & medicine 32, 1185-1196. Levin, M., Hashimshony, T., Wagner, F., and Yanai, I. (2012). Developmental milestones punctuate gene expression in the Caenorhabditis embryo. Developmental cell 22, 1101-1108. Lin, S.J., Ford, E., Haigis, M., Liszt, G., and Guarente, L. (2004). Calorie restriction extends yeast life span by lowering the level of NADH. Genes & development 18, 12-16. MacNeil, L.T., Watson, E., Arda, H.E., Zhu, L.J., and Walhout, A.J. (2013). Diet-induced developmental acceleration independent of TOR and insulin in C. elegans. Cell 153, 240-252. Metallo, C.M., Gameiro, P.A., Bell, E.L., Mattaini, K.R., Yang, J., Hiller, K., Jewell, C.M., Johnson, Z.R., Irvine, D.J., Guarente, L., et al. (2012). Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481, 380-384. Nagley, P., and Wei, Y.H. (1998). Ageing and mammalian mitochondrial genetics. Trends in genetics : TIG 14, 513-517. Narasimhan, S.D., Yen, K., and Tissenbaum, H.A. (2009). Converging pathways in lifespan regulation. Current biology : CB 19, R657-666. Niccoli, T., and Partridge, L. (2012). Ageing as a risk factor for disease. Current biology : CB 22, R741-752. Nunes-Nesi, A., Araujo, W.L., Obata, T., and Fernie, A.R. (2013). Regulation of the mitochondrial tricarboxylic acid cycle. Current opinion in plant biology 16, 335-343. Perron, J.T., Tyson, R.L., and Sutherland, G.R. (2000). Maintenance of tricarboxylic acid cycle kinetics in Brown-Norway Fischer 344 rats may translate to longevity. Neuroscience letters 281, 91-94. Przybyla-Zawislak, B., Gadde, D.M., Ducharme, K., and McCammon, M.T. (1999). Genetic and biochemical interactions involving tricarboxylic acid cycle (TCA) function using a collection of mutants defective in all TCA cycle genes. Genetics 152, 153-166. Rakheja, D., Konoplev, S., Medeiros, L.J., and Chen, W. (2012). IDH mutations in acute myeloid leukemia. Human pathology 43, 1541-1551. Rea, S.L., Ventura, N., and Johnson, T.E. (2007). Relationship between mitochondrial electron transport chain dysfunction, development, and life extension in Caenorhabditis elegans. PLoS biology 5, e259. Rubinsztein, D.C., Marino, G., and Kroemer, G. (2011). Autophagy and aging. Cell 146, 682-695. Sackmann-Sala, L., Berryman, D.E., Lubbers, E.R., Vesel, C.B., Troike, K.M., List, E.O., Munn, R.D., Ikeno, Y., and Kopchick, J.J. (2012). Decreased insulin sensitivity and increased oxidative damage in wasting adipose tissue depots of wild-type mice. Age (Dordrecht, Netherlands) 34, 1225-1237. Satapati, S., Sunny, N.E., Kucejova, B., Fu, X., He, T.T., Mendez-Lucas, A., Shelton, J.M., Perales, J.C., Browning, J.D., and Burgess, S.C. (2012). Elevated TCA cycle function in the pathology of diet-induced hepatic insulin resistance and fatty liver. Journal of lipid research 53, 1080-1092. Someya, S., Yu, W., Hallows, W.C., Xu, J., Vann, J.M., Leeuwenburgh, C., Tanokura, M., Denu, J.M., and Prolla, T.A. (2010). Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 143, 802-812. Sonnichsen, B., Koski, L.B., Walsh, A., Marschall, P., Neumann, B., Brehm, M., Alleaume, A.M., Artelt, J., Bettencourt, P., Cassin, E., et al. (2005). Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature 434, 462-469. Suda, H., Sato, K., and Yanase, S. (2012). Timing mechanism and effective activation energy concerned with aging and lifespan in the long-lived and thermosensory mutants of Caenorhabditis elegans. Mechanisms of ageing and development 133, 600-610. Tarailo-Graovac, M., and Chen, N. (2012). Mos1-mediated transgenesis to probe consequences of single gene mutations in variation-rich isolates of Caenorhabditis elegans. PloS one 7, e48762. Ventura, N., and Rea, S.L. (2007). Caenorhabditis elegans mitochondrial mutants as an investigative tool to study human neurodegenerative diseases associated with mitochondrial dysfunction. Biotechnology journal 2, 584-595. Wang, J., Jiang, J.C., and Jazwinski, S.M. (2010). Gene regulatory changes in yeast during life extension by nutrient limitation. Experimental gerontology 45, 621-631. Watson, E., MacNeil, L.T., Arda, H.E., Zhu, L.J., and Walhout, A.J. (2013). Integration of metabolic and gene regulatory networks modulates the C. elegans dietary response. Cell 153, 253-266. Yu, W., Dittenhafer-Reed, K.E., and Denu, J.M. (2012). SIRT3 protein deacetylates isocitrate dehydrogenase 2 (IDH2) and regulates mitochondrial redox status. The Journal of biological chemistry 287, 14078-14086. Yuan, Y., Kadiyala, C.S., Ching, T.T., Hakimi, P., Saha, S., Xu, H., Yuan, C., Mullangi, V., Wang, L., Fivenson, E., et al. (2012). Enhanced energy metabolism contributes to the extended life span of calorie-restricted Caenorhabditis elegans. The Journal of biological chemistry 287, 31414-31426.
|