跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/14 05:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張舜雅
論文名稱:抑制異檸檬酸去氫酶A-1表現降低線蟲壽命及抗氧化壓力
論文名稱(外文):Knockdown of Isocitrate Dehydrogenase A-1 Reduces Lifespan and Oxidative Stress Tolerance in Caenorhabditis elegans
指導教授:汪宏達
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:48
中文關鍵詞:異檸檬酸去氫酶三羧酸循環氧化壓力
外文關鍵詞:TCA cycleIsocitrate DehydrogenaseIDHA-1oxidative stress
相關次數:
  • 被引用被引用:0
  • 點閱點閱:428
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
檸檬酸循環在許多研究中已經被證實跟壽命的延長有相當大的關係,並且為代謝途徑當中相當重要的的一環。此篇研究中我使用線蟲為模式生物來探討異檸檬酸去氫酶得表現量對於線蟲的壽命的影響,我發現如在線蟲中利用RNAi 的方式來降低線蟲異檸檬酸去氫酶 (idha-1 )的表現量,會使線蟲的壽命減少。此外,降低線蟲中idha-1的表現量也會使線蟲對氧化壓力的抗性降低,且NADPH及NAD的含量在idha-1 RNAi作用下也會減少。也進一步利用即時偵測線蟲耗氧量發現降低idha-1會減少線蟲的耗氧量,表示idha-1的表現量會影響線蟲有氧呼吸及產生能量的能力。另外,為了想知道idha-1在線蟲中是否和其他代謝調控有關係,也利用反轉錄聚合酶鏈鎖反應發現某些細胞自噬反應相關基因 (bec-1、unc-51) 的表現量下降,以及脂肪分解酶 (lipl-4) 、清除自由基蛋白基因 (sod-3)等基因調控量都有下降的趨勢。我也利用STRING 蛋白交互作用資料庫發現IDHA-1和IDHB-1及IDHG-2有結合關係,且減少此兩種基因的改變也會造成線蟲壽命減少。本研究指出,idha-1在維持基本壽命及氧化壓力耐受度上是必要的。
Tricarboxylic acid cycle (TCA cycle) is an essential metabolism pathway and plays an important role in extending lifespan. In this research, I studied the effect of isocitrate dehydrogenase A-1 (idha-1) expression upon RNAi knockdown on the lifespan in C. elegans. Here I found that RNAi knockdown of idha-1 shortens the lifespan and also decreases the oxidative stress tolerance in C. elegans. Both the NADPH+ and NAD+ concentrations in the idha-1 RNAi treated worms were down-regulated. Furthermore, the decreased oxygen consumption indicates that lower respiration rate and weaker energy production capability occur in the idha-1 RNAi knockdown worms. In addition, several aging related genes expression were altered upon idha-1 knockdown, like autophagy related genes: unc-51 and bec-1, lipase gene: lipl-4, ROS scavenger gene: sod-3, were down regulated in the idha-1 knockdown worms. I used STRING functional protein association networks found IDHA-1 can bind with IDHB-1 and IDHG-2. By RT-PCR, I found that knockdown of idha-1 also decreased the expression levels of idhb-1 and idhg-2, which both also reduce lifespan in C. elegans. Knockdown of idha-1, idhb-1, or idhg-2 reduces the extended lifespan of eat-2 mutant. Together, my thesis research indicated that idha-1 is required to maintain normal lifespan and uphold oxidative stress tolerance.
ABSTRACT I
中文摘要 II
INTRODUCTION - 1 -
MATERIALS AND METHODS - 5 -
RESULTS - 9 -
DISCUSSION - 15 -
FIGURES - 19 -
TABLES - 36 -
REFERENCES - 43 -











References

Amador-Noguez, D., Yagi, K., Venable, S., and Darlington, G. (2004). Gene expression profile of long-lived Ames dwarf mice and Little mice. Aging cell 3, 423-441.
Arkblad, E.L., Tuck, S., Pestov, N.B., Dmitriev, R.I., Kostina, M.B., Stenvall, J., Tranberg, M., and Rydstrom, J. (2005). A Caenorhabditis elegans mutant lacking functional nicotinamide nucleotide transhydrogenase displays increased sensitivity to oxidative stress. Free radical biology & medicine 38, 1518-1525.
Behrends, C., Sowa, M.E., Gygi, S.P., and Harper, J.W. (2010). Network organization of the human autophagy system. Nature 466, 68-76.
Brenmoehl, J., and Hoeflich, A. (2013). Dual control of mitochondrial biogenesis by sirtuin 1 and sirtuin 3. Mitochondrion.
Chavez, V., Mohri-Shiomi, A., Maadani, A., Vega, L.A., and Garsin, D.A. (2007). Oxidative stress enzymes are required for DAF-16-mediated immunity due to generation of reactive oxygen species by Caenorhabditis elegans. Genetics 176, 1567-1577.
Chen, D., Bruno, J., Easlon, E., Lin, S.J., Cheng, H.L., Alt, F.W., and Guarente, L. (2008). Tissue-specific regulation of SIRT1 by calorie restriction. Genes & development 22, 1753-1757.
Cheng, Z., Tsuda, M., Kishita, Y., Sato, Y., and Aigaki, T. (2013). Impaired energy metabolism in a Drosophila model of mitochondrial aconitase deficiency. Biochemical and biophysical research communications 433, 145-150.
Cupp, J.R., and McAlister-Henn, L. (1991). NAD(+)-dependent isocitrate dehydrogenase. Cloning, nucleotide sequence, and disruption of the IDH2 gene from Saccharomyces cerevisiae. The Journal of biological chemistry 266, 22199-22205.
Cupp, J.R., and McAlister-Henn, L. (1992). Cloning and characterization of the gene encoding the IDH1 subunit of NAD(+)-dependent isocitrate dehydrogenase from Saccharomyces cerevisiae. The Journal of biological chemistry 267, 16417-16423.
DePina, A.S., Iser, W.B., Park, S.S., Maudsley, S., Wilson, M.A., and Wolkow, C.A. (2011). Regulation of Caenorhabditis elegans vitellogenesis by DAF-2/IIS through separable transcriptional and posttranscriptional mechanisms. BMC physiology 11, 11.
Dupuy, D., Bertin, N., Hidalgo, C.A., Venkatesan, K., Tu, D., Lee, D., Rosenberg, J., Svrzikapa, N., Blanc, A., Carnec, A., et al. (2007). Genome-scale analysis of in vivo spatiotemporal promoter activity in Caenorhabditis elegans. Nature biotechnology 25, 663-668.
Edwards, C.B., Copes, N., Brito, A.G., Canfield, J., and Bradshaw, P.C. (2013). Malate and fumarate extend lifespan in Caenorhabditis elegans. PloS one 8, e58345.
Fire A, Xu S., Montgomery MK., Kostas SA., Driver SE., Mello CC., (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-811.
Gambichler, T., Sand, M., and Skrygan, M. (2013). Loss of 5-hydroxymethylcytosine and ten-eleven translocation 2 protein expression in malignant melanoma. Melanoma research 23, 218-220.
Greer, E.L., Dowlatshahi, D., Banko, M.R., Villen, J., Hoang, K., Blanchard, D., Gygi, S.P., and Brunet, A. (2007). An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Current biology : CB 17, 1646-1656.
Guan, S., Li, P., Luo, J., Li, Y., Huang, L., Wang, G., Zhu, L., Fan, H., Li, W., and Wang, L. (2010). A deuterohemin peptide extends lifespan and increases stress resistance in Caenorhabditis elegans. Free radical research 44, 813-820.
Hamilton, B., Dong, Y., Shindo, M., Liu, W., Odell, I., Ruvkun, G., and Lee, S.S. (2005). A systematic RNAi screen for longevity genes in C. elegans. Genes & development 19, 1544-1555.
Hansen, M., Chandra, A., Mitic, L.L., Onken, B., Driscoll, M., and Kenyon, C. (2008). A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS genetics 4, e24
Hashimoto, T., Horikawa, M., Nomura, T., and Sakamoto, K. (2010). Nicotinamide adenine dinucleotide extends the lifespan of Caenorhabditis elegans mediated by sir-2.1 and daf-16. Biogerontology 11, 31-43.
Hashimoto, Y., Ookuma, S., and Nishida, E. (2009). Lifespan extension by suppression of autophagy genes in Caenorhabditis elegans. Genes to cells : devoted to molecular & cellular mechanisms 14, 717-726.
Hosamani, R., and Muralidhara (2013). Acute exposure of Drosophila melanogaster to paraquat causes oxidative stress and mitochondrial dysfunction. Archives of insect biochemistry and physiology 83, 25-40.
Jazwinski, S.M. (2013). The retrograde response: when mitochondrial quality control is not enough. Biochimica et biophysica acta 1833, 400-409.
Jia, K., and Levine, B. (2007). Autophagy is required for dietary restriction-mediated life span extension in C. elegans. Autophagy 3, 597-599.
Kenyon, C.J. (2010). The genetics of ageing. Nature 464, 504-512.
Kil, I.S., Lee, Y.S., Bae, Y.S., Huh, T.L., and Park, J.W. (2004). Modulation of NADP(+)-dependent isocitrate dehydrogenase in aging. Redox report : communications in free radical research 9, 271-277.
LaMothe, J.M., Hepple, R.T., and Zernicke, R.F. (2003). Selected contribution: Bone adaptation with aging and long-term caloric restriction in Fischer 344 x Brown-Norway F1-hybrid rats. Journal of applied physiology 95, 1739-1745.
Lapierre, L.R., Melendez, A., and Hansen, M. (2012). Autophagy links lipid metabolism to longevity in C. elegans. Autophagy 8, 144-146.
Lee, S.M., Koh, H.J., Park, D.C., Song, B.J., Huh, T.L., and Park, J.W. (2002). Cytosolic NADP(+)-dependent isocitrate dehydrogenase status modulates oxidative damage to cells. Free radical biology & medicine 32, 1185-1196.
Levin, M., Hashimshony, T., Wagner, F., and Yanai, I. (2012). Developmental milestones punctuate gene expression in the Caenorhabditis embryo. Developmental cell 22, 1101-1108.
Lin, S.J., Ford, E., Haigis, M., Liszt, G., and Guarente, L. (2004). Calorie restriction extends yeast life span by lowering the level of NADH. Genes & development 18, 12-16.
MacNeil, L.T., Watson, E., Arda, H.E., Zhu, L.J., and Walhout, A.J. (2013). Diet-induced developmental acceleration independent of TOR and insulin in C. elegans. Cell 153, 240-252.
Metallo, C.M., Gameiro, P.A., Bell, E.L., Mattaini, K.R., Yang, J., Hiller, K., Jewell, C.M., Johnson, Z.R., Irvine, D.J., Guarente, L., et al. (2012). Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481, 380-384.
Nagley, P., and Wei, Y.H. (1998). Ageing and mammalian mitochondrial genetics. Trends in genetics : TIG 14, 513-517.
Narasimhan, S.D., Yen, K., and Tissenbaum, H.A. (2009). Converging pathways in lifespan regulation. Current biology : CB 19, R657-666.
Niccoli, T., and Partridge, L. (2012). Ageing as a risk factor for disease. Current biology : CB 22, R741-752.
Nunes-Nesi, A., Araujo, W.L., Obata, T., and Fernie, A.R. (2013). Regulation of the mitochondrial tricarboxylic acid cycle. Current opinion in plant biology 16, 335-343.
Perron, J.T., Tyson, R.L., and Sutherland, G.R. (2000). Maintenance of tricarboxylic acid cycle kinetics in Brown-Norway Fischer 344 rats may translate to longevity. Neuroscience letters 281, 91-94.
Przybyla-Zawislak, B., Gadde, D.M., Ducharme, K., and McCammon, M.T. (1999). Genetic and biochemical interactions involving tricarboxylic acid cycle (TCA) function using a collection of mutants defective in all TCA cycle genes. Genetics 152, 153-166.
Rakheja, D., Konoplev, S., Medeiros, L.J., and Chen, W. (2012). IDH mutations in acute myeloid leukemia. Human pathology 43, 1541-1551.
Rea, S.L., Ventura, N., and Johnson, T.E. (2007). Relationship between mitochondrial electron transport chain dysfunction, development, and life extension in Caenorhabditis elegans. PLoS biology 5, e259.
Rubinsztein, D.C., Marino, G., and Kroemer, G. (2011). Autophagy and aging. Cell 146, 682-695.
Sackmann-Sala, L., Berryman, D.E., Lubbers, E.R., Vesel, C.B., Troike, K.M., List, E.O., Munn, R.D., Ikeno, Y., and Kopchick, J.J. (2012). Decreased insulin sensitivity and increased oxidative damage in wasting adipose tissue depots of wild-type mice. Age (Dordrecht, Netherlands) 34, 1225-1237.
Satapati, S., Sunny, N.E., Kucejova, B., Fu, X., He, T.T., Mendez-Lucas, A., Shelton, J.M., Perales, J.C., Browning, J.D., and Burgess, S.C. (2012). Elevated TCA cycle function in the pathology of diet-induced hepatic insulin resistance and fatty liver. Journal of lipid research 53, 1080-1092.
Someya, S., Yu, W., Hallows, W.C., Xu, J., Vann, J.M., Leeuwenburgh, C., Tanokura, M., Denu, J.M., and Prolla, T.A. (2010). Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 143, 802-812.
Sonnichsen, B., Koski, L.B., Walsh, A., Marschall, P., Neumann, B., Brehm, M., Alleaume, A.M., Artelt, J., Bettencourt, P., Cassin, E., et al. (2005). Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature 434, 462-469.
Suda, H., Sato, K., and Yanase, S. (2012). Timing mechanism and effective activation energy concerned with aging and lifespan in the long-lived and thermosensory mutants of Caenorhabditis elegans. Mechanisms of ageing and development 133, 600-610.
Tarailo-Graovac, M., and Chen, N. (2012). Mos1-mediated transgenesis to probe consequences of single gene mutations in variation-rich isolates of Caenorhabditis elegans. PloS one 7, e48762.
Ventura, N., and Rea, S.L. (2007). Caenorhabditis elegans mitochondrial mutants as an investigative tool to study human neurodegenerative diseases associated with mitochondrial dysfunction. Biotechnology journal 2, 584-595.
Wang, J., Jiang, J.C., and Jazwinski, S.M. (2010). Gene regulatory changes in yeast during life extension by nutrient limitation. Experimental gerontology 45, 621-631.
Watson, E., MacNeil, L.T., Arda, H.E., Zhu, L.J., and Walhout, A.J. (2013). Integration of metabolic and gene regulatory networks modulates the C. elegans dietary response. Cell 153, 253-266.
Yu, W., Dittenhafer-Reed, K.E., and Denu, J.M. (2012). SIRT3 protein deacetylates isocitrate dehydrogenase 2 (IDH2) and regulates mitochondrial redox status. The Journal of biological chemistry 287, 14078-14086.
Yuan, Y., Kadiyala, C.S., Ching, T.T., Hakimi, P., Saha, S., Xu, H., Yuan, C., Mullangi, V., Wang, L., Fivenson, E., et al. (2012). Enhanced energy metabolism contributes to the extended life span of calorie-restricted Caenorhabditis elegans. The Journal of biological chemistry 287, 31414-31426.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top