跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/12 12:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何佳哲
研究生(外文):Chia-Che Ho
論文名稱:以UV光照射法製備聚乙烯醇/聚甲基丙烯酸二甲胺乙酯的薄膜及其性質評估
論文名稱(外文):Evaluation of poly(vinyl alcohol)/ poly(dimethylaminoethyl methacrylate)membrane prepared by UV radiation
指導教授:楊禎明
指導教授(外文):Jen-Ming Yang
學位類別:碩士
校院名稱:長庚大學
系所名稱:化工與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:95
中文關鍵詞:聚乙烯醇甲基丙烯酸二甲胺乙酯溶質透過
外文關鍵詞:Poly(vinyl alcohol)Poly(dimethylaminoethyl methacrylate)Permeability of solute
相關次數:
  • 被引用被引用:1
  • 點閱點閱:349
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文是利用UV光照射法(UV radiation)製備不同比例的聚乙烯醇/聚甲基丙烯酸二甲胺乙酯, poly(vinyl alcohol)/poly(dimethyl aminoethyl methacrylate), PVA/poly(DMAEMA)薄膜並且以戊二醛處理,討論PVA分子量、poly(DMAEMA)含量以及交聯度的影響。由FTIR光譜圖,C=O隨著poly(DMAEMA)含量增加而增加。由DSC,發現只有一個Tg,所以PVA與poly(DMAEMA)相容性佳。同時發現poly(DMAEMA)含量愈多Tm愈小,原因是poly(DMAEMA)會降低PVA的結晶度,可以由XRD來印證。PVA薄膜經過戊二醛交聯後氧含量減少,而且發現抗拉強度與伸長率增加,熱性質增加。討論poly(DMAEMA)的含量以及交聯度對接觸角、含水率、溶質透過的影響,發現poly(DMAEMA)含量愈多接觸角愈小,含水率愈高,溶質透過愈好,同時發現交聯度愈低含水率愈高,溶質透過愈好。
In this study the preparation of various poly(vinyl alcohol)/poly(dimethylaminoethyl methacrylate), PVA/poly(DMAEMA)membranes by UV radiation and treated with glutaraldehyde is reported. The influences of PVA molecular weight, poly(DMAEMA)content and various crosslinking ratio were discussed. From the FTIR spectra, the peak of C=O increased with the increasing poly(DMAEMA)content. In the results of DSC, it was found there was one Tg, so the compatibility between PVA and poly(DMAEMA)was good. It was also found Tm decreased with the increaseing poly(DMAEMA)content cause poly(DMAEMA)could decrease the crystallinization of PVA, as the results of XRD. From the results of elemental analysis, the oxygen content in the PVA membranes decreased after treated with glutaraldehyde. It was also found that tensile strength, elongation and thermal stability increased. The effects of poly(DMAEMA)content and crosslinking ratio on the contact angle, water content and permeability of solute were determined. It was found that with an increase in the poly(DMAEMA)content, the contact angle decreased whereas the water content increased, and the higher permeability of solute. It was also found that with an decrease crosslinking ratio, the water content increased, and the higher permeability of solute.
指導教授推薦書
口試委員會審定書
博碩士論文授權書....................................................iii
博碩士紙本論文著作授權書...............................................iv
誌謝.................................................................v
中文摘要.............................................................vi
英文摘要............................................................vii
圖目錄.............................................................xii
表目錄.............................................................xvi
第一章 前言..........................................................1
1.1 薄膜..........................................................1
1.1.1 定義與種類.................................................1
1.1.2 分離程序...................................................2
1.1.3 非孔洞性薄膜的製備方法......................................3
1.2 水膠..........................................................4
1.2.1 定義與種類.................................................4
1.2.2 吸水理論與計算.............................................6
1.2.3 溶質透過理論與計算..........................................8
1.2.4 應用.....................................................14
1.3 UV光與UV光照射法..............................................15
1.3.1 UV光.....................................................15
1.3.2 UV光照射法................................................16
第二章 文獻回顧......................................................18
2.1 聚乙烯醇......................................................18
2.1.1 介紹與用途................................................18
2.1.2 聚乙烯醇的交聯研究.........................................20
2.1.3 聚乙烯醇水膠在溶質透過的研究................................21
2.2 甲基丙烯酸二甲胺乙酯...........................................23
2.2.1 介紹與用途................................................23
2.2.2 甲基丙烯酸二甲胺乙酯的光聚合的研究...........................24
2.3 IRGACURE 2959................................................25
2.4 Creatinine...................................................25
2.5 5-FU.........................................................26
2.6 Uric acid....................................................26
2.7 UV光照射法....................................................27
第三章 研究方法......................................................30
3.1 實驗藥品......................................................30
3.2 實驗儀器......................................................32
3.3 實驗流程......................................................34
3.4 實驗方法......................................................36
3.5 實驗步驟......................................................37
3.5.1 製備PVA/poly(DMAEMA)的薄膜..............................37
3.5.2 製備PVA的交聯液...........................................39
3.5.3 製備PVA/poly(DMAEMA)的交聯薄膜...........................39
3.5.4 繪製藥物的UV-Vis圖譜及檢量線...............................42
3.6 測試方法......................................................43
3.6.1 富立葉轉換紅外線光譜儀(FTIR)..............................43
3.6.2 元素分析(EA)............................................43
3.6.3 X光射線繞射(XRD)........................................43
3.6.4 接觸角(contact angle)...................................44
3.6.5 含水率(water content).................................44
3.6.6 熱重量分析(TGA).........................................45
3.6.7 微差掃描卡計(DSC)........................................45
3.6.8 拉伸測試(tensile strength test).........................45
3.6.9 溶質透過(permeability of solute)........................46
第四章 結果與討論....................................................48
4.1 富立葉轉換紅外線光譜儀(FTIR)..................................48
4.2 元素分析(EA)................................................48
4.3 X光射線繞射(XRD)............................................49
4.4 接觸角(contact angle).......................................49
4.5 含水率(water content).......................................50
4.6 熱重量分析(TGA).............................................51
4.7 微差掃描卡計(DSC)............................................52
4.8 拉伸測試(tensile strength test).............................53
4.9 溶質透過(permeability of solute)............................54
第五章 結論.........................................................56
參考文獻 ............................................................57

圖 目 錄

Fig. 1-1. Schematic representation of various membrane cross-
sections....................................................2
Fig. 1-2. Schematic representation of two-phase system separated by
membrane....................................................2
Fig. 1-3. A typical hand-casting knife...............................3
Fig. 1-4. Machinery used to make solution-cast film on a commercial
scale........................................................3
Fig. 1-5. Illustrations of hydrogel chemically crosslinked network and
hydrogel physically crosslinked network......................5
Fig. 1-6. Schematic representation of the cross-linked structure of a
hydrogel.....................................................6
Fig. 1-7. Depiction of polymer relaxation during water sorption into
a slab geometry(A), and on the molecular level.(B)Shaded
areas represent glassy polymer regions.......................7
Fig. 1-8. Swelling of a hydrophilic, glassy polymer by water.........7
Fig. 1-9. Cross-linked structure of a polymer gel....................9
Fig. 1-10. Experimental apparatus for permeation studies............10
Fig. 1-11. Schematic diagram of stirred diffusion cell..............11
Fig. 1-12. Regions of the electromagnestic spectrum.................15
Fig. 1-13. The flow chart of UV radiation process...................17
Fig.1-14. The mechanism for UV radiation............................17
Fig. 2-1. The hydrolysis of polyvinyl acetate to polyvinyl alcohol..18
Fig. 2-2. The structural of PVA: (a)partially hydrolyzed, (b)fully
hydrolyzed................................................18
Fig. 2-3. Continuous process for the preparation of polyvinyl
alcohol...................................................19
Fig. 2-4. Crosslinked PVA formed by reaction between PVA and GA.(a)
Acetal ring group or ether linkage formation.(b)Aldehyde
formation by monofunctional reaction........................21
Fig. 2-5. The structure of DMAEMA...................................23
Fig. 2-6. The structure of IRGACURE 2959............................25
Fig. 2-7. The structure of creatinine...............................25
Fig. 2-8. The structure of 5-Fu.....................................26
Fig. 2-9. The structure of uric acid................................26
Fig. 3-1. (a)The UV radiation facility(b)The illustration of UV
radiation..................................................33
Fig. 3-2. The illustration of content angle.........................44
Fig. 3-3. The illustration of tensile strength test.................46
Fig. 3-4. The illustration of permeability of solute................47
Fig. 4-1. The FTIR spectra of various samples(PVA Mw=30,000~70,000)
.........................................................65
Fig. 4-2. The XRD curves of various PVA/poly(DMAEMA)membranes
(PVA Mw=30,000~70,000)...................................66
Fig. 4-3. The XRD curves of various PVA/poly(DMAEMA)membranes
(PVA Mw=70,000~100,000)..................................67
Fig.4-4. The water content of various PVA/poly(DMAEMA)membranes
(PVA Mw=70,000~100,000)..................................68
Fig. 4-5. The water content of various crosslinked PVA membranes
(PVA Mw=30,000~70,000)...................................69
Fig. 4-6. The thermogravimetric curves of various PVA/poly(DMAEMA)
membranes(PVA Mw=30,000~70,000).........................70
Fig. 4-7. The thermogravimetric curves of various PVA/poly(DMAEMA)
membranes(PVA Mw=70,000~100,000)........................71
Fig.4-8. The thermogravimetric curves of various PVA membranes......72
Fig. 4-9. The derivative thermogravimetric curves of various PVA/poly
(DMAEMA)membranes(PVA Mw=30,000~70,000)..................73
Fig. 4-10. The derivative thermogravimetric curves of various PVA/poly
(DMAEMA)membranes(PVA Mw=70,000~100,000).................74
Fig. 4-11. The derivative thermogravimetric curves of various PVA
membranes.................................................75
Fig. 4-12. The DSC curves of various PVA/poly(DMAEMA)membranes
(PVA Mw=30,000~70,000)...................................76
Fig. 4-13. The DSC curves of various PVA/poly(DMAEMA)membranes
(PVA Mw=70,000~100,000)..................................77
Fig. 4-14. The DSC curves of various PVA membranes..................78
Fig. 4-15. The stress-strain curves of various PVA/poly(DMAEMA)
membranes(PVA Mw=30,000~70,000).........................79
Fig. 4-16. The stress-strain curves of various PVA/poly(DMAEMA)
membranes(PVA Mw=70,000~100,000)........................80
Fig. 4-17. The stress-strain curves of various crosslinked PVA/poly
(DMAEMA)membranes, crosslinking ratio=0.003
(PVA Mw=30,000~70,000).....................................81
Fig. 4-18. The stress-strain curves of various crosslinked PVA/poly
(DMAEMA)membranes, crosslinking ratio=0.012
(PVA Mw=30,000~70,000).....................................82
Fig. 4-19. The stress-strain curves of various PVA membranes........83
Fig. 4-20. Permeation of creatinine through various membranes ......84
Fig. 4-21. Permeation of 5-Fu through various membranes.............85
Fig. 4-22. Permeation of uric acid through various membranes........86

表 目 錄

Table 2-1 Solvents and non-solvents for PVA.........................20
Table 3-1 The solubility of PVA and poly(DMAEMA)..................87
Table 3-2 Regression result of various solutes......................88
Table 4-1 The elements analysis of various membranes................89
Table 4-2 The contact angle of various PVA/poly(DMAEMA)membranes..90
Table 4-3 The water content of various membranes....................91
Table 4-4 The degradation temperature of variousPVA/poly(DMAEMA)
membranes................................................92
Table 4-5 The Tg and Tm of various PVA/poly(DMAEMA)membranes......93
Table 4-6 The tensile strength and elongation of various
PVA/poly(DMAEMA)membranes..............................94
Table 4-7 Regression result of -(V/2A)ln〔1-2Ct/C0〕versus time
(min)of various PVA/poly(DMAEMA)membranes...............95
1.Marcel Mulder, 1996, Basic principles of membrane technology, 2nd
Ed., Kulwer Academic Publishers, pp. 7-14.
2.Richard W. Baker, 2004, Membrane Technology and Applications,2nd
Ed., WILEY, pp. 89-92.
3.Raphael M. Ottenbrite, Samuel J. Huang, Kinam Park, 1996, Hydrogels
and biodegradable polymers for bioapplications, American Chemical
Society, pp. 2-7.
4.Allan S. Hoffman, 2002, “Hydrogels for biomedical applications,”
Advanced Drug Delivery Reviews, Vol. 43, pp. 3-12.
5.Herman S. Mansur, Rodrigo L. Orefice, Alexandra A.P. Mansur,
2004, ”Characterization of poly(vinyl alcohol)/poly(ethylene
glycol)hydrogels and PVA-derived hybrids by small-angle X-ray
scattering and FTIR spectroscopy,” Polymer, Vol. 45, pp. 7193-7202.
6.Nicholas A. Peppas, 1986, Hydrogels in Medicine and Pharmacy-volume
I-Fundamentals, CRC Press, pp. 5-6, pp. 68-69.
7.Yong Qiu, Kinam Park, 2001, ”Environment-sensitive hydrogels for
drug delivery,” Advanced Drug Delivery Reviews, Vol. 53, pp. 321-
339.
8.Christopher S. Brazel, Nikolaos A. Peppas, 1999, “Dimensionless
analysis of swelling of hydrophilic glassy polymers with subsequent
drug release from relaxing structures,” Biomaterials, Vol. 20, pp.
721-732.
9.Nicholas A. Peppas, 1986, Hydrogels in Medicine and Pharmacy-Volume
III-Properties and applications, CRC Press, pp. 114-115.
10.Michael C. Collins, W. Fred Ramirez, 1979, “Mass transport
through polymeric membranes,” The Journal of Physical Chemistry,
Vol. 83, pp. 2294-2301.
11.Cristi L. Bell, Nikolaos A. Peppas, 1996, “Water, solute and
protein diffusion in physiologically responsive hydrogels of poly
(methacrylic acid-g-ethylene glycol),” Biomaterials, Vol. 17,
pp. 1203-1218.
12.Schwarte, L.M., N.A. Peppas, 1998, “Novel poly(ethylene glycol)
-grafted, cationic hydrogels:preparation, characterization and
diffusive properties,” Polymer, Vol. 39, pp. 6057-6066.
13.R.H. Li and T.A. Barbari, 1994, “Protein transport through
membranes based on toluene dissocyanate surface-modified poly
(vinyl alcohol)gels,” Journal of membrane science, Vol. 88, pp.
115-125.
14.Seon Jeong Kim, Sang Jun Park, SunI. Kim, 2003, “Synthesis and
characteristics of interpenetrating polymer network hydrogels
composed of poly(vinyl alcohol) and poly(N-
isopropylacrylamide),” Reactive & Functional Polymers, Vol. 55,
pp. 61-67.
15.Douglas A. Skoog, F. James Holler, Timothy A. Nieman, 1998,
Principles of instrumental analysis, 4th Ed., Harcourt College
Publishers, pp. 118-119.
16.Michael A. Bachelor, G. Tim Bowden, 2004, “UVA-mediated
activation of signaling pathways involved in skin tumor promotion
and progression,” Seminars in Cancer Biology, Vol. 14, pp. 131-138.
17.Brian L. Diffey, 2002, ”Sources and measurement of ultraviolet
radiation,” Methods, Vol. 28 , pp. 4-13.
18.S. Peter Pappas, 1992, Radiation curing-Science and Technology,
Plenum Press New York, pp. 1-5.
19.Charles E. Hoyle et al., 1990, Radiation curing of polymeric
materials, American Chemical Society, Washington, DC, pp. 1-5.
20.J.-P.Fouassier, 1995, Photoinitiation Photopolymerization and
Photocuring, Hanser Publishers, Munich Vienna New York, pp. 8-9.
21.Norman S. Allen, 1996, “Photoinitiators for UV and visible curing
of coatings:mechanisms and properties,” Journal of photochemiitry
and photobiology A:Chemistry, Vol. 100, pp. 101-107.
22.C.A. FINCH, 1992, Polyvinyl alcohol-Developments, JOHN WILEY &
SONS, pp. 57-66.
23.C.C. De Merlis, D.R. Schoneker, 2003, ”Review of the oral
toxicity of polyvinyl alcohol (PVA) ,” Food and Chemical
Toxicology, Vol. 41 pp. 319-326.
24.Sigma-Aldrich, (http://www.sigmaaldrich.com).
25.J. BRANDRUP.E. H. IMMERGUT, 1974, Polymer Handbook, 2nd Ed. A
WILEY-INTERSCIENCE PUBLICATION, pp. Ⅳ245-Ⅳ246.
26.Yali Li, K.G. Neoh, E.T. Kang , 2004, “Poly(vinyl alcohol)
hydrogel fixation on poly(ethylene terephthalate)surface for
biomedical application,” Polymer, Vol. 45, pp. 8779-8789.
27.P. Martens, K.S. Anseth, 2000, “Characterization of hydrogels
formed from acrylate modified poly(vinyl alcohol) macromers,”
Polymer, Vol. 41, pp. 7715-7722.
28.Sharif M. Shaheen, Kazuo Yamaura, 2002, “Preparation of
theophylline hydrogels of atactic poly(vinyl alcohol)/NaCl/HO
system for drug delivery system,” Journal of Controlled Release,
Vol. 81, pp. 367-377.
29.E.El. Shafee, H.F. Naguib, 2003, “Water sorption in cross-linked
poly(vinyl alcohol) networks,” Polymer, Vol. 44, pp. 1647-1653.
30.L.B. Carvalho, Jr., A.M. Araujo, A.M.P. Almeida, W.M. Azevedo,
1996, “The use of polyvinyl alcohol glutaraldehyde antigen coated
discs for laser induced fluorescence detection of plague,” Sensors
and Actuators B, Vol. 35-36, pp. 427-430.
31.Choong-Kyun Yeom, Kew-Ho Lee, 1996, “Pervaporation separation of
water-acetic acid mixtures through poly(vinyl alcohol)membranes
crosslinked with glutaraldehyde,” Journal of Membrane Science,
Vol. 109, pp. 257-265.
32.Hideto Matsuyama, Masaaki Teramoto, Hiroshi Urano, 1997,”Analysis
of solute diffusion in poly(vinyl alcohol)hydrogel membranes,”
Journal of Membrane Science, Vol. 126, pp. 151-160.
33.Nicholas A. Peppas, Shelia L. Wright, 1998, ” Drug diffusion and
binding in ionizable interpenetrating networks from poly(vinyl
alcohol)and poly(acrylic acid),” European Journal of
Pharmaceutics and Biopharmaceutics, Vol. 46, pp. 15-29.
34.W.S. Dai, T.A. , 1999, “Hydrogel membranes with mesh size
asymmetry based on the gradient crosslinking of poly(vinyl
alcohol),” Journal of Membrane Science, Vol. 156, pp. 67-79.
35.Jen Ming Yang et al. , 2004, ”Evaluation of chitosan/PVA blended
hydrogel membranes,” Journal of Membrane Science, Vol. 236, pp. 39-
51.
36.Shubhangi G. Gholap, Jyoti P. Jog, Manohar V. Badiger, 2004, ”
Synthesis and characterization of hydrophobically modified poly
(vinyl alcohol) hydrogel membrane,” Polymer, Vol. 45, pp. 5863-
5873.
37.Acros, (http://www.acros.be/).
38.Cyrille Boyer, Gilles Boutevin, Jean Jacques Robin, Bernard
Boutevin, 2004, “Study of the telomerization of dimethylaminoethyl
methacrylate (DMAEMA) with mercaptoethanol. Application to the
synthesis of a new macromonomer,” Polymer, Vol. 45, pp. 7863-7876.
39.Mario Grassi, Soon Hong Yuk, Sun Hang Cho, 1999, “Modelling of
solute transport across a tempature-sensitive polymer membrane,”
Journal of Membrane Science, Vol. 152, pp. 241-249.
40.Hasan Basan, Menemse Gumusdereliogllu, Tevfik Orbey,
2002, “Diclofenac sodium releasing pH-sensitive monolithic
devices,” International Journal of Pharmaceutics, Vol. 245, pp.
191-198.
41.P. van de Wetering, N.M.E. Schuurmans-Nieuwenbroek et al.,
2000, “Copolymers of 2-(dimethylamino)ethylmethacrylate with
ethoxytriethylene glycol methacrylate or N-vinyl-pyrrolidone as
gene transfer agents,” Journal of Controlled Release, Vol. 64,
pp. 193-203.
42.Chen Yanfeng, Yi Min, 2001, “Swelling kinetics and stimuli-
responsiveness of poly(DMAEMA) hydrogels prepared by UV-
irradiation,“ Radiation Physics and Chemistry, Vol. 61, pp. 65-68.
43.V. Pamedytyte, M.J. Abadie, R. akuska,2002, “Photopolymerization
of N,N-Dimethylaminoethacrylate studies by photocalorimetry,”
Journal of Applied Polymer Science, Vol. 86, pp. 579-588.
44.C. Uzun, M. Hassnisaber, M. Sen, O. Guuven, 2003, “Enhancement
and control of cross-linking of dimethylaminoethyl methacrylate
irradiated at low dose rate in the presence of ethylene glycol
dimethacrylate,” Nuclear Instruments and Methods in Physics
Research B, Vol. 208, pp. 242-246.
45.Yu Yan, Min Yi, Maolin Zhai, Hongfei Ha, Zhifu Luo, Xueqin Xiang,
2004, “Adsorption of ReO4-ions into poly(DMAEMA) hydrogels
prepared by UV-induced polymerization,” Reactive & Functional
Polymers, Vol. 59, pp. 149-154.
46.Amr El-Hag Ali Said, 2005, “Radiation synthesis of interpolymer
polyelectrolyte complex and its application as a carrier for colon-
specific drug delivery system,” Biomaterials, Vol. 26, pp. 2733-
2739.
47.Ciba, (http://www.cibasc.com/).
48.J.M. Yang, Y.J. Jong, and K.Y. Hsu, 1997, “Preparation and
properties of SBS-g-DMAEMA copolymer membrane by ultraviolet
radiation,” J. Biomed. Mater. Res., Vol. 35, pp. 175-180.
49.J.M. Yang, M.C. Wang, Y.G. Hsu, C.H. Chang, 1997, “The properties
of SBS-g-VP copolymer membrane prepared by UV photografting without
degassing,” Journal of Membrane Science, Vol. 128, pp. 133-140.
50.J.M. Yang, M.C. Wang, Y.G. Hsu, C.H. Chang, 1997, “Preparation of
SBS-g-VP copolymer membrane by UV radiation without degassing,” J.
Appl. Polym. Sci., Vol. 65, pp. 109-116.
51.J.M. Yang, P.Y. Huang, M.C. Yang, Winston Wang, 1997, “The
grafting of methyl methacrylate onto ultrahigh molecular weight
polyethylene fiber by plasma and UV treatment,” J. Appl. Polym.
Sci., Vol. 65, pp. 365-371.
52.J.M. Yang, M.J. Huang, T.S. Yeh, 1999, “Preparation of poly
(acrylic acid)modified polyurethane membrane for biomaterial by
UV radiation without degassing,” J. Biomed. Master Res., Vol. 45,
pp. 133-139.
53.J.M. Yang, Y.J. Jong, and K.Y. Hsu1, 1997, “Preparation and
characterization of heparin-containing SBS-g-DMAEMA copolymer
membrane,” J. Biomed. Mater. Res., Vol. 39, pp. 86-91.
54.Jen-Ming Yang, Chung Ping Chang Chian, Keh-Ying Hsu, 1999, ”
Oxygen permeation in SBS-g-DMAEMA copolymer membrane prepared by UV
photografting without degassing,” Journal of Membrane Science,
Vol. 153, pp. 175-182.
55.光源公司, (http://www.uvlight.com.tw/tw/index.htm).
56.Yuan-Hsiang Yu, Ching-Yi Lin, Jui-Ming Yeh, Wei-Hsiang Lin,
2003, “Preparation and properties of poly(vinyl alcohol)-clay
nanocomposite materials,” Polymer, Vol. 44, pp. 3553-3560.
57.KOJI NAKANE, TOMONORI YAMASHITA, KENJI IWAKURA, FUMIO SUZUKI,
1999, “Properties and Structure of Poly(vinylalcohol)/Silica
Composites,” Journal Application Polymer Science, Vol. 74, pp. 133-
138.
58.Changlu Shao, Hak-Yong Kim, Jian Gong, Bin Ding, Douk-Rae Lee, Soo-
Jin Park, 2002, “Fiber mats of poly(vinyl alcohol)/silica
composite via electrospainning,” Materials Letters, Vol. 57, pp.
1579-1584.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top