|
1. Grotenbreg, G. and H. Ploegh, Chemical biology - Dressed-up proteins. Nature, 2007. 446(7139): p. 993-995. 2. Geiss-Friedlander, R. and F. Melchior, Concepts in sumoylation: a decade on. Nature Reviews Molecular Cell Biology, 2007. 8(12): p. 947-956. 3. Goldstein, G., et al., Isolation of a polypeptide that has lymphocyte-differentiating properties and is probably represented universally in living cells. Proc Natl Acad Sci U S A, 1975. 72(1): p. 11-5. 4. Wilkinson, K.D., The discovery of ubiquitin-dependent proteolysis. Proc Natl Acad Sci U S A, 2005. 102(43): p. 15280-2. 5. Dye, B.T. and B.A. Schulman, Structural mechanisms underlying posttranslational modification by ubiquitin-like proteins. Annual Review of Biophysics and Biomolecular Structure, 2007. 36: p. 131-150. 6. Komander, D. and M. Rape, The Ubiquitin Code. Annual Review of Biochemistry, Vol 81, 2012. 81: p. 203-229. 7. Pickart, C.M. and M.J. Eddins, Ubiquitin: structures, functions, mechanisms. Biochimica Et Biophysica Acta-Molecular Cell Research, 2004. 1695(1-3): p. 55-72. 8. Welchman, R.L., C. Gordon, and R.J. Mayer, Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat Rev Mol Cell Biol, 2005. 6(8): p. 599-609. 9. Tokunaga, F., et al., Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation. Nat Cell Biol, 2009. 11(2): p. 123-32. 10. Scaglione, K.M., et al., The ubiquitin-conjugating enzyme (E2) Ube2w ubiquitinates the N terminus of substrates. J Biol Chem, 2013. 288(26): p. 18784-8. 11. Tatham, M.H., et al., Ube2W conjugates ubiquitin to alpha-amino groups of protein N-termini. Biochem J, 2013. 453(1): p. 137-45. 12. Burger, A.M. and A.K. Seth, The ubiquitin-mediated protein degradation pathway in cancer: therapeutic implications. European Journal of Cancer, 2004. 40(15): p. 2217-2229. 13. Hershko, A. and A. Ciechanover, The ubiquitin system. Annual Review of Biochemistry, 1998. 67: p. 425-479. 14. Hurley, J.H., S. Lee, and G. Prag, Ubiquitin-binding domains. Biochemical Journal, 2006. 399: p. 361-372. 15. Hicke, L., H.L. Schubert, and C.P. Hill, Ubiquitin-binding domains. Nature Reviews Molecular Cell Biology, 2005. 6(8): p. 610-621. 16. Peng, J.M., et al., A proteomics approach to understanding protein ubiquitination. Nature Biotechnology, 2003. 21(8): p. 921-926. 17. Metzger, M.B., V.A. Hristova, and A.M. Weissman, HECT and RING finger families of E3 ubiquitin ligases at a glance. Journal of Cell Science, 2012. 125(3): p. 531-537. 18. Lee, T.Y., et al., Incorporating Distant Sequence Features and Radial Basis Function Networks to Identify Ubiquitin Conjugation Sites. Plos One, 2011. 6(3). 19. Gilon, T., O. Chomsky, and R.G. Kulka, Degradation signals for ubiquitin system proteolysis in Saccharomyces cerevisiae. EMBO J, 1998. 17(10): p. 2759-66. 20. Berndsen, C.E. and C. Wolberger, New insights into ubiquitin E3 ligase mechanism. Nature Structural &; Molecular Biology, 2014. 21(4): p. 301-307. 21. Robinson, P.A. and H.C. Ardley, Ubiquitin-protein ligases - Novel therapeutic targets? Current Protein &; Peptide Science, 2004. 5(3): p. 163-176. 22. Robinson, P.A. and H.C. Ardley, Ubiquitin-protein ligases. Journal of Cell Science, 2004. 117(22): p. 5191-5194. 23. Snoek, B.C., et al., Role of E3 ubiquitin ligases in lung cancer. World J Clin Oncol, 2013. 4(3): p. 58-69. 24. Downes, B.P., et al., The HECT ubiquitin-protein ligase (UPL) family in Arabidopsis: UPL3 has a specific role in trichome development. Plant Journal, 2003. 35(6): p. 729-742. 25. Bernassola, F., et al., The HECT family of E3 ubiquitin ligases: Multiple players in cancer development. Cancer Cell, 2008. 14(1): p. 10-21. 26. Scheffner, M. and O. Staub, HECT E3s and human disease. Bmc Biochemistry, 2007. 8. 27. Thrower, J.S., et al., Recognition of the polyubiquitin proteolytic signal. Embo Journal, 2000. 19(1): p. 94-102. 28. Tanaka, K., The proteasome: Overview of structure and functions. Proceedings of the Japan Academy Series B-Physical and Biological Sciences, 2009. 85(1): p. 12-36. 29. Ventii, K.H. and K.D. Wilkinson, Protein partners of deubiquitinating enzymes. Biochem J, 2008. 414(2): p. 161-75. 30. Komander, D., M.J. Clague, and S. Urbe, Breaking the chains: structure and function of the deubiquitinases. Nature Reviews Molecular Cell Biology, 2009. 10(8): p. 550-563. 31. Morris, J.R. and E. Solomon, BRCA1 : BARD1 induces the formation of conjugated ubiquitin structures, dependent on K6 of ubiquitin, in cells during DNA replication and repair. Hum Mol Genet, 2004. 13(8): p. 807-17. 32. Leverson, J.D., et al., The APC11 RING-H2 finger mediates E2-dependent ubiquitination. Mol Biol Cell, 2000. 11(7): p. 2315-25. 33. Torii, K.U., et al., The RING finger motif of photomorphogenic repressor COP1 specifically interacts with the RING-H2 motif of a novel Arabidopsis protein. J Biol Chem, 1999. 274(39): p. 27674-81. 34. Xie, Q., et al., SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature, 2002. 419(6903): p. 167-70. 35. Xu, G.Q., J.S. Paige, and S.R. Jaffrey, Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling. Nature Biotechnology, 2010. 28(8): p. 868-U154. 36. Li, W., et al., Genome-Wide and Functional Annotation of Human E3 Ubiquitin Ligases Identifies MULAN, a Mitochondrial E3 that Regulates the Organelle's Dynamics and Signaling. Plos One, 2008. 3(1). 37. Kraft, E., et al., Genome analysis and functional characterization of the E2 and RING-type E3 ligase ubiquitination enzymes of Arabidopsis. Plant Physiol, 2005. 139(4): p. 1597-611. 38. Smalle, J. and R.D. Vierstra, The ubiquitin 26S proteasome proteolytic pathway. Annual Review of Plant Biology, 2004. 55: p. 555-590. 39. Petroski, M.D., The ubiquitin system, disease, and drug discovery. Bmc Biochemistry, 2008. 9. 40. Ye, Y., et al., Ubiquitin chain conformation regulates recognition and activity of interacting proteins. Nature, 2012. 492(7428): p. 266-270. 41. Kim, W., et al., Systematic and Quantitative Assessment of the Ubiquitin-Modified Proteome. Molecular Cell, 2011. 44(2): p. 325-340. 42. Devoto, A., P.R. Muskett, and K. Shirasu, Role of ubiquitination in the regulation of plant defence against pathogens. Current Opinion in Plant Biology, 2003. 6(4): p. 307-311. 43. Gao, M. and M. Karin, Regulating the regulators: Control of protein ubiquitination and ubiquitin-like modifications by extracellular stimuli. Molecular Cell, 2005. 19(5): p. 581-593. 44. Wagner, S.A., et al., A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol Cell Proteomics, 2011. 10(10): p. M111 013284. 45. Oshikawa, K., et al., Proteome-wide Identification of Ubiquitylation Sites by Conjugation of Engineered Lysine-less Ubiquitin. Journal of Proteome Research, 2012. 11(2): p. 796-807. 46. Hochstrasser, M., Origin and function of ubiquitin-like proteins. Nature, 2009. 458(7237): p. 422-429. 47. Cano, F. and P.J. Lehner, A novel post-transcriptional role for ubiquitin in the differential regulation of MHC class I allotypes. Molecular Immunology, 2013. 55(2): p. 135-138. 48. Kim, D.S. and Y. Hahn, Gains of ubiquitylation sites in highly conserved proteins in the human lineage. BMC Bioinformatics, 2012. 13: p. 306. 49. Chen, Z., et al., Towards more accurate prediction of ubiquitination sites: a comprehensive review of current methods, tools and features. Brief Bioinform, 2014. 50. Tung, C.W. and S.Y. Ho, Computational identification of ubiquitylation sites from protein sequences. BMC Bioinformatics, 2008. 9: p. 310. 51. Radivojac, P., et al., Identification, analysis, and prediction of protein ubiquitination sites. Proteins, 2010. 78(2): p. 365-80. 52. Zhao, X.W., et al., Prediction of Lysine Ubiquitylation with Ensemble Classifier and Feature Selection. International Journal of Molecular Sciences, 2011. 12(12): p. 8347-8361. 53. Cai, Y.D., et al., Prediction of lysine ubiquitination with mRMR feature selection and analysis. Amino Acids, 2012. 42(4): p. 1387-1395. 54. Feng, K.Y., et al., Using WPNNA Classifier in Ubiquitination Site Prediction Based on Hybrid Features. Protein and Peptide Letters, 2013. 20(3): p. 318-323. 55. Chen, Z., et al., Prediction of Ubiquitination Sites by Using the Composition of k-Spaced Amino Acid Pairs. Plos One, 2011. 6(7). 56. Chen, X., et al., Incorporating key position and amino acid residue features to identify general and species-specific Ubiquitin conjugation sites. Bioinformatics, 2013. 29(13): p. 1614-1622. 57. Chen, Z., et al., hCKSAAP_UbSite: Improved prediction of human ubiquitination sites by exploiting amino acid pattern and properties. Biochimica Et Biophysica Acta-Proteins and Proteomics, 2013. 1834(8): p. 1461-1467. 58. Lu, C.T., et al., dbPTM 3.0: an informative resource for investigating substrate site specificity and functional association of protein post-translational modifications. Nucleic Acids Research, 2013. 41(D1): p. D295-D305. 59. Boeckmann, B., et al., The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Research, 2003. 31(1): p. 365-370. 60. Chen, T., et al., mUbiSiDa: A Comprehensive Database for Protein Ubiquitination Sites in Mammals. Plos One, 2014. 9(1). 61. Huang, Y., et al., CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics, 2010. 26(5): p. 680-682. 62. Crooks, G.E., et al., WebLogo: A sequence logo generator. Genome Research, 2004. 14(6): p. 1188-1190. 63. Burge, C. and S. Karlin, Prediction of complete gene structures in human genomic DNA. Journal of Molecular Biology, 1997. 268(1): p. 78-94. 64. Lee, T.Y., et al., SNOSite: Exploiting Maximal Dependence Decomposition to Identify Cysteine S-Nitrosylation with Substrate Site Specificity. Plos One, 2011. 6(7). 65. Lee, T.Y., et al., Exploiting maximal dependence decomposition to identify conserved motifs from a group of aligned signal sequences. Bioinformatics, 2011. 27(13): p. 1780-1787. 66. Chang, C.C. and C.J. Lin, LIBSVM: A Library for Support Vector Machines. Acm Transactions on Intelligent Systems and Technology, 2011. 2(3). 67. Vacic, V., L.M. Iakoucheva, and P. Radivojac, Two Sample Logo: a graphical representation of the differences between two sets of sequence alignments. Bioinformatics, 2006. 22(12): p. 1536-1537. 68. Hsu, J.B.K., et al., Incorporating Evolutionary Information and Functional Domains for Identifying RNA Splicing Factors in Humans. Plos One, 2011. 6(11). 69. Maor, R., et al., Multidimensional protein identification technology (MudPIT) analysis of ubiquitinated proteins in plants. Mol Cell Proteomics, 2007. 6(4): p. 601-10. 70. Quevillon, E., et al., InterProScan: protein domains identifier. Nucleic Acids Res, 2005. 33(Web Server issue): p. W116-20. 71. Rotin, D. and S. Kumar, Physiological functions of the HECT family of ubiquitin ligases. Nat Rev Mol Cell Biol, 2009. 10(6): p. 398-409. 72. Huang, L., et al., Structure of an E6AP-UbcH7 complex: Insights into ubiquitination by the E2-E3 enzyme cascade. Science, 1999. 286(5443): p. 1321-1326. 73. Lin, D.Y., J. Diao, and J. Chen, Crystal structures of two bacterial HECT-like E3 ligases in complex with a human E2 reveal atomic details of pathogen-host interactions. Proc Natl Acad Sci U S A, 2012. 109(6): p. 1925-30. 74. Huibregtse, J.M., et al., A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc Natl Acad Sci U S A, 1995. 92(11): p. 5249. 75. Li, W., et al., Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling. PLoS One, 2008. 3(1): p. e1487. 76. Zheng, N., et al., Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell, 2000. 102(4): p. 533-9. 77. Petroski, M.D. and R.J. Deshaies, Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol, 2005. 6(1): p. 9-20. 78. Hua, Z. and R.D. Vierstra, The cullin-RING ubiquitin-protein ligases. Annu Rev Plant Biol, 2011. 62: p. 299-334. 79. Wade, M., Y.V. Wang, and G.M. Wahl, The p53 orchestra: Mdm2 and Mdmx set the tone. Trends Cell Biol, 2010. 20(5): p. 299-309. 80. Lee, J.T. and W. Gu, The multiple levels of regulation by p53 ubiquitination. Cell Death Differ, 2010. 17(1): p. 86-92. 81. Haupt, Y., et al., Mdm2 promotes the rapid degradation of p53. Nature, 1997. 387(6630): p. 296-9. 82. Kubbutat, M.H.G., S.N. Jones, and K.H. Vousden, Regulation of p53 stability by Mdm2. Nature, 1997. 387(6630): p. 299-303. 83. Honda, R., H. Tanaka, and H. Yasuda, Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. Febs Letters, 1997. 420(1): p. 25-27. 84. Fang, S.Y., et al., Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. Journal of Biological Chemistry, 2000. 275(12): p. 8945-8951. 85. Honda, R. and H. Yasuda, Activity of MDM2, a ubiquitin Ligase, toward p53 or itself is dependent on the RING finger domain of the ligase. Oncogene, 2000. 19(11): p. 1473-1476. 86. Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell, 2011. 144(5): p. 646-74. 87. Benita, Y., et al., An integrative genomics approach identifies Hypoxia Inducible Factor-1 (HIF-1)-target genes that form the core response to hypoxia. Nucleic Acids Res, 2009. 37(14): p. 4587-602. 88. Nakayama, K., et al., Siah2 regulates stability of prolyl-hydroxylases, controls HIF1alpha abundance, and modulates physiological responses to hypoxia. Cell, 2004. 117(7): p. 941-52. 89. Bailey, T.L., et al., MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res, 2009. 37(Web Server issue): p. W202-8. 90. Lee, K.A., et al., Ubiquitin Ligase Substrate Identification through Quantitative Proteomics at Both the Protein and Peptide Levels. Journal of Biological Chemistry, 2011. 286(48): p. 41530-41538. 91. Nguyen, V.N., et al., Characterization and identification of ubiquitin conjugation sites with E3 ligase recognition specificities. BMC Bioinformatics, 2015. 16(Suppl 1): p. S1. 92. Han, Y., et al., E3Net: A System for Exploring E3-mediated Regulatory Networks of Cellular Functions. Molecular &; Cellular Proteomics, 2012. 11(4). 93. Zhang, J., et al., Functional characterization of Anaphase Promoting Complex/Cyclosome (APC/C) E3 ubiquitin ligases in tumorigenesis. Biochim Biophys Acta, 2014. 1845(2): p. 277-93. 94. Manchado, E., M. Eguren, and M. Malumbres, The anaphase-promoting complex/cyclosome (APC/C): cell-cycle-dependent and -independent functions. Biochem Soc Trans, 2010. 38(Pt 1): p. 65-71. 95. Acquaviva, C. and J. Pines, The anaphase-promoting complex/cyclosome: APC/C. J Cell Sci, 2006. 119(Pt 12): p. 2401-4. 96. Spratt, D.E., H. Walden, and G.S. Shaw, RBR E3 ubiquitin ligases: new structures, new insights, new questions. Biochem J, 2014. 458(3): p. 421-37. 97. Paul, I. and M.K. Ghosh, The E3 Ligase CHIP: Insights into Its Structure and Regulation. Biomed Research International, 2014. 98. Duplan, V. and S. Rivas, E3 ubiquitin-ligases and their target proteins during the regulation of plant innate immunity. Frontiers in Plant Science, 2014. 5. 99. Plechanovova, A., et al., Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis. Nature, 2012. 489(7414): p. 115-20. 100. Mazzucotelli, E., et al., The E3 ubiquitin ligase gene family in plants: Regulation by degradation. Current Genomics, 2006. 7(8): p. 509-522. 101. Sun, Y., Targeting E3 ubiquitin ligases for cancer therapy. Cancer Biology &; Therapy, 2003. 2(6): p. 623-629. 102. Sakiyama, T., et al., The Construction of a Database for Ubiquitin Signaling Cascade. Genome Informatics, 2003. 14: p. 653–654. 103. Lee, H., G.S. Yi, and J.C. Park, E3Miner: a text mining tool for ubiquitin-protein ligases. Nucleic Acids Res, 2008. 36(Web Server issue): p. W416-22. 104. Hutchins, A.P., et al., The repertoires of ubiquitinating and deubiquitinating enzymes in eukaryotic genomes. Mol Biol Evol, 2013. 30(5): p. 1172-87. 105. Gao, T., et al., UUCD: a family-based database of ubiquitin and ubiquitin-like conjugation. Nucleic Acids Res, 2013. 41(Database issue): p. D445-51. 106. Kohl, M., S. Wiese, and B. Warscheid, Cytoscape: software for visualization and analysis of biological networks. Methods Mol Biol, 2011. 696: p. 291-303. 107. Ng, S.K., Z. Zhang, and S.H. Tan, Integrative approach for computationally inferring protein domain interactions. Bioinformatics, 2003. 19(8): p. 923-929. 108. Nguyen, T.P. and T.B. Ho, Discovering signal transduction networks using signaling domain-domain interactions. Genome Inform, 2006. 17(2): p. 35-45. 109. Ng, K.L., et al., Applications of domain-domain interactions in pathway study. Comput Biol Chem, 2008. 32(2): p. 81-7. 110. Rose, P.W., et al., The RCSB Protein Data Bank: redesigned web site and web services. Nucleic Acids Res, 2011. 39(Database issue): p. D392-401. 111. Kanehisa, M., et al., KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res, 2012. 40(Database issue): p. D109-14. 112. Manfredi, J.J., The Mdm2-p53 relationship evolves: Mdm2 swings both ways as an oncogene and a tumor suppressor. Genes Dev, 2010. 24(15): p. 1580-9. 113. Chou, C.C., et al., AMPK reverses the mesenchymal phenotype of cancer cells by targeting the Akt-MDM2-Foxo3a signaling axis. Cancer Res, 2014. 74(17): p. 4783-95. 114. Strelow, A., C. Kollewe, and H. Wesche, Characterization of Pellino2, a substrate of IRAK1 and IRAK4. FEBS Lett, 2003. 547(1-3): p. 157-61. 115. Oberst, A., et al., The Nedd4-binding partner 1 (N4BP1) protein is an inhibitor of the E3 ligase Itch. Proc Natl Acad Sci U S A, 2007. 104(27): p. 11280-5. 116. Vazquez, A., J.F. Rual, and K. Venkatesan, Quality control methodology for high-throughput protein-protein interaction screening. Methods Mol Biol, 2011. 781: p. 279-94. 117. Huang, J.N., et al., High-throughput screening for inhibitors of the E3 ubiquitin ligase APC. Ubiquitin and Protein Degradation, Pt B, 2005. 399: p. 740-754.
|