跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 02:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉韋辰
研究生(外文):Wei-Chen Liu
論文名稱:建構多元感測器之深度學習模型及錯誤偵測與分類之實證研究
論文名稱(外文):Constructing a Deep Learning Model with Multi-Sensors and Empirical Study for Fault Detection and Classification
指導教授:許嘉裕許嘉裕引用關係
指導教授(外文):Chia-Yu Hsu
口試委員:詹前隆游惠群
口試委員(外文):Chien-Lung ChanHui-Chun Yu
口試日期:2017-06-19
學位類別:碩士
校院名稱:元智大學
系所名稱:資訊管理學系
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:38
中文關鍵詞:錯誤偵測與分類深度學習卷積神經網路時間序列資料智慧製造
外文關鍵詞:fault detection and classificationdeep learningconvolution neural networktime series analysissmart manufacturing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1637
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了即時偵測設備發生狀態異常或故障,大量的感測器被建置以及時紀錄與收集生產設備相關的變數,如溫度、壓力等。收集的設備感測資料為一組依照時間先後順序紀錄而得的資料,又可稱為時間性資料(time-series data),且具有大量與快速累積的特性。然而,設備感測資料分佈往往無法僅用特定分配來描述,使得既有的文獻方法往往難以自動萃取感測資料中有意義的特徵,為了同時考慮設備異常偵測與診斷,因此,本研究基於深度學習(deep learning)模型的特徵學習優點,建構錯誤偵測與分類的深度卷積神經網路(Fault Detection Classification-Deep Convolution Neural Network, FDC-DCNN)模型,針對設備感測資料在考慮原始時間性的變化下學習感測器之間的特徵,並建構異常偵測與診斷網路架構,得以在異常偵測與分類的同時,也提供工程師在診斷上快速排除異常的資訊。本研究以某半導體製程中的設備感測資料驗證模式效度,實驗結果發現本研究模型在5折交叉驗證下,在準確率、召回率和正確率均優於既有文獻方法。所提出FDC-DCNN透過診斷層的輸出值找出每一個感測器之間的關聯,解決既有CNN在異常診斷上資訊不足的困難。
The development of computing technology and process technology have been enhanced the rapid changes in high-tech products and smart manufacturing, specifications become more sophisticated. Large amount of sensors are installed to record equipment condition during the manufacturing process. In particular, the characteristics of sensor data are temporal. Most the existing time series analysis approaches cannot extract the effective feature from a large number of sensor data, find that the relationship between each sensor, and accurately detect the fault. This study aims to construct a fault detection classification-deep convolution neural network (FDC-DCNN) model for fault detection and diagnosis. This study also incorporate data augmentation to enhance the diversity and also avoid over-fitting. The key features of equipment sensor can be learned automatically through CNN model. Find the important of each sensor through the diagnostic layer in the model architecture. To validate the proposed FDC-DCNN, an empirical study from a wafer fabrication was conducted. Based on the 5-folds cross-validation, the experimental results show that the model can accurately detect the abnormality with high accuracy rate, recall and precision, and outperform than other existing methods. Through the output value of the diagnostic layer in FDC-DCNN, we can identify the relationship between each fault and different sensors.
書名頁 i
論文口試委員審定書 ii
授權書 iii
中文摘要 iv
英文摘要 v
誌謝 vi
目錄 vii
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1 研究背景與重要性 1
1.2 研究動機 2
1.3 研究目的 3
1.4 研究架構 4
第二章 文獻回顧 5
2.1 時間序列分析 5
2.1.1 時間序列的相似度 5
2.1.2 時間序列的特徵萃取 6
2.2 多元時間序列分析 8
第三章 研究架構 11
3.1 資料前處理 14
3.1.1 資料標準化 14
3.1.2 資料擴增 15
3.2異常偵測與診斷 16
3.2.2 異常偵測 18
3.2.3 診斷層 20
第四章 實證研究 21
4.1 資料蒐集與實驗設計 21
4.2 FDC感測資料前處理 22
4.3 模型參數設定 24
4.3.1 特徵萃取 24
4.3.2異常偵測與分類 26
4.4 FDC異常偵測 27
第五章 結論 33
參考文獻 35
Bouthillier, X., Konda, K., Vincent, P., and Memisevic, R. (2015). Dropout as data augmentation. arXiv preprint arXiv:1506.08700.
Babu, G. S., Zhao, P., and Li, X. L. (2016). Deep convolutional neural network based regression approach for estimation of remaining useful life. In International Conference on Database Systems for Advanced Applications, 214-228.
Chien, C.-F., Hsu, C.-Y., and Chen, P. (2013). Semiconductor fault detection and classification for yield enhancement and manufacturing intelligence. Flexible Services and Manufacturing Journal, 25, 367-388.
Chen, Z., and Feng, W. (2013). Detecting impolite crawler by using time series analysis. The 25th International Conference on Tools with Artificial Intelligence (ICTAI), 123-126.
Faloutsos, C., Ranganathan, M., and Manolopoulos, Y. (1994). Fast subsequence matching in time-series databases. Proceedings of the ACM SIGMOD international conference on Management of data, Minneapolis, 419-429.
Fu, A. W. C., Keogh, E., Lau, L. Y., Ratanamahatana, C. A., and Wong, R. C. W. (2008). Scaling and time warping in time series querying. The VLDB Journal—The International Journal on Very Large Data Bases, 17(4), 899-921.
Geurts, P. (2001). Pattern extraction for time series classification. In European Conference on Principles of Data Mining and Knowledge Discovery, 115-127.
Goldin, D. Q., and Kanellakis, P. C. (1995). On similarity queries for time-series data: constraint specification and implementation. In International Conference on Principles and Practice of Constraint Programming, 137-153.
Golik, P., Doetsch, P., and Ney, H. (2013). Cross-entropy vs. squared error training: a theoretical and experimental comparison. In Interspeech, 1756-1760.
Kampouraki, A., Manis, G., A Nikou, C. (2009). Heartbeat time series classification with support vector machines. IEEE Transactions on Information Technology in Biomedicine, 13(4), 512-518.
Kim, K. J. (2003). Financial time series forecasting using support vector machines. Neurocomputing, 55(1), 307-319.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, 1097-1105.
Le Guennec, A., Malinowski, S., and Tavenard, R. (2016). Data augmentation for time series classification using convolutional neural networks. In ECML/PKDD Workshop on Advanced Analytics and Learning on Temporal Data.
LeCun, Y. A., Bottou, L., Orr, G. B., and Müller, K. R. (2012). Efficient backprop. (2nd), Springer Berlin Heidelberg, 9-48.
Lee, J., Lapira, E., Bagheri, B., and Kao, H. A. (2013). Recent advances and trends in predictive manufacturing systems in big data environment. Manufacturing Letters, 1(1), 38-41.
Lin, J., Keogh, E., Lonardi, S., and Chiu, B. (2003). A symbolic representation of time series, with implications for streaming algorithms. Proceedings of the 8th ACM SIGMOD workshop on Research issues in data mining and knowledge discovery, 2-11.
Nanopoulos, A., Alcock, R., and Manolopoulos, Y. (2001). Feature-based classification of time-series data. International Journal of Computer Research, 10(3): 49-61.
Patri, O. P., Panangadan, A. V., Chelmis, C., McKee, R. G., and Prasanna, V. (2014). Predicting failures from oilfield sensor data using time series shapelets. In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers.
Patri, O. P., Sharma, A. B., Chen, H., Jiang, G., Panangadan, A. V., and Prasanna, V. K. (2014). Extracting discriminative shapelets from heterogeneous sensor data, 2014 IEEE International Conference on Big Data, 1095-1104
Rakthanmanon, T., and Keogh, E. (2013). Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 13th SIAM International Conference on Data Mining, 668-676.
Sakoe, H. and S. Chiba (1978). Dynamic programming algorithm optimization for spoken word recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 26(1), 43-49.
Salton, G., Wong, A., and Yang, C. S. (1975). A vector space model for automatic indexing. Communications of the ACM, 18(11), 613-620.
Senin, P. and S. Malinchik (2013). Sax-vsm: Interpretable time series classification using sax and vector space model. In Proceedings of the IEEE 13th International Conference on Data Mining, 1175-1180.
Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(1), 1929-1958.
Xi, X., Keogh, E., Shelton, C., Wei, L., and Ratanamahatana, C. A. (2006). Fast time series classification using numerosity reduction. In Proceedings of the 23rd international conference on Machine learning, 1033-1040
Yang, J., Nguyen, M. N., San, P. P., Li, X. L., and Krishnaswamy, S. (2015). Deep convolutional neural networks on multichannel time series for human activity recognition. In Twenty-Fourth International Joint Conference on Artificial Intelligence.
Ye, L. and E. Keogh (2009). Time series shapelets: a new primitive for data mining. Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 947-956.
Zheng, Y., Liu, Q., Chen, E., Ge, Y., and Zhao, J. L. (2014). Time series classification using multi-channels deep convolutional neural networks. In International Conference on Web-Age Information Management, 298-310.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊