跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2025/12/31 11:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林開標
研究生(外文):Kai-Biao Lin
論文名稱:數據融合:以知識圖譜為基
論文名稱(外文):Data Fusion in Big Data Analytics: a Knowledge Graph Approach
指導教授:賴國華詹前隆詹前隆引用關係
指導教授(外文):K. Robert LaiChien-Lung Chan
口試委員:周志岳禹良治楊南屛張念慈劉晨鍾朱順痣
口試委員(外文):Chih-Yueh ChouLiang-Chih YuNan-Ping YangNien-Tzu ChangChen-Chung LiuShun-Zhi Zhu
口試日期:13-05-2016
學位類別:博士
校院名稱:元智大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:154
中文關鍵詞:數據融合大數據知識圖譜本體
外文關鍵詞:Data FusionBig DataKnowledge GraphOntology
相關次數:
  • 被引用被引用:0
  • 點閱點閱:925
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
大數據具有海量的資料規模、快速的資料流轉以及多樣的資料類型等特徵,在數據獲取、存儲、管理与分析等面向,超出傳統資料庫軟體工具的功能。因此,傳統的數據融合方法,無法有效解決大數據的數據融合問題。知識圖譜作為一種知識表示方法与數據管理模式,適合描述世界中的各種實體和概念,以及這些實體和概念之間的關聯,並且具有融合異質數據的能力。目前在語義搜索、問題回答、資訊檢索和資料採擷等領域有著廣泛的應用,可以作為異質大數據融合的有效方法。
本研究提出一種基於知識圖譜的數據融合模型,能夠融合結構化、半結構化或非結構化數據。首先為每個領域的數據構建獨立的領域本體庫,作為領域數據源之數據模式的獨立語義描述。然後將各個數據源之間重合或相似的概念抽取出來,構建全局本體庫,為後續知識圖譜融合提供一致性檢測和冗餘去除。在本體的基礎上,通過從不同數據源中提取實體和關係,為每個領域數據源構建領域知識圖譜。最后,通過相似性檢測、實體對齊和衝突解決等過程,將眾多領域知識圖譜融合成一個通用知識圖譜。
知識圖譜的學習和推理能夠進一步完善知識圖譜,並解決問題回答和資訊檢索等領域問題。目前大多數基於嵌入轉換的知識圖譜推理模型在構造corrupted triplets時,未考慮實體間的關係語義類型約束,導致可能不符合實際語義資訊,影響預測準確率。針對此問題,本研究提出一種基於約束嵌入轉換的模型-TransC,該模型在構造corrupted triplets時增加對每個關係的語義類型約束,將不符合語義關係的三元組排除在外,減少訓練模型的錯誤率。實驗結果證明,TransC模型具有參數簡單和預測準確率高的優點。
為驗證本研究所提模型的實用性,對醫療事件、氣象和環境數據進行融合,成功構建一個具備醫療事件、氣象和環境汙染數據的通用知識圖譜,用於分析關聯樣態,改善回溯型分析研究在大數據儲存與動態關聯運算上的困難。最后,為便於知識圖譜數據的使用和管理,本研究開發一個知識圖譜管理平臺,為用戶提供高級數據蒐索、統計、分析和可視化等服務。
Traditional data fusion methods are inadequate in big data analytics. Knowledge graph aiming to describe the various entities, concepts and their linkages. It can capture and present the semantic relations between concepts in the domain and overcome the semantic heterogeneity of big data. Numerous large-scale universal knowledge graphs had already been applied in many big data scenarios.
Thus, this dissertation proposed a knowledge graph-based approach for data fusion in big data analytics. First, a construction of domain ontologies for each specific is given, and then, a construction of global ontology on the basis of domain ontology to provide the consistency checking and redundancy removal for knowledge graph fusion is presented. After that, a construction of the domain knowledge graph, which focused on solving the problem of entity and relation extraction based on ontology is developed. Eventually, a fusion of various domain knowledge graphs into a general knowledge graph on the processes of similarity detection, entity alignment, conflict resolution, relation redirection and data migration concludes this approach.
This dissertation proposed a constraint based embedding model TransC to complete the knowledge graph. It added the semantic-type constraints for each relation while constructing corrupted triplets to excluded the triplets that didn't conform to semantic constraints. The experimental results showed that TransC not only maintained the simple parameters and fast training speed of TransE, but also improved the prediction accuracy.
To verify the practicality and effectiveness of the proposed framework, this dissertation applied data fusion framework to construct a general knowledge graph from the medical, environmental and meteorological data, and established the interrelation for the graph effectively. In addition, this research developed a knowledge graph management platform to provide a consistent access interface and a unified view for the heterogeneous data sources, user could make the operations of advanced search, statistic, analytic, and visualization applications.

List of Tables xi
List of Figures xii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Why Knowledge Graph? 3
1.3 Scope of the Work 5
1.4 Dissertation Organization 7
Chapter 2 Knowledge Graph as a Data Fusion Framework 8
2.1 Background 8
2.2 Traditional Data Fusion Methods 10
2.2.1 Relational Operators and Techniques for Data Fusion 10
2.2.2 Bayesian Networks for Data Fusion 12
2.2.3 Kernel-based Data Fusion 14
2.2.4 Data Fusion in Information Retrieval 16
2.3 Knowledge Graph-based Data Fusion Model 17
Chapter 3 Knowledge Graph Construction and Fusion 22
3.1 Ontology Construction 22
3.1.1 The Structure of the Ontology Library 24
3.1.2 Domain Ontology Construction 24
3.1.3 Global Ontology Construction 43
3.2 Knowledge Graph Construction 51
3.2.1 Entity and Relation Extraction from Structured Data 53
3.2.2 Entity and Relation Extraction from Semi-structured and Unstructured Data 57
3.3 Knowledge Graph Fusion 61
3.3.1 Similarity Detection 63
3.3.2 Entity Alignment 64
3.3.3 Conflict Resolution 66
3.3.4 Relation Redirection 71
3.3.5 Data Migration 72
3.4 Summary 72
Chapter 4 Learning and Reasoning 73
4.1 Background 73
4.2 Typical Learning and Reasoning Methods 75
4.2.1 Learning and Reasoning based on Tensor Decomposition 75
4.2.2 Learning and Reasoning based on Translation 77
4.2.3 Learning and Reasoning based on Path 81
4.2.4 Other Learning and Reasoning Methods 82
4.3 Knowledge Graph Embedding Translation with Constraint 83
4.3.1 Related Works 85
4.3.2 TransC Model 87
4.3.3 TransC Algorithm 89
4.3.4 Comparisons on Parameter Complexity of Algorithms 91
4.3.5 Experiments 92
4.4 Summary 98
Chapter 5 Application in Data Fusion for Medical, Environment, and Meteorological Data 99
5.1 Background 99
5.2 Data Source 100
5.2.1 Industry Internal Data 101
5.2.2 External Related Data 103
5.3 Ontology Construction 107
5.3.1 Domain Ontology Construction 108
5.3.2 Global Ontology Construction 121
5.4 Knowledge Graph Construction 122
5.4.1 Medical Knowledge Graph 122
5.4.2 Meteorological Knowledge Graph 123
5.4.3 Environmental Knowledge Graph 123
5.5 Knowledge Graph Fusion 124
5.6 Knowledge Graph Analysis Platform 125
5.7 Other Applications 132
Chapter 6 Conclusions 134
6.1 Contributions 134
6.2 Future Work 135
Bibliography 138
Biography 153
[Acar 2013] Acar, Esra, Lawaetz, Anders J, Rasmussen, Morten, & Bro, Rasmus. (2013). Structure-revealing data fusion model with applications in metabolomics. Paper presented at the Engineering in Medicine and Biology Society (EMBC), 35th Annual International Conference of the IEEE. 6023-6026
[Administration 2015] Administration, Taiwan Environmental Protection. 2015. Taiwan Air Quality Monitoring Network. Retrieved 2015/12/20, 2015, from http://taqm.epa.gov.tw/taqm/en/PsiAreaHourly.aspx
[Aggarwal 2013] Aggarwal, Jagdishkumar Keshoram. (2013). Multisensor fusion for computer vision (Vol. 99): Springer Science & Business Media.
[Arenas 1999] Arenas, Marcelo, Bertossi, Leopoldo, & Chomicki, Jan. (1999). Consistent query answers in inconsistent databases. Paper presented at the Proceedings of the eighteenth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems. 68-79
[Baidu 2015] Baidu, Encyclopedia. 2015. Baidu intimate. Retrieved 12.21, 2015, from http://baike.baidu.com/view/10972128.htm
[Bishop 2006] Bishop, Christopher M. (2006). Pattern recognition and machine learning: springer.
[Bleiholder 2008] Bleiholder, Jens, & Naumann, Felix. 2008. Data fusion. ACM Computing Surveys (CSUR), 41(1), 1.
[Bollacker 2008] Bollacker, Kurt, Evans, Colin, Paritosh, Praveen, Sturge, Tim, & Taylor, Jamie. (2008). Freebase: a collaboratively created graph database for structuring human knowledge. Paper presented at the Proceedings of the 2008 ACM SIGMOD international conference on Management of data, New York,USA. 1247-1250
[Bordes 2011a] Bordes, Antoine, Weston, Jason, Collobert, Ronan, & Bengio, Yoshua. (2011a). Learning Structured Embeddings of Knowledge Bases. Paper presented at the Proceedings of the 25th International Conference on Artificial Intelligence(AAAI), San Francisco,USA. 301-306
[Bordes 2011b] Bordes, Antoine, Weston, Jason, Collobert, Ronan, & Bengio, Yoshua. (2011b). Learning structured embeddings of knowledge bases. Paper presented at the Conference on Artificial Intelligence
[Bordes 2012] Bordes, Antoine, Glorot, Xavier, Weston, Jason, & Bengio, Yoshua. (2012). Joint learning of words and meaning representations for open-text semantic parsing. Paper presented at the International Conference on Artificial Intelligence and Statistics. 127-135
[Bordes 2014] Bordes, Antoine, Glorot, Xavier, Weston, Jason, & Bengio, Yoshua. 2014. A Semantic Matching Energy Function for Learning with Multi-relational Data. Machine Learning, 94(2), 233-259.
[Bordes 2013a] Bordes, Antoine, Usunier, Nicolas, Garcia-Duran, Alberto, Weston, Jason, & Yakhnenko, Oksana. 2013a. Translating Embeddings for Modeling Multi-relational Data. Advances in Neural Information Processing Systems, 2787-2795.
[Bordes 2013b] Bordes, Antoine, Usunier, Nicolas, Garcia-Duran, Alberto, Weston, Jason, & Yakhnenko, Oksana. (2013b). Translating embeddings for modeling multi-relational data. Paper presented at the Advances in Neural Information Processing Systems. 2787-2795
[Borst 1997] Borst, Willem Nico. (1997). Construction of engineering ontologies for knowledge sharing and reuse: Universiteit Twente.
[Bruggen 2014] Bruggen, Van, & Rik. (2014). Learning Neo4j: Packt Publishing Ltd.
[Buneman 1997] Buneman, Peter. (1997). Semistructured data. Paper presented at the Proceedings of the sixteenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems. 117-121
[Bureau 2015] Bureau, Taiwan Central Weather. 2015. The Central Weather Bureau Online Information.
[Chang 2006] Chang, Chia-Hui, Kayed, Mohammed, Girgis, Moheb Ramzy, & Shaala, Khaled F. 2006. A survey of web information extraction systems. Knowledge and Data Engineering, IEEE Transactions on, 18(10), 1411-1428.
[Chang 2014] Chang, Kai-Wei, Yih, Wen-tau, Yang, Bishan, & Meek, Christopher. (2014). Typed tensor decomposition of knowledge bases for relation extraction. Paper presented at the Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Barcelona, Spain. 1568-1579
[Chen 2014] Chen, Min, Mao, Shiwen, & Liu, Yunhao. 2014. Big data: A survey. Mobile Networks and Applications, 19(2), 171-209.
[Clark 2013] Clark, James J, & Yuille, Alan L. (2013). Data fusion for sensory information processing systems (Vol. 105): Springer Science & Business Media.
[DeMichiel 1989] DeMichiel, Linda G. 1989. Resolving database incompatibility: An approach to performing relational operations over mismatched domains. Knowledge and Data Engineering, IEEE Transactions on, 1(4), 485-493.
[Dong 2014] Dong, Xin, Gabrilovich, Evgeniy, Heitz, Geremy, Horn, Wilko, Lao, Ni, Murphy, Kevin, . . . Zhang, Wei. (2014). Knowledge vault: A web-scale approach to probabilistic knowledge fusion. Paper presented at the Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. 601-610
[Ernst 2015] Ernst, Patrick, Siu, Amy, & Weikum, Gerhard. 2015. KnowLife: a versatile approach for constructing a large knowledge graph for biomedical sciences. Bmc Bioinformatics, 16(1), 1-13.
[Ernst 2014] Ernst, Patrick, Meng, Chun, Siu, Amy, & Weikum, G. (2014). KnowLife: A knowledge graph for health and life sciences. Paper presented at the Data Engineering (ICDE), 2014 IEEE 30th International Conference on, Washington, DC, USA. 1254-1257
[Esteban 2005] Esteban, Jaime, Starr, Andrew, Willetts, Robert, Hannah, Paul, & Bryanston-Cross, Peter. 2005. A review of data fusion models and architectures: towards engineering guidelines. Neural Computing & Applications, 14(4), 273-281.
[Fan 2014] Fan, Miao, Zhou, Qiang, Chang, Emily, & Zheng, Thomas Fang. (2014). Transition-based knowledge graph embedding with relational mapping properties. Paper presented at the Proceedings of the 28th Pacific Asia Conference on Language, Information and Computation, Phuket, Thailand. 328-337
[Fangkui 2015] Fangkui, Hu. 2015. Chinese Knowledge Graph Construction Method Based on Multiple Data Sources. East China University of Science and Technology.
[Faouzi 2011] Faouzi, El, Eddin, Nour, Leung, Henry, Kurian, & Ajeesh. 2011. Data fusion in intelligent transportation systems: Progress and challenges–A survey. Information Fusion, 12(1), 4-10.
[Ferrucci 2006] Ferrucci, David, Lally, Adam, Gruhl, Daniel, Epstein, Edward, Schor, Marshall, Murdock, J William, . . . Doganata, Yurdaer. 2006. Towards an Interoperability Standard for Text and Multi-Modal Analytics. Ibm Research Report.
[Fox 1993] Fox, Edward A, Koushik, M Prabhakar, Shaw, Joseph, Modlin, Russell, & Rao, Durgesh. (1993). Combining evidence from multiple searches. Paper presented at the The first text retrieval conference (TREC-1). 319
[Galar 2012] Galar, Diego, GuSTAFSON, Anna, Tormos, Bernardo, & Berges, Luis. 2012. Maintenance Decision Making based on different types of data fusion. Eksploatacja i Niezawodnosc, Maintenance and Reliability, 14(2), 135-144.
[Garcia 2012] Garcia, Fernando, Cerri, Pietro, Broggi, Alberto, De la Escalera, Arturo, & Armingol, Jose Maria. (2012). Data fusion for overtaking vehicle detection based on radar and optical flow. Paper presented at the Intelligent Vehicles Symposium (IV), 2012 IEEE. 494-499
[Gevaert 2008] Gevaert, Olivier. 2008. A Bayesian network integration framework for modeling biomedical data. Ph. D dissertation, Katholieke Universiteit Leuven.
[Glorot 2015] Glorot, Xavier, & Bengio, Yoshua. 2015. Understanding the difficulty of training deep feedforward neural networks. Journal of Machine Learning Research, 9, 249-256.
[Goodman 2013] Goodman, Irwin R, Mahler, Ronald P, & Nguyen, Hung T. (2013). Mathematics of data fusion (Vol. 37): Springer Science & Business Media.
[Greco 2001] Greco, Sergio, Pontieri, Luigi, & Zumpano, Ester. (2001). Integrating and managing conflicting data. Paper presented at the Perspectives of System Informatics. 349-362
[Gruber 1993] Gruber, Thomas R. 1993. A translation approach to portable ontology specifications. Knowledge acquisition, 5(2), 199-220.
[Gruber 1995] Gruber, Thomas R. 1995. Toward principles for the design of ontologies used for knowledge sharing? International Journal of Human-Computer Studies, 43(5), 907-928.
[Gu 2015] Gu, Kelvin, Miller, John, & Liang, Percy. (2015). Traversing Knowledge Graphs in Vector Space. Paper presented at the the Conference on Empirical Methods in Natural Language Processing (EMNLP'15), Lisbon, Portugal. 318-327
[Guiyang 2014] Guiyang, Jin, Fuzai, Lv, & Zhanqin, Xiang. 2014. Enterprise information integration based on knowledge graph and semantic web technology. JOURNAL OF SOUTHEAST UNIVERSITY ( Natural Science Edition), 44(2), 250-255.
[Guo 2015] Guo, Shu, Wang, Quan, Wang, Bin, Wang, Lihong, & Guo, Li. (2015). Semantically smooth knowledge graph embedding. Paper presented at the Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, Beijing,China. 84-94
[Gupta 2015] Gupta, Sumit, . 2015. Neo4j essentials : leverage the power of Neo4j to design, implement, and deliver top-notch projects.
[Han 2010] Han, Yan. 2010. Research on ontology construction method based on relational database. Inner Mongolia University of Science and Technology.
[Harshman 1994] Harshman, Richard A., & Lundy, Margaret E. 1994. PARAFAC: Parallel factor analysis. Computational Statistics & Data Analysis, 18(1), 39–72.
[He 2015] He, Shizhu, Liu, Kang, Ji, Guoliang, & Zhao, Jun. (2015). Learning to Represent Knowledge Graphs with Gaussian Embedding. Paper presented at the Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, Melbourne, Australia. 623-632
[Hollinger 2015] Hollinger, Geoffrey, Yerramalli, Srinivas, Singh, Sanjiv, Mitra, Urbashi, & Sukhatme, Gaurav S. 2015. Distributed Data Fusion for Multirobot Search. Robotics, IEEE Transactions on, 31(1), 55-66.
[Institute 2015a] Institute, National Health Research. 2015a. Taiwan NHI Information for the public: essential data of ensured affair. Retrieved 12.25, 2015, from http://www.nhi.gov.tw/webdata/webdata.aspx?menu=17&menu_id=661&WD_ID=689&webdata_id=805]
[Institute 2015b] Institute, Taiwan Typhoon and Flood Research. 2015b. Daily meteorological records. Retrieved 2015/12/20, 2015, from http://www.ttfri.narl.org.tw/eng/index.html
[Interior 2015] Interior, Ministry of. 2015. Geographic information. Retrieved 12.21, 2015, from http://www.moi.gov.tw/dca/02place_002.aspx
[James 2011] James, M, Chui, M, Brown, B, Bughin, J, Dobbs, R, Roxburgh, C, & Byers, AH. 2011. The next frontier for innovation, competition, and productivity. Big data.
[Jenatton 2012a] Jenatton, Rodolphe, Roux, Nicolas Le, Bordes, Antoine, & Obozinski, Guillaume. (2012a). A latent factor model for highly multi-relational data. Paper presented at the Advances in Neural Information Processing Systems, Harrahs and Harveys, Lake Tahoe,USA. 3167-3175
[Jenatton 2012b] Jenatton, Rodolphe, Roux, Nicolas Le, Bordes, Antoine, & Obozinski, Guillaume. 2012b. A latent factor model for highly multi-relational data. Advances in Neural Information Processing Systems, 3167-3175.
[Ji 2015] Ji, Guoliang, He, Shizhu, Xu, Liheng, Liu, Kang, & Zhao, Jun. (2015). Knowledge Graph Embedding via Dynamic Mapping Matrix. Paper presented at the Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, Beijing,China. 687-696
[Jiayun 2013] Jiayun, Pan. 2013. Research of Ontology-based HeterogeneOuS Data Integration. DONGHUA UNIVERSITY.
[Jordan 2014] Jordan, Greg. (2014). Practical Neo4j: Apress.
[Kombrink 2011] Kombrink, Stefan, Karafiát, Martin, Burget, Lukás, & Mikolov, Tomas. 2011. Recurrent Neural Network Based Language Modeling in Meeting Recognition. Interspeech, 2877-2880.
[Krompaß 2014] Krompaß, Denis, Nickel, Maximilian, & Tresp, Volker. (2014). Large-Scale Factorization of Type-Constrained Multi-Relational Data. Paper presented at the Data Science and Advanced Analytics (DSAA), 2014 International Conference on, Shanghai,China. 18 - 24
[Krompaß 2013] Krompaß, Denis, Nickel, Maximilian, Jiang, Xueyan, & Tresp, Volker. 2013. Non-Negative Tensor Factorization with RESCAL. Dbs.ifi.lmu.de.
[Lanckriet 2004] Lanckriet, Gert RG, De Bie, Tijl, Cristianini, Nello, Jordan, Michael I, & Noble, William Stafford. 2004. A statistical framework for genomic data fusion. Bioinformatics, 20(16), 2626-2635.
[Lao 2010] Lao, Ni, & Cohen, William W. 2010. Relational retrieval using a combination of path-constrained random walks. Machine Learning, 81(1), 53-67.
[Lao 2011] Lao, Ni, Mitchell, Tom, & Cohen, William W. (2011). Random Walk Inference and Learning in A Large Scale Knowledge Base. Paper presented at the Proceedings of the Conference on Empirical Methods in Natural Language Processing, Edinburgh, UK. 529-539
[Legaria 1994] Legaria, Galindo, & A, César. (1994). Outerjoins as disjunctions (Vol. 23): ACM.
[Lehmann 2014] Lehmann, Jens, Isele, Robert, Jakob, Max, Jentzsch, Anja, Kontokostas, Dimitris, Mendes, Pablo N, . . . Auer, Sören. 2014. DBpedia - A Large-scale, Multilingual Knowledge Base Extracted from Wikipedia. Semantic Web, 167-195.
[Li 2005] Li, Man, Du, Xiao-Yong, & Wang, Shan. (2005). Learning ontology from relational database. Paper presented at the Machine Learning and Cybernetics, 2005. Proceedings of 2005 International Conference on. 3410-3415
[Lim 1994] Lim, Ee-Peng, Srivastava, Jaideep, & Shekhar, Shashi. (1994). Resolving attribute incompatibility in database integration: An evidential reasoning approach. Paper presented at the Data Engineering, 1994. Proceedings. 10th International Conference. 154-163
[Lin 2015a] Lin, Yankai, Liu, Zhiyuan, & Sun, Maosong. (2015a). Modeling relation paths for representation learning of knowledge bases. Paper presented at the the Conference on Empirical Methods in Natural Language Processing (EMNLP'15), Lisbon, Portugal. 705-714
[Lin 2015b] Lin, Yankai, Liu, Zhiyuan, Sun, Maosong, Liu, Yang, & Zhu, Xuan. (2015b). Learning entity and relation embeddings for knowledge graph completion. Paper presented at the The Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin Texas, USA. 2181-2187
[Louhdi 2013] Louhdi, Chbihi, Reda, Mohammed, Behja, Hicham, Alaoui, El, & Ouatik, Said. 2013. Transformation Rules for Building Owl Ontologies from Relational Databases. 271-283. doi: 10.5121/csit.2013.3822
[Lu 2015] Lu, Ping, Lin, Kai Bin, & Lin, Kai Biao. (2015). An algorithm for recognition of un-answered question in paperless marking based on segment gray histogram. Paper presented at the International Conference on Computer Science & Education (ICCSE 2015), Fitzwilliam College, Cambridge University, UK. 685-690
[Maedche 2002] Maedche, Alexander. 2002. Ontology Learning for the Semantic Web. Intelligent Systems IEEE, 16(16), 72-79.
[Miller 1995] Miller, George A. 1995. WordNet: a lexical database for English. Communications of the Acm, 38(11), 39-41.
[Missikoff 2002] Missikoff, Michele, Navigli, Roberto, & Velardi, Paola. 2002. Integrated approach to web ontology learning and engineering. Computer, 35(11), 60-63.
[Molina 2008] Molina, Garcia, & Hector. (2008). Database systems: the complete book: Pearson Education India.
[Naumann 2006] Naumann, Felix, Bilke, Alexander, Bleiholder, Jens, & Weis, Melanie. 2006. Data Fusion in Three Steps: Resolving Schema, Tuple, and Value Inconsistencies. IEEE Data Eng. Bull., 29(2), 21-31.
[Navigli 2003] Navigli, Roberto, Velardi, Paola, & Gangemi, Aldo. 2003. Ontology learning and its application to automated terminology translation. Intelligent Systems, IEEE, 18(1), 22-31.
[Neelakantan 2015] Neelakantan, Arvind, Roth, Benjamin, & McCallum, Andrew. (2015). Compositional Vector Space Models for Knowledge Base Completion. Paper presented at the Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, Beijing, China. 155-166
[Nickel 2013] Nickel, Maximilian, & Tresp, Volker. (2013). Logistic tensor factorization for multi-relational data. Paper presented at the Proceedings of the 30 th International Conference on Machine Learning, Atlanta, Georgia, USA
[Nickel 2011] Nickel, Maximilian, Tresp, Volker, & Kriegel, Hans Peter. (2011). A Three-Way Model for Collective Learning on Multi-Relational Data. Paper presented at the International Conference on Machine Learning, Washington, USA. 809-816
[Nickel 2012] Nickel, Maximilian, Tresp, Volker, & Kriegel, Hans Peter. (2012). Factorizing YAGO: Scalable Machine Learning for Linked Data. Paper presented at the the International World Wide Web Conference Committee(IW3C2), Lyon, France. 271-280
[Nickel 2015] Nickel, Maximilian, Murphy, Kevin, Tresp, Volker, & Gabrilovich, Evgeniy. 2015. A Review of Relational Machine Learning for Knowledge Graphs: From Multi-Relational Link Prediction to Automated Knowledge Graph Construction. arXiv preprint arXiv:1503.00759.
[Patel 2015] Patel, Neil. 2015. The Beginner`s Guide to Google`s Knowledge Graph. Retrieved 12.20, 2015, from http://neilpatel.com/2015/06/30/the-beginners-guide-to-the-googles-knowledge-graph/
[Prado 2013] Prado, José, Cabrita, Gonçalo, & Marques, Lino. (2013). Bayesian sensor fusion for land-mine detection using a dual-sensor hand-held device. Paper presented at the Industrial Electronics Society, IECON 2013-39th Annual Conference of the IEEE. 3887-3892
[Qian 2013] Qian, Richard. 2013. Understand Your World with Bing. Retrieved 2015.12.20, 2015, from http://blogs.bing.com/search/2013/03/21/understand-your-world-with-bing/
[Ramasamy 2013] Ramasamy, Suresh K, & Raja, Jayaraman. 2013. Performance evaluation of multi-scale data fusion methods for surface metrology domain. Journal of Manufacturing Systems, 32(4), 514-522.
[Robinson 2013] Robinson, Ian, Eifrem, Emil, & Webber, James. 2013. Graph Databases. Oreilly Media.
[Robinson 2015] Robinson, Ian, Webber, Jim, & Eifrem, Emil. (2015). Graph Databases: New Opportunities for Connected Data: " O'Reilly Media, Inc.".
[S.Amit 2012] S.Amit. 2012. Introducing the Knowledge Graph:Things,Not Strings. from http://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html
[Santoso 2011] Santoso, Heru Agus, Haw, Su-Cheng, & Abdul-Mehdi, Ziyad T. 2011. Ontology extraction from relational database: Concept hierarchy as background knowledge. Knowledge-Based Systems, 24(3), 457-464. doi: 10.1016/j.knosys.2010.11.003
[Sattler 2000] Sattler, Kai-Uwe, Conrad, Stefan, & Saake, Gunter. (2000). Adding Conflict Resolution Features to a Query Language for Database Federations. Paper presented at the EFIS. 41-52
[Schönberger 2013] Schönberger, Mayer, Viktor, Cukier, & Kenneth. (2013). Big data: A revolution that will transform how we live, work, and think: Houghton Mifflin Harcourt.
[Shamsfard 2004] Shamsfard, Mehrnoush, & Barforoush, Ahmad Abdollahzadeh. 2004. Learning ontologies from natural language texts. International Journal of Human-Computer Studies, 60(1), 17-63.
[Shen 2015] Shen, Wei, Wang, Jianyong, & Han, Jiawei. 2015. Entity linking with a knowledge base: Issues, techniques, and solutions. Knowledge and Data Engineering&IEEE Transactions on, 27(2), 443-460.
[Snijders 2012] Snijders, Chris, Matzat, Uwe, & Reips, Ulf-Dietrich. 2012. Big data: Big gaps of knowledge in the field of internet science. International Journal of Internet Science, 7(1), 1-5.
[Socher 2013a] Socher, Richard, Chen, Danqi, Manning, Christopher D., & Ng, Andrew Y. 2013a. Reasoning With Neural Tensor Networks for Knowledge Base Completion. Advances in Neural Information Processing Systems, 926-934.
[Socher 2013b] Socher, Richard, Chen, Danqi, Manning, Christopher D, & Ng, Andrew. (2013b). Reasoning with neural tensor networks for knowledge base completion. Paper presented at the Advances in Neural Information Processing Systems. 926-934
[Sogou 2015] Sogou, Encyclopedia. 2015. Know cube. Retrieved 12.21, 2015, from http://baike.sogou.com/h66616234.htm
[Studer 1998] Studer, Rudi, Benjamins, V Richard, & Fensel, Dieter. 1998. Knowledge engineering: principles and methods. Data & knowledge engineering, 25(1), 161-197.
[Suchanek 2007] Suchanek, Fabian M., Kasneci, Gjergji, & Weikum, Gerhard. 2007. et al. Yago: A Core of Semantic Knowledge. Hierarchically Organized Systems in Theory & Practice, 272(2), 181-221.
[Swatantran 2012] Swatantran, Anu, Dubayah, Ralph, Goetz, Scott, Hofton, Michelle, Betts, Matthew G, Sun, Mindy, . . . Holmes, Richard. 2012. Mapping migratory bird prevalence using remote sensing data fusion.
[Troyanskaya 2003] Troyanskaya, Olga G, Dolinski, Kara, Owen, Art B, Altman, Russ B, & Botstein, David. 2003. A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae). Proceedings of the National Academy of Sciences, 100(14), 8348-8353.
[Tucker 1966] Tucker, Ledyard R. 1966. Some mathematical notes on three-mode factor analysis. Psychometrika, 31(3), 279-311.
[Velardi 2001] Velardi, Paola, Fabriani, Paolo, & Missikoff, Michele. (2001). Using text processing techniques to automatically enrich a domain ontology. Paper presented at the Proceedings of the international conference on Formal Ontology in Information Systems-Volume 2001. 270-284
[W3C 2004] W3C. 2004. OWL Web Ontology Language Reference, W3C Recommendation 10 February 2004. Retrieved 12.23, 2005, from http://www.w3.org/TR/owl-ref/
[Wang 2013] Wang, Huawei, Gao, Jun, & Liu, Zhiyong. 2013. Maintenance decision based on data fusion of aero engines. Mathematical Problems in Engineering, 2013.
[Wang 2015a] Wang, Quan, Wang, Bin, & Guo, Li. (2015a). Knowledge base completion using embeddings and rules. Paper presented at the Proceedings of the 24th International Joint Conference on Artificial Intelligence. 1859-1865
[Wang 2015b] Wang, William Yang, Mazaitis, Kathryn, Lao, Ni, & Cohen, William W. 2015b. Efficient inference and learning in a large knowledge base. Machine Learning, 100(1), 101-126.
[Wang 2014a] Wang, Y. C., & Lin, Y. K. 2014a. Association between temperature and emergency room visits for cardiorespiratory diseases, metabolic syndrome-related diseases, and accidents in metropolitan Taipei. PloS one, 9(6), e99599. doi: 10.1371/journal.pone.0099599
[Wang 2014b] Wang, Zhen, Zhang, Jianwen, Feng, Jianlin, & Chen, Zheng. (2014b). Knowledge graph embedding by translating on hyperplanes. Paper presented at the Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, Québec, Canada. 1112-1119
[Wang 2014c] Wang, Zhen, Zhang, Jianwen, Feng, Jianlin, & Chen, Zheng. (2014c). Knowledge Graph Embedding by Translating on Hyperplanes. Paper presented at the AAAI. 1112-1119
[Welfare 2015] Welfare, Taiwan Ministry of Health and. 2015. Regional names corresponding to each administrative area code in Taiwan. Retrieved 12.21, 2015, from https://das.mohw.gov.tw/DAS/WebForms/CityCode.htm
[Werbos 1990] Werbos, P. J. 1990. Backpropagation through time: what it does and how to do it. Proceedings of the IEEE, 78(10), 1550-1560.
[Wikipedia 2005] Wikipedia. 2005. Bayesian network. Retrieved 12/20, 2005, from https://en.wikipedia.org/wiki/Bayesian_network
[Wikipedia 2012] Wikipedia. 2012. Web Ontology Language (OWL). Retrieved 12.20, 2015, from https://www.w3.org/2001/sw/wiki/OWL
[Wikipedia 2015a] Wikipedia. 2015a. Information extraction. Retrieved 12.20, 2015, from https://en.wikipedia.org/wiki/Information_extraction
[Wikipedia 2015b] Wikipedia. 2015b. Data fusion. Retrieved 11/15, 2015, from https://en.wikipedia.org/wiki/Data_fusion
[Wu 2012] Wu, Shengli. (2012). Data fusion in information retrieval (Vol. 13): Springer Science & Business Media.
[Wu 2002] Wu, Shengli, & Crestani, Fabio. (2002). Data fusion with estimated weights. Paper presented at the Proceedings of the eleventh international conference on Information and knowledge management. 648-651
[Wu 2009] Wu, Shengli, Bi, Yaxin, Zeng, Xiaoqin, & Han, Lixin. 2009. Assigning appropriate weights for the linear combination data fusion method in information retrieval. Information Processing & Management, 45(4), 413-426.
[Xiao-Yong 2006] Xiao-Yong, Du, Man, Li, & Shan, Wang. 2006. A survey on Ontology Learning Research. Journal Of Software, 17(9), 1837-1847.
[Xiao 2015a] Xiao, Han, Huang, Minlie, Hao, Yu, & Zhu, Xiaoyan. 2015a. TransG: A Generative Mixture Model for Knowledge Graph Embedding. arXiv preprint arXiv:1509.05488.
[Xiao 2015b] Xiao, Han, Huang, Minlie, Hao, Yu, & Zhu, Xiaoyan. 2015b. TransA: An Adaptive Approach for Knowledge Graph Embedding. arXiv preprint arXiv:1509.05490.
[Xu 2002] Xu, Feiyu, Kurz, Daniela, Piskorski, Jakub, & Schmeier, Sven. (2002). A Domain Adaptive Approach to Automatic Acquisition of Domain Relevant Terms and their Relations with Bootstrapping. Paper presented at the LREC
[Yajun 2015] Yajun, DU, Xiaoliang, Chen, Yongqun, FAN, Xianyong, LI, Yue, WU, & Mingwei, TANG. 2015. Research on Constructing the Knowledge Graph Based on Microblog. Journal of Xihua University, 34(1), 27-35.
[Yan 1999] Yan, Ling Ling, & Özsu, M Tamer. (1999). Conflict tolerant queries in AURORA. Paper presented at the Cooperative Information Systems, 1999. CoopIS'99. Proceedings. 1999 IFCIS International Conference on. 279-290
[Yang 2015] Yang, Bishan, Yih, Wen-tau, He, Xiaodong, Gao, Jianfeng, & Deng, Li. (2015). Embedding Entities and Relations for Learning and Inference in Knowledge Bases. Paper presented at the Proceedings of the International Conference on Learning Representations (ICLR) San Diego,USA. 1-12
[Yanhua 2014] Yanhua, Xiao, Kezun, Zhang, & Wei, Wang. 2014. China Patent No. CN103488724A.
[YongChao 2010] YongChao, Yang. 2010. Management of domain ontology and its application in power system. University of Science and Technology of China.
[Yu 2011] Yu, Shi, Tranchevent, Léon-Charles, De Moor, Bart, & Moreau, Yves. 2011. Kernel-based Data Fusion for Machine Learning. Studies in Computational Intelligence: Springer Berlin Heidelberg.
[Zhang 2002] Zhang, Lei. 2002. Knowledge graph theory and structural parsing. (Ph.D), Twente University, Enschede.
[Zhang 2013] Zhang, Liang, Zhang, Lingling, Teng, Weili, & Chen, Yibing. 2013. Based on information fusion technique with data mining in the application of finance early-warning. Procedia Computer Science, 17, 695-703.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top