|
[Acar 2013] Acar, Esra, Lawaetz, Anders J, Rasmussen, Morten, & Bro, Rasmus. (2013). Structure-revealing data fusion model with applications in metabolomics. Paper presented at the Engineering in Medicine and Biology Society (EMBC), 35th Annual International Conference of the IEEE. 6023-6026 [Administration 2015] Administration, Taiwan Environmental Protection. 2015. Taiwan Air Quality Monitoring Network. Retrieved 2015/12/20, 2015, from http://taqm.epa.gov.tw/taqm/en/PsiAreaHourly.aspx [Aggarwal 2013] Aggarwal, Jagdishkumar Keshoram. (2013). Multisensor fusion for computer vision (Vol. 99): Springer Science & Business Media. [Arenas 1999] Arenas, Marcelo, Bertossi, Leopoldo, & Chomicki, Jan. (1999). Consistent query answers in inconsistent databases. Paper presented at the Proceedings of the eighteenth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems. 68-79 [Baidu 2015] Baidu, Encyclopedia. 2015. Baidu intimate. Retrieved 12.21, 2015, from http://baike.baidu.com/view/10972128.htm [Bishop 2006] Bishop, Christopher M. (2006). Pattern recognition and machine learning: springer. [Bleiholder 2008] Bleiholder, Jens, & Naumann, Felix. 2008. Data fusion. ACM Computing Surveys (CSUR), 41(1), 1. [Bollacker 2008] Bollacker, Kurt, Evans, Colin, Paritosh, Praveen, Sturge, Tim, & Taylor, Jamie. (2008). Freebase: a collaboratively created graph database for structuring human knowledge. Paper presented at the Proceedings of the 2008 ACM SIGMOD international conference on Management of data, New York,USA. 1247-1250 [Bordes 2011a] Bordes, Antoine, Weston, Jason, Collobert, Ronan, & Bengio, Yoshua. (2011a). Learning Structured Embeddings of Knowledge Bases. Paper presented at the Proceedings of the 25th International Conference on Artificial Intelligence(AAAI), San Francisco,USA. 301-306 [Bordes 2011b] Bordes, Antoine, Weston, Jason, Collobert, Ronan, & Bengio, Yoshua. (2011b). Learning structured embeddings of knowledge bases. Paper presented at the Conference on Artificial Intelligence [Bordes 2012] Bordes, Antoine, Glorot, Xavier, Weston, Jason, & Bengio, Yoshua. (2012). Joint learning of words and meaning representations for open-text semantic parsing. Paper presented at the International Conference on Artificial Intelligence and Statistics. 127-135 [Bordes 2014] Bordes, Antoine, Glorot, Xavier, Weston, Jason, & Bengio, Yoshua. 2014. A Semantic Matching Energy Function for Learning with Multi-relational Data. Machine Learning, 94(2), 233-259. [Bordes 2013a] Bordes, Antoine, Usunier, Nicolas, Garcia-Duran, Alberto, Weston, Jason, & Yakhnenko, Oksana. 2013a. Translating Embeddings for Modeling Multi-relational Data. Advances in Neural Information Processing Systems, 2787-2795. [Bordes 2013b] Bordes, Antoine, Usunier, Nicolas, Garcia-Duran, Alberto, Weston, Jason, & Yakhnenko, Oksana. (2013b). Translating embeddings for modeling multi-relational data. Paper presented at the Advances in Neural Information Processing Systems. 2787-2795 [Borst 1997] Borst, Willem Nico. (1997). Construction of engineering ontologies for knowledge sharing and reuse: Universiteit Twente. [Bruggen 2014] Bruggen, Van, & Rik. (2014). Learning Neo4j: Packt Publishing Ltd. [Buneman 1997] Buneman, Peter. (1997). Semistructured data. Paper presented at the Proceedings of the sixteenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems. 117-121 [Bureau 2015] Bureau, Taiwan Central Weather. 2015. The Central Weather Bureau Online Information. [Chang 2006] Chang, Chia-Hui, Kayed, Mohammed, Girgis, Moheb Ramzy, & Shaala, Khaled F. 2006. A survey of web information extraction systems. Knowledge and Data Engineering, IEEE Transactions on, 18(10), 1411-1428. [Chang 2014] Chang, Kai-Wei, Yih, Wen-tau, Yang, Bishan, & Meek, Christopher. (2014). Typed tensor decomposition of knowledge bases for relation extraction. Paper presented at the Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Barcelona, Spain. 1568-1579 [Chen 2014] Chen, Min, Mao, Shiwen, & Liu, Yunhao. 2014. Big data: A survey. Mobile Networks and Applications, 19(2), 171-209. [Clark 2013] Clark, James J, & Yuille, Alan L. (2013). Data fusion for sensory information processing systems (Vol. 105): Springer Science & Business Media. [DeMichiel 1989] DeMichiel, Linda G. 1989. Resolving database incompatibility: An approach to performing relational operations over mismatched domains. Knowledge and Data Engineering, IEEE Transactions on, 1(4), 485-493. [Dong 2014] Dong, Xin, Gabrilovich, Evgeniy, Heitz, Geremy, Horn, Wilko, Lao, Ni, Murphy, Kevin, . . . Zhang, Wei. (2014). Knowledge vault: A web-scale approach to probabilistic knowledge fusion. Paper presented at the Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. 601-610 [Ernst 2015] Ernst, Patrick, Siu, Amy, & Weikum, Gerhard. 2015. KnowLife: a versatile approach for constructing a large knowledge graph for biomedical sciences. Bmc Bioinformatics, 16(1), 1-13. [Ernst 2014] Ernst, Patrick, Meng, Chun, Siu, Amy, & Weikum, G. (2014). KnowLife: A knowledge graph for health and life sciences. Paper presented at the Data Engineering (ICDE), 2014 IEEE 30th International Conference on, Washington, DC, USA. 1254-1257 [Esteban 2005] Esteban, Jaime, Starr, Andrew, Willetts, Robert, Hannah, Paul, & Bryanston-Cross, Peter. 2005. A review of data fusion models and architectures: towards engineering guidelines. Neural Computing & Applications, 14(4), 273-281. [Fan 2014] Fan, Miao, Zhou, Qiang, Chang, Emily, & Zheng, Thomas Fang. (2014). Transition-based knowledge graph embedding with relational mapping properties. Paper presented at the Proceedings of the 28th Pacific Asia Conference on Language, Information and Computation, Phuket, Thailand. 328-337 [Fangkui 2015] Fangkui, Hu. 2015. Chinese Knowledge Graph Construction Method Based on Multiple Data Sources. East China University of Science and Technology. [Faouzi 2011] Faouzi, El, Eddin, Nour, Leung, Henry, Kurian, & Ajeesh. 2011. Data fusion in intelligent transportation systems: Progress and challenges–A survey. Information Fusion, 12(1), 4-10. [Ferrucci 2006] Ferrucci, David, Lally, Adam, Gruhl, Daniel, Epstein, Edward, Schor, Marshall, Murdock, J William, . . . Doganata, Yurdaer. 2006. Towards an Interoperability Standard for Text and Multi-Modal Analytics. Ibm Research Report. [Fox 1993] Fox, Edward A, Koushik, M Prabhakar, Shaw, Joseph, Modlin, Russell, & Rao, Durgesh. (1993). Combining evidence from multiple searches. Paper presented at the The first text retrieval conference (TREC-1). 319 [Galar 2012] Galar, Diego, GuSTAFSON, Anna, Tormos, Bernardo, & Berges, Luis. 2012. Maintenance Decision Making based on different types of data fusion. Eksploatacja i Niezawodnosc, Maintenance and Reliability, 14(2), 135-144. [Garcia 2012] Garcia, Fernando, Cerri, Pietro, Broggi, Alberto, De la Escalera, Arturo, & Armingol, Jose Maria. (2012). Data fusion for overtaking vehicle detection based on radar and optical flow. Paper presented at the Intelligent Vehicles Symposium (IV), 2012 IEEE. 494-499 [Gevaert 2008] Gevaert, Olivier. 2008. A Bayesian network integration framework for modeling biomedical data. Ph. D dissertation, Katholieke Universiteit Leuven. [Glorot 2015] Glorot, Xavier, & Bengio, Yoshua. 2015. Understanding the difficulty of training deep feedforward neural networks. Journal of Machine Learning Research, 9, 249-256. [Goodman 2013] Goodman, Irwin R, Mahler, Ronald P, & Nguyen, Hung T. (2013). Mathematics of data fusion (Vol. 37): Springer Science & Business Media. [Greco 2001] Greco, Sergio, Pontieri, Luigi, & Zumpano, Ester. (2001). Integrating and managing conflicting data. Paper presented at the Perspectives of System Informatics. 349-362 [Gruber 1993] Gruber, Thomas R. 1993. A translation approach to portable ontology specifications. Knowledge acquisition, 5(2), 199-220. [Gruber 1995] Gruber, Thomas R. 1995. Toward principles for the design of ontologies used for knowledge sharing? International Journal of Human-Computer Studies, 43(5), 907-928. [Gu 2015] Gu, Kelvin, Miller, John, & Liang, Percy. (2015). Traversing Knowledge Graphs in Vector Space. Paper presented at the the Conference on Empirical Methods in Natural Language Processing (EMNLP'15), Lisbon, Portugal. 318-327 [Guiyang 2014] Guiyang, Jin, Fuzai, Lv, & Zhanqin, Xiang. 2014. Enterprise information integration based on knowledge graph and semantic web technology. JOURNAL OF SOUTHEAST UNIVERSITY ( Natural Science Edition), 44(2), 250-255. [Guo 2015] Guo, Shu, Wang, Quan, Wang, Bin, Wang, Lihong, & Guo, Li. (2015). Semantically smooth knowledge graph embedding. Paper presented at the Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, Beijing,China. 84-94 [Gupta 2015] Gupta, Sumit, . 2015. Neo4j essentials : leverage the power of Neo4j to design, implement, and deliver top-notch projects. [Han 2010] Han, Yan. 2010. Research on ontology construction method based on relational database. Inner Mongolia University of Science and Technology. [Harshman 1994] Harshman, Richard A., & Lundy, Margaret E. 1994. PARAFAC: Parallel factor analysis. Computational Statistics & Data Analysis, 18(1), 39–72. [He 2015] He, Shizhu, Liu, Kang, Ji, Guoliang, & Zhao, Jun. (2015). Learning to Represent Knowledge Graphs with Gaussian Embedding. Paper presented at the Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, Melbourne, Australia. 623-632 [Hollinger 2015] Hollinger, Geoffrey, Yerramalli, Srinivas, Singh, Sanjiv, Mitra, Urbashi, & Sukhatme, Gaurav S. 2015. Distributed Data Fusion for Multirobot Search. Robotics, IEEE Transactions on, 31(1), 55-66. [Institute 2015a] Institute, National Health Research. 2015a. Taiwan NHI Information for the public: essential data of ensured affair. Retrieved 12.25, 2015, from http://www.nhi.gov.tw/webdata/webdata.aspx?menu=17&menu_id=661&WD_ID=689&webdata_id=805] [Institute 2015b] Institute, Taiwan Typhoon and Flood Research. 2015b. Daily meteorological records. Retrieved 2015/12/20, 2015, from http://www.ttfri.narl.org.tw/eng/index.html [Interior 2015] Interior, Ministry of. 2015. Geographic information. Retrieved 12.21, 2015, from http://www.moi.gov.tw/dca/02place_002.aspx [James 2011] James, M, Chui, M, Brown, B, Bughin, J, Dobbs, R, Roxburgh, C, & Byers, AH. 2011. The next frontier for innovation, competition, and productivity. Big data. [Jenatton 2012a] Jenatton, Rodolphe, Roux, Nicolas Le, Bordes, Antoine, & Obozinski, Guillaume. (2012a). A latent factor model for highly multi-relational data. Paper presented at the Advances in Neural Information Processing Systems, Harrahs and Harveys, Lake Tahoe,USA. 3167-3175 [Jenatton 2012b] Jenatton, Rodolphe, Roux, Nicolas Le, Bordes, Antoine, & Obozinski, Guillaume. 2012b. A latent factor model for highly multi-relational data. Advances in Neural Information Processing Systems, 3167-3175. [Ji 2015] Ji, Guoliang, He, Shizhu, Xu, Liheng, Liu, Kang, & Zhao, Jun. (2015). Knowledge Graph Embedding via Dynamic Mapping Matrix. Paper presented at the Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, Beijing,China. 687-696 [Jiayun 2013] Jiayun, Pan. 2013. Research of Ontology-based HeterogeneOuS Data Integration. DONGHUA UNIVERSITY. [Jordan 2014] Jordan, Greg. (2014). Practical Neo4j: Apress. [Kombrink 2011] Kombrink, Stefan, Karafiát, Martin, Burget, Lukás, & Mikolov, Tomas. 2011. Recurrent Neural Network Based Language Modeling in Meeting Recognition. Interspeech, 2877-2880. [Krompaß 2014] Krompaß, Denis, Nickel, Maximilian, & Tresp, Volker. (2014). Large-Scale Factorization of Type-Constrained Multi-Relational Data. Paper presented at the Data Science and Advanced Analytics (DSAA), 2014 International Conference on, Shanghai,China. 18 - 24 [Krompaß 2013] Krompaß, Denis, Nickel, Maximilian, Jiang, Xueyan, & Tresp, Volker. 2013. Non-Negative Tensor Factorization with RESCAL. Dbs.ifi.lmu.de. [Lanckriet 2004] Lanckriet, Gert RG, De Bie, Tijl, Cristianini, Nello, Jordan, Michael I, & Noble, William Stafford. 2004. A statistical framework for genomic data fusion. Bioinformatics, 20(16), 2626-2635. [Lao 2010] Lao, Ni, & Cohen, William W. 2010. Relational retrieval using a combination of path-constrained random walks. Machine Learning, 81(1), 53-67. [Lao 2011] Lao, Ni, Mitchell, Tom, & Cohen, William W. (2011). Random Walk Inference and Learning in A Large Scale Knowledge Base. Paper presented at the Proceedings of the Conference on Empirical Methods in Natural Language Processing, Edinburgh, UK. 529-539 [Legaria 1994] Legaria, Galindo, & A, César. (1994). Outerjoins as disjunctions (Vol. 23): ACM. [Lehmann 2014] Lehmann, Jens, Isele, Robert, Jakob, Max, Jentzsch, Anja, Kontokostas, Dimitris, Mendes, Pablo N, . . . Auer, Sören. 2014. DBpedia - A Large-scale, Multilingual Knowledge Base Extracted from Wikipedia. Semantic Web, 167-195. [Li 2005] Li, Man, Du, Xiao-Yong, & Wang, Shan. (2005). Learning ontology from relational database. Paper presented at the Machine Learning and Cybernetics, 2005. Proceedings of 2005 International Conference on. 3410-3415 [Lim 1994] Lim, Ee-Peng, Srivastava, Jaideep, & Shekhar, Shashi. (1994). Resolving attribute incompatibility in database integration: An evidential reasoning approach. Paper presented at the Data Engineering, 1994. Proceedings. 10th International Conference. 154-163 [Lin 2015a] Lin, Yankai, Liu, Zhiyuan, & Sun, Maosong. (2015a). Modeling relation paths for representation learning of knowledge bases. Paper presented at the the Conference on Empirical Methods in Natural Language Processing (EMNLP'15), Lisbon, Portugal. 705-714 [Lin 2015b] Lin, Yankai, Liu, Zhiyuan, Sun, Maosong, Liu, Yang, & Zhu, Xuan. (2015b). Learning entity and relation embeddings for knowledge graph completion. Paper presented at the The Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin Texas, USA. 2181-2187 [Louhdi 2013] Louhdi, Chbihi, Reda, Mohammed, Behja, Hicham, Alaoui, El, & Ouatik, Said. 2013. Transformation Rules for Building Owl Ontologies from Relational Databases. 271-283. doi: 10.5121/csit.2013.3822 [Lu 2015] Lu, Ping, Lin, Kai Bin, & Lin, Kai Biao. (2015). An algorithm for recognition of un-answered question in paperless marking based on segment gray histogram. Paper presented at the International Conference on Computer Science & Education (ICCSE 2015), Fitzwilliam College, Cambridge University, UK. 685-690 [Maedche 2002] Maedche, Alexander. 2002. Ontology Learning for the Semantic Web. Intelligent Systems IEEE, 16(16), 72-79. [Miller 1995] Miller, George A. 1995. WordNet: a lexical database for English. Communications of the Acm, 38(11), 39-41. [Missikoff 2002] Missikoff, Michele, Navigli, Roberto, & Velardi, Paola. 2002. Integrated approach to web ontology learning and engineering. Computer, 35(11), 60-63. [Molina 2008] Molina, Garcia, & Hector. (2008). Database systems: the complete book: Pearson Education India. [Naumann 2006] Naumann, Felix, Bilke, Alexander, Bleiholder, Jens, & Weis, Melanie. 2006. Data Fusion in Three Steps: Resolving Schema, Tuple, and Value Inconsistencies. IEEE Data Eng. Bull., 29(2), 21-31. [Navigli 2003] Navigli, Roberto, Velardi, Paola, & Gangemi, Aldo. 2003. Ontology learning and its application to automated terminology translation. Intelligent Systems, IEEE, 18(1), 22-31. [Neelakantan 2015] Neelakantan, Arvind, Roth, Benjamin, & McCallum, Andrew. (2015). Compositional Vector Space Models for Knowledge Base Completion. Paper presented at the Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, Beijing, China. 155-166 [Nickel 2013] Nickel, Maximilian, & Tresp, Volker. (2013). Logistic tensor factorization for multi-relational data. Paper presented at the Proceedings of the 30 th International Conference on Machine Learning, Atlanta, Georgia, USA [Nickel 2011] Nickel, Maximilian, Tresp, Volker, & Kriegel, Hans Peter. (2011). A Three-Way Model for Collective Learning on Multi-Relational Data. Paper presented at the International Conference on Machine Learning, Washington, USA. 809-816 [Nickel 2012] Nickel, Maximilian, Tresp, Volker, & Kriegel, Hans Peter. (2012). Factorizing YAGO: Scalable Machine Learning for Linked Data. Paper presented at the the International World Wide Web Conference Committee(IW3C2), Lyon, France. 271-280 [Nickel 2015] Nickel, Maximilian, Murphy, Kevin, Tresp, Volker, & Gabrilovich, Evgeniy. 2015. A Review of Relational Machine Learning for Knowledge Graphs: From Multi-Relational Link Prediction to Automated Knowledge Graph Construction. arXiv preprint arXiv:1503.00759. [Patel 2015] Patel, Neil. 2015. The Beginner`s Guide to Google`s Knowledge Graph. Retrieved 12.20, 2015, from http://neilpatel.com/2015/06/30/the-beginners-guide-to-the-googles-knowledge-graph/ [Prado 2013] Prado, José, Cabrita, Gonçalo, & Marques, Lino. (2013). Bayesian sensor fusion for land-mine detection using a dual-sensor hand-held device. Paper presented at the Industrial Electronics Society, IECON 2013-39th Annual Conference of the IEEE. 3887-3892 [Qian 2013] Qian, Richard. 2013. Understand Your World with Bing. Retrieved 2015.12.20, 2015, from http://blogs.bing.com/search/2013/03/21/understand-your-world-with-bing/ [Ramasamy 2013] Ramasamy, Suresh K, & Raja, Jayaraman. 2013. Performance evaluation of multi-scale data fusion methods for surface metrology domain. Journal of Manufacturing Systems, 32(4), 514-522. [Robinson 2013] Robinson, Ian, Eifrem, Emil, & Webber, James. 2013. Graph Databases. Oreilly Media. [Robinson 2015] Robinson, Ian, Webber, Jim, & Eifrem, Emil. (2015). Graph Databases: New Opportunities for Connected Data: " O'Reilly Media, Inc.". [S.Amit 2012] S.Amit. 2012. Introducing the Knowledge Graph:Things,Not Strings. from http://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html [Santoso 2011] Santoso, Heru Agus, Haw, Su-Cheng, & Abdul-Mehdi, Ziyad T. 2011. Ontology extraction from relational database: Concept hierarchy as background knowledge. Knowledge-Based Systems, 24(3), 457-464. doi: 10.1016/j.knosys.2010.11.003 [Sattler 2000] Sattler, Kai-Uwe, Conrad, Stefan, & Saake, Gunter. (2000). Adding Conflict Resolution Features to a Query Language for Database Federations. Paper presented at the EFIS. 41-52 [Schönberger 2013] Schönberger, Mayer, Viktor, Cukier, & Kenneth. (2013). Big data: A revolution that will transform how we live, work, and think: Houghton Mifflin Harcourt. [Shamsfard 2004] Shamsfard, Mehrnoush, & Barforoush, Ahmad Abdollahzadeh. 2004. Learning ontologies from natural language texts. International Journal of Human-Computer Studies, 60(1), 17-63. [Shen 2015] Shen, Wei, Wang, Jianyong, & Han, Jiawei. 2015. Entity linking with a knowledge base: Issues, techniques, and solutions. Knowledge and Data Engineering&IEEE Transactions on, 27(2), 443-460. [Snijders 2012] Snijders, Chris, Matzat, Uwe, & Reips, Ulf-Dietrich. 2012. Big data: Big gaps of knowledge in the field of internet science. International Journal of Internet Science, 7(1), 1-5. [Socher 2013a] Socher, Richard, Chen, Danqi, Manning, Christopher D., & Ng, Andrew Y. 2013a. Reasoning With Neural Tensor Networks for Knowledge Base Completion. Advances in Neural Information Processing Systems, 926-934. [Socher 2013b] Socher, Richard, Chen, Danqi, Manning, Christopher D, & Ng, Andrew. (2013b). Reasoning with neural tensor networks for knowledge base completion. Paper presented at the Advances in Neural Information Processing Systems. 926-934 [Sogou 2015] Sogou, Encyclopedia. 2015. Know cube. Retrieved 12.21, 2015, from http://baike.sogou.com/h66616234.htm [Studer 1998] Studer, Rudi, Benjamins, V Richard, & Fensel, Dieter. 1998. Knowledge engineering: principles and methods. Data & knowledge engineering, 25(1), 161-197. [Suchanek 2007] Suchanek, Fabian M., Kasneci, Gjergji, & Weikum, Gerhard. 2007. et al. Yago: A Core of Semantic Knowledge. Hierarchically Organized Systems in Theory & Practice, 272(2), 181-221. [Swatantran 2012] Swatantran, Anu, Dubayah, Ralph, Goetz, Scott, Hofton, Michelle, Betts, Matthew G, Sun, Mindy, . . . Holmes, Richard. 2012. Mapping migratory bird prevalence using remote sensing data fusion. [Troyanskaya 2003] Troyanskaya, Olga G, Dolinski, Kara, Owen, Art B, Altman, Russ B, & Botstein, David. 2003. A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae). Proceedings of the National Academy of Sciences, 100(14), 8348-8353. [Tucker 1966] Tucker, Ledyard R. 1966. Some mathematical notes on three-mode factor analysis. Psychometrika, 31(3), 279-311. [Velardi 2001] Velardi, Paola, Fabriani, Paolo, & Missikoff, Michele. (2001). Using text processing techniques to automatically enrich a domain ontology. Paper presented at the Proceedings of the international conference on Formal Ontology in Information Systems-Volume 2001. 270-284 [W3C 2004] W3C. 2004. OWL Web Ontology Language Reference, W3C Recommendation 10 February 2004. Retrieved 12.23, 2005, from http://www.w3.org/TR/owl-ref/ [Wang 2013] Wang, Huawei, Gao, Jun, & Liu, Zhiyong. 2013. Maintenance decision based on data fusion of aero engines. Mathematical Problems in Engineering, 2013. [Wang 2015a] Wang, Quan, Wang, Bin, & Guo, Li. (2015a). Knowledge base completion using embeddings and rules. Paper presented at the Proceedings of the 24th International Joint Conference on Artificial Intelligence. 1859-1865 [Wang 2015b] Wang, William Yang, Mazaitis, Kathryn, Lao, Ni, & Cohen, William W. 2015b. Efficient inference and learning in a large knowledge base. Machine Learning, 100(1), 101-126. [Wang 2014a] Wang, Y. C., & Lin, Y. K. 2014a. Association between temperature and emergency room visits for cardiorespiratory diseases, metabolic syndrome-related diseases, and accidents in metropolitan Taipei. PloS one, 9(6), e99599. doi: 10.1371/journal.pone.0099599 [Wang 2014b] Wang, Zhen, Zhang, Jianwen, Feng, Jianlin, & Chen, Zheng. (2014b). Knowledge graph embedding by translating on hyperplanes. Paper presented at the Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, Québec, Canada. 1112-1119 [Wang 2014c] Wang, Zhen, Zhang, Jianwen, Feng, Jianlin, & Chen, Zheng. (2014c). Knowledge Graph Embedding by Translating on Hyperplanes. Paper presented at the AAAI. 1112-1119 [Welfare 2015] Welfare, Taiwan Ministry of Health and. 2015. Regional names corresponding to each administrative area code in Taiwan. Retrieved 12.21, 2015, from https://das.mohw.gov.tw/DAS/WebForms/CityCode.htm [Werbos 1990] Werbos, P. J. 1990. Backpropagation through time: what it does and how to do it. Proceedings of the IEEE, 78(10), 1550-1560. [Wikipedia 2005] Wikipedia. 2005. Bayesian network. Retrieved 12/20, 2005, from https://en.wikipedia.org/wiki/Bayesian_network [Wikipedia 2012] Wikipedia. 2012. Web Ontology Language (OWL). Retrieved 12.20, 2015, from https://www.w3.org/2001/sw/wiki/OWL [Wikipedia 2015a] Wikipedia. 2015a. Information extraction. Retrieved 12.20, 2015, from https://en.wikipedia.org/wiki/Information_extraction [Wikipedia 2015b] Wikipedia. 2015b. Data fusion. Retrieved 11/15, 2015, from https://en.wikipedia.org/wiki/Data_fusion [Wu 2012] Wu, Shengli. (2012). Data fusion in information retrieval (Vol. 13): Springer Science & Business Media. [Wu 2002] Wu, Shengli, & Crestani, Fabio. (2002). Data fusion with estimated weights. Paper presented at the Proceedings of the eleventh international conference on Information and knowledge management. 648-651 [Wu 2009] Wu, Shengli, Bi, Yaxin, Zeng, Xiaoqin, & Han, Lixin. 2009. Assigning appropriate weights for the linear combination data fusion method in information retrieval. Information Processing & Management, 45(4), 413-426. [Xiao-Yong 2006] Xiao-Yong, Du, Man, Li, & Shan, Wang. 2006. A survey on Ontology Learning Research. Journal Of Software, 17(9), 1837-1847. [Xiao 2015a] Xiao, Han, Huang, Minlie, Hao, Yu, & Zhu, Xiaoyan. 2015a. TransG: A Generative Mixture Model for Knowledge Graph Embedding. arXiv preprint arXiv:1509.05488. [Xiao 2015b] Xiao, Han, Huang, Minlie, Hao, Yu, & Zhu, Xiaoyan. 2015b. TransA: An Adaptive Approach for Knowledge Graph Embedding. arXiv preprint arXiv:1509.05490. [Xu 2002] Xu, Feiyu, Kurz, Daniela, Piskorski, Jakub, & Schmeier, Sven. (2002). A Domain Adaptive Approach to Automatic Acquisition of Domain Relevant Terms and their Relations with Bootstrapping. Paper presented at the LREC [Yajun 2015] Yajun, DU, Xiaoliang, Chen, Yongqun, FAN, Xianyong, LI, Yue, WU, & Mingwei, TANG. 2015. Research on Constructing the Knowledge Graph Based on Microblog. Journal of Xihua University, 34(1), 27-35. [Yan 1999] Yan, Ling Ling, & Özsu, M Tamer. (1999). Conflict tolerant queries in AURORA. Paper presented at the Cooperative Information Systems, 1999. CoopIS'99. Proceedings. 1999 IFCIS International Conference on. 279-290 [Yang 2015] Yang, Bishan, Yih, Wen-tau, He, Xiaodong, Gao, Jianfeng, & Deng, Li. (2015). Embedding Entities and Relations for Learning and Inference in Knowledge Bases. Paper presented at the Proceedings of the International Conference on Learning Representations (ICLR) San Diego,USA. 1-12 [Yanhua 2014] Yanhua, Xiao, Kezun, Zhang, & Wei, Wang. 2014. China Patent No. CN103488724A. [YongChao 2010] YongChao, Yang. 2010. Management of domain ontology and its application in power system. University of Science and Technology of China. [Yu 2011] Yu, Shi, Tranchevent, Léon-Charles, De Moor, Bart, & Moreau, Yves. 2011. Kernel-based Data Fusion for Machine Learning. Studies in Computational Intelligence: Springer Berlin Heidelberg. [Zhang 2002] Zhang, Lei. 2002. Knowledge graph theory and structural parsing. (Ph.D), Twente University, Enschede. [Zhang 2013] Zhang, Liang, Zhang, Lingling, Teng, Weili, & Chen, Yibing. 2013. Based on information fusion technique with data mining in the application of finance early-warning. Procedia Computer Science, 17, 695-703.
|