跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/12 22:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐英耀
研究生(外文):Ying-Yao Hsu
論文名稱:陽極氧化鋁模版製作固態電容器
論文名稱(外文):AAO Template Assisted Fabrication of Solid-State Capacitors
指導教授:賴宜生陳建仲陳建仲引用關係
指導教授(外文):Yi-Sheng LaiChien-Chon Chen
口試委員:賴宜生陳建仲張仍奎
口試委員(外文):Yi-Sheng LaiChien-Chon ChenJeng-Kuei Chang
口試日期:2013-07-24
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:材料科學工程學系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:112
中文關鍵詞:超電容陽極氧化鋁模版無電鍍/電鍍固態電容
外文關鍵詞:SupercapacitorAnodizing Alumina Oxide TemplateElectroless Plating/ElectroplatingSolid-State Capacitor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:491
  • 評分評分:
  • 下載下載:69
  • 收藏至我的研究室書目清單書目收藏:0
  本研究使用陽極氧化鋁(AAO)模版製造固態電容,經磷酸及草酸陽極氧化製成之AAO模版來獲得規則的奈米多孔結構,並且依不同擴孔時間調節其開孔孔徑(80-400 nm),以確立開孔孔徑和管壁厚度與擴孔時間的關係。吾人以AAO為模版研製出三種電容結構,根據電容結構的再現性和可行性,吾人使用許多不同技術來製作電容結構,如陽極氧化、電鍍、無電鍍、水解、濺鍍及蒸鍍等。

  第一種電容結構使用磷酸製作之AAO做為支架,並依序在空孔內填入金屬、介電質與金屬,經掃描式電子顯微鏡(SEM)圖觀測得知由無電鍍法獲得鎳管的再現性非常差,除此之外,該過程中的無電鍍液甚至會侵蝕AAO的氧化鋁層。

  第二種電容結構同樣使用磷酸製作的AAO模版,經濺鍍或蒸鍍底部電極層後接著以電鍍填入金屬線,經過擴孔處理後,將二氧化鈦置入金屬線與氧化鋁管壁間的縫隙,因二氧化鈦填入的結果差強人意,該製程需要些許修改。

  第三種電容結構則使用草酸製作之AAO模版,利用電鍍填入金屬線,並以不同時間蝕刻來移除表面氧化鋁層,最後利用燒結來合併兩片模版,依據循環伏安圖結果,未移除氧化鋁層的比電容為2.12 F/g,移除部分氧化鋁層和全部移除氧化鋁層的比電容分別為9.90 F/g以及47.6 F/g。

  研究結果顯示,在第三種電容結構中移除所有氧化鋁層可得到最佳的電容值,以該結構製作之電容器來發展儲能裝置,應具有相當的潛力。

關鍵字:超電容、陽極氧化鋁模版、無電鍍/電鍍、固態電容
In this work, solid-state capacitors are fabricated by utilizing the anodizing alumina oxide (AAO) template. The AAO templates are prepared in the phosphorus acid or oxalic acid to obtain an ordered nanoporous structure and followed by pore widening to adjust the diameter from 80 nm to 400 nm. The dependence of pore diameter and wall thickness on the pore widening time is demonstrated. We develop three types of capacitor structures using AAO as template. Based on reproducibility and feasibility of the process, several techniques have been used to make the capacitor structures, such as anodization, electroplating, electroless plating, hydrolysis, sputtering, and evaporation.

The first capacitor structure uses phosphoric acid anodized AAO as scaffolds. The metal-dielectric-metal layers are deposited inside the pores. Scanning electron microscopic (SEM) images show that the reproducibility of nickel tubes by electrolesss plating is not well. Besides, the electroless nickel solution even corrodes the alumina layer of AAO templates during the electroless plating process.

The second capacitor structure also uses the AAO templates anodized by phosphoric acid. The electrode layer is deposited by sputtering or evaporation, and followed by electroplating metal wires. Titanium dioxide as the dielectric is then deposited inside the gap between metal wires and alumina walls. Because the filling of titanium dioxide into the gap is not satisfactory, the procedure to make this structure needs to be modified.

The third capacitor structure employs the AAO templates anodized by oxalic acid. The nickel wires are electroplated inside the AAO pores and the alumina layer is removed after different etching time. Results of cyclic voltammograms show that the capacitor without removal of the alumina layer has specific capacitance of 2.12 F/g. The capacitors with part removal and full removal of alumina layers exhibit specific capacitances of 9.90 F/g and 25.5 F/g, respectively.

According to the results presented herein, the capacitor with full removal of alumina layers exhibits the greatest capacitance. Capacitor with this structure is promising to be developed as new energy storage devices.

Keywords : Supercapacitor, anodizing aluminum oxide template, electroless plating/electroplating, solid-state capacitor
摘要 ...................................................................... I
Abstract ................................................................. III
Contents ................................................................. V
Figure Caption ........................................................... IX
Table List ............................................................... XVI
Chapter 1 Introduction ................................................ 1
1.1 Preface ....................................................... 1
1.2 Objectives .................................................... 5
Chapter 2 Basic Theory ................................................ 6
2.1 Anodizing Aluminum Oxide Templates ............................ 6
2.1.1 Properties of anodization ............................... 6
2.1.2 Procedures to fabricate AAO templates ................... 10
2.1.3 The anodizing reactions ................................. 13
2.1.4 Future applications ..................................... 16
2.2 Capacitors .................................................... 17
2.2.1 Capacitance ............................................. 18
2.2.2 Energy .................................................. 19
2.2.3 Categories of capacitors ................................ 20
2.2.4 Capacitor characteristics ............................... 26
2.3 Electroplating ................................................ 29
2.3.1 Principles of electroplating ............................ 29
2.3.2 Influence of process parameters on electroplating ....... 30
2.4 Electroless Plating ........................................... 31
2.4.1 Characteristics of electroless plating .................. 31
2.4.2 Pretreatment process .................................... 31
2.4.3 Electroless plating bath ................................ 33
2.4.4 The electroless plating reactions ....................... 35
2.4.5 Control of electroless plating process .................. 37
2.5 Dielectric .................................................... 38
2.5.1 Summary of dielectric ................................... 38
2.5.2 Titanium dioxide ........................................ 40
2.6 Sputter ....................................................... 41
2.6.1 Principles of sputtering and plasma ..................... 41
2.6.2 Magnetron sputtering .................................... 43
2.7 Thermal evaporation ........................................... 44
Chapter 3 Experimental procedures ..................................... 45
3.1 Anodizing aluminum oxide templates ............................ 45
3.1.1 Pretreatment ............................................ 45
3.1.2 First anodizing process ................................. 45
3.1.3 Removing the alumina of first anodizing process ......... 46
3.1.4 Second anodizing process ................................ 46
3.1.5 Pore widening ........................................... 47
3.1.6 Removing the aluminum foil and barrier layer ............ 47
3.1.7 Removing alumina in AAO templates using NaOH ............ 48
3.2 Electroplating Metal Wires .................................... 49
3.2.1 Electroplating silver wires ............................. 49
3.2.2 Electroplating nickel wires ............................. 49
3.3 Filling Nickel by Electroless Plating ......................... 50
3.3.1 Pretreatment ............................................ 50
3.3.2 Sensitizing ............................................. 50
3.3.3 Activating .............................................. 50
3.3.4 Electroless nickel plating .............................. 50
3.4 Sputtering and Evaporation .................................... 52
3.4.1 Sputtering .............................................. 52
3.4.2 Evaporation ............................................. 52
3.5 Three Structures of Capacities ................................ 53
3.5.1 Fabrication procedure of capacitor A .................... 53
3.5.2 Fabrication procedure of capacitor B .................... 57
3.5.3 Fabrication procedure of capacitor C .................... 61
3.6 Measurements and Analysis ..................................... 65
3.6.1 Scanning electron microscope ............................ 65
3.6.2 Energy dispersive spectrometer .......................... 65
3.6.3 Cyclic voltammetry analysis ............................. 65
Chapter 4 Results and Discussion ...................................... 66
4.1 Fabrication of Anodizing Aluminum Oxide Templates ............. 66
4.1.1 Anodizing aluminum oxide templates by phosphoric acid ... 66
4.1.2 Anodizing aluminum oxide templates by oxalic acid ....... 69
4.1.3 Evolution of pores with different pore-widening time .... 70
4.2 The Steps of Electroless Plating .............................. 78
4.3 Deposition of Metal Wires ..................................... 86
4.3.1 Sputtering of nickel as electrode for electroplating .... 86
4.3.2 Evaporation ............................................. 88
4.3.3 Electroplating of metal wires ........................... 89
4.4 Filling of Titanium Dioxide ................................... 91
4.4.1 Pore widening after electroplating metal wire ........... 91
4.4.2 Removal of top side of alumina layer .................... 93
4.4.3 Filling of titanium dioxide ............................. 95
4.5 The Measurement of Capacitance ................................ 98
Chapter 5 Conclusion .................................................. 105
References ............................................................... 107

[1] S.F. Su, W.Z. Lung, Science Development 362, p32-35 (2003).
[2] G.H. Wei, Science Development 451, p26-31 (2010).
[3] J.H. Zhu, M. Qiu, B. Wei, H.J. Zhang, X.K. Lai, W.J. Yuan, Energy 51, p184-192 (2013).
[4] V. Vasudeva Rao, American Institute of Physics 1063, p393-410 (2008).
[5] J.J. Suay, E. Gimenez, T. Rodriguez, K. Habbib, J.J. Saura, Corrosion Science 45, p611-624 (2003).
[6] R. Kötz, J.C. Sauter, P. Ruch, P. Dietrich, F.N. Büchi, P.A. Magne, P. Varenne, Journal of Power Sources 174, p264-271 (2007).
[7] C.G. Jin, W.F. Liu, C. Jia, X.Q. Xiang, W.L. Cai, L.Z. Yao, X.G. Li, Journal of Crystal Growth 258, p337-341 (2003).
[8] S.W. Lin, S.C. Chang, R.S. Liu, S.F. Hu, N.T. Jan, Journal of Magnetism and Magnetic Materials 282, p28-31 (2004).
[9] B.J. Lee, S.R. Sivakkumar, J.M. Ko, J.H. Kim, S.M. Jo, D.Y. Kim, Journal of Power Sources 168, p546-522 (2007).
[10] F. Pico, J. Ibañez, M.A. Lillo-Rodenas, A. Linares-Solano, R.M. Rojas, J.M. Amarilla, J.M. Rojo, Journal of Power Sources 176, p417-425 (2008).
[11] 蔡麗端,超電容的發展與應用,工研院材化所,(2012).
[12] M.T. Brumbach, T.M. Alam, R.H. Nilson, P.G. Kotula, B.B. Mckenzie, R.G. Tissot, B.C. Bunker, Materials Chemistry and Physics 124, p359-370 (2010).
[13] C.C. Chen, Y.R. Shiue, Y.K. Wen, Industrial Materials 277, p153-162 (2010).
[14] S. Ono, N. Masuko, Corrosion Science 33, p503-505, (1992).
[15] 薛瑋雯,10 nm氧化鋁通道之製作與研究,逢甲大學資訊電機工程系碩士論文,(2007)。
[16] G.H. Liu, K.Y. Wang, N. Hoivik, H. Jakobsen, Solar Energy Materials & Solar Cells 98, p24-38 (2012).
[17] H. Masuda, K. Yada, A. Osaka, Japanese Journal of Applied Physics 37, p1340-1342 (1998).
[18] M. Tang, J. He, J. Zhou, P. He, Materials Letters 60, p2098-2100 (2006).
[19] C.L. Liao, C.W. Chu, K.Z. Fung, I.C. Leu, Journal of Alloys and Compounds 441, p1-6 (2007).
[20] Y.C. Sui, B.Z. Cui, L. Martez, R. Perez, D.J. Sellmyer, Thin Solid Films 406, p64-69 (2002).
[21] C.C. Chen, C.L. Chen, Y.S. Lai, Materials Chemistry and Physics 131, p250-253 (2011).
[22] K.H. Yang, C.C. Chen, Alumina Template Assistance in Titania Nanotubes Dye-Sensitized Solar Cell (Ti2O NT-DSSC) Device Fabrication, National United University, (2012).
[23] Application Report NanoWizard, Hennesthal@jpk.com.
[24] 方胤証,以陽極氧化鋁模版製作鎳磷奈米線研究,逢甲大學材料科學與工程學系碩士論文,(2009)。
[25] G.E. Thompson, Thin Solid Films 297, p192-201 (1997).
[26] O. Jessesky, F. Muller, U. Gosele, Applied Physics Letters 72, p1173-1175 (1998).
[27] C.L. Xu, H. Li, G.Y. Zhao, H.L. Li, Materials Letters 60, p2335-2338 (2006).
[28] D. Routkevitch, A.A. Tager, J. Haruyama, D. Almawlawi, M. Moskovits, J.M. Xu, IEEE Transaction on Electron Device 43, p1646-1658 (1996).
[29] 黃俊明,奈米級邊際電容感測器研製,雲林科技大學機械工程學系碩士論文,(2003)。
[30] H. Benson, University Physics, (USA, JohnWiley & Sons, Inc., 1995).
[31] NARLabs, Republic of China Science and Tachnology Annual, p495-496 (2012).
[32] K.D. Christopher, R.S. Alwitt, The Electrochemical Society 128, p300-305 (1981).
[33] R.R. Li, Industrial Materials 124, p136-145 (1997).
[34] J.Y. Yang, J.K. Huang, Y.C. Liu, S.Y. Chen, NDL Communications 1, p17-21 (2002).
[35] 王世育,四氧化三鐵/碳材超高電容器之特性與機制探討,國立台灣大學化學工程學系博士論文,(2004)。
[36] B.W. Williams, Power Electronics, JohnWiley & Sons, Inc., (1987).
[37] 楊聰仁,逢甲大學材料科技 3,p9-19 (1984)。
[38] B.J.E. Feng, Finishing Science 3, p25-31 (1986).
[39] N. Takano, N. Hosoda, T. Yamada, T. Osaka, Journal of the Electrochemical Society 146, p1407-1411 (1999).
[40] Z. Li, X.F. Qian, J. Yin, Z.K. Zhu, Solid State Chemistry 178, p1765-1772 (2005).
[41] C.M. Liu, W.L. Liu, S.H. Hsieh, T.K. Tsai, W.J. Chen, Applied Surface Science 243, p259-264 (2005).
[42] 蕭文鏡,利用無電鍍技術結合模版法製備純鎳金屬奈米管及空心球之研究,國立中央大學材料科學與工程學系碩士論文,(2007)。
[43] 江宗澤,輕量化導熱銅鋁複合材料之製備及其性質之研究,國立成功大學材料科學與工程學系碩士論文,(2009)。
[44] 楊聰仁,電鍍鎳與無電鍍鎳實驗,逢甲大學,(1987)。
[45] Wikipedia, http://en.wikipedia.org/wiki/Dielectric, (2012).
[46] 陳毅驊,以Y2O3為矽閘極介電層之金氧半特性之研究,中原大學電子工程學系碩士論文,(2003)。
[47] S.Y. Huang, K.H. An, W.D. Yang, Journal of Technology , Engineering and Education 7, p392-397 (2010).
[48] J.G. Guo, J.S. Lin, J.S. Chen, C.C. Chen, Journal of The Humanities and Social Science 1, p83-91 (2009).
[49] R.J. Coldstom, P.H. Rutherfod, Introduction to Plasma Physics, (London, Institute of Physics, 1995).
[50] 陳文華,以射頻磁控濺鍍法成長氧化鋅透明導電薄膜,國立成功大學化學工程學系碩士論文,(2005)。
[51] K. Wasa, S. Hayakawa, Handbook of Sputter Deposition Technology, (USA, Noyes Publications, 1992).
[52] 吳秉融,氧化鋅薄膜成長於PET基版上並應用於壓電換能器之研究,國立中山大學電機工程學系碩士論文,(2009)。
[53] B.C. Chen, Finishing Science 31, p28-47 (1992).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top