跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/13 06:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡昌泰
研究生(外文):Chang-Tai Tsai
論文名稱:間接發育型玉柱蟲Ptychodera flava的胚胎早期神經系統發育過程
論文名稱(外文):Developmental process of the embryonic nervous system in the indirect-developing acorn worm Ptychodera flava
指導教授:游智凱游智凱引用關係蘇怡璇蘇怡璇引用關係謝志豪謝志豪引用關係
指導教授(外文):Jr-Kai YuYi-Hsien SuChih-Hao Hsieh
口試委員:胡清華郭典翰
口試委員(外文):Chin-Hwa HuDian-Han Kuo
口試日期:2020-07-10
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:海洋研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:69
中文關鍵詞:神經系統神經發育演化半索動物
外文關鍵詞:nervous systemneurogenesisevolutionhemichordate
DOI:10.6342/NTU202003755
相關次數:
  • 被引用被引用:0
  • 點閱點閱:236
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
脊索動物的中樞神經系統是由背側中空神經管構成,此構造也是脊索動物特有的構造。在脊索動物神經發育的過程中,神經管中的神經幹細胞藉由Delta/Notch信號通路產生不對稱分裂形成子細胞或繼續保留幹細胞特性。雖然脊索動物的神經發育分子機制已經被深入的研究,然而脊索動物的中樞神經系統如何演化而來仍有爭議。目前為止,關於半索動物的神經發育機制的研究較為缺乏。半索動物在演化樹上為脊索動物的旁系群,由於親緣關係和脊索動物相近,研究半索動物的神經發育可以闡明脊索動物中樞神經系統的演化過程。因此,本研究的目的在於探討間接發育型玉柱蟲Ptychodera flava的神經系統發育過程以及其中的分子機制。我利用免疫螢光染色及原位雜交技術去觀察Synaptotagmin蛋白、Ngn基因、AcSc基因、chat基因、th基因及Serotonin蛋白的分佈與基因表現位置,用以標記分化神經、神經先驅細胞及不同類型的神經。實驗結果發現,已分化神經細胞首先在原腸胚時期出現在胚胎的apical region,然後再出現在胚胎的纖毛帶上。等到tornaria larva時期,神經細胞的軸突將神經細胞之間連結得更為緊密。實驗結果又發現,在神經細胞出現之前,神經先驅基因Ngn和AcSc已經分別以salt-and-pepper的形式表現在胚胎的纖毛帶及apical region上。在Notch信號通路抑制物(DAPT)處理過的胚胎中,我觀察到神經先驅基因在胚胎apical region的表現範圍有擴大現象,並產生發育散亂的神經系統。此結果表示,Notch信號通路參與了P. flava的神經系統發育。此外,我也觀察到DAPT會影響纖毛帶及眼點的發育。而在BMP蛋白處理後的胚胎中,我發現Ngn基因和AcSc基因的表現會分別往胚胎的腹側集中或減少。以上的實驗結果顯示P. flava和脊索動物以及其他的動物一樣,都是利用Notch及BMP信號通路來調控神經系統的發育。最後,我的研究結果顯示驅動兩側對稱動物中各式神經系統的演化動力來源並非是神經發育過程的機制,而是神經系統開始發育的位置。
The central nervous system (CNS) of chordates is composed of a dorsal hollow neural tube, which represents one of the defining features of the phylum. During chordate neurogenesis, the neural stem cells located within the neural tube undergo asymmetrical cell division, and depending on the level of Delta/Notch signaling, the daughter cells become neural progenitors or remain as stem cells. Although the molecular mechanisms underlying neurogenesis of the chordate nervous system have been well studied, the evolutionary origin of the chordate CNS remains debatable. Little attention has been paid to the development of the nervous system of the hemichordates, a sister group of chordates. Because of the phylogenetic position, studies on the developmental mechanisms controlling neurogenesis in hemichordates may shed light on the evolution of the chordate nervous system. In this study, I aim to decipher the spatiotemporal neurogenesis process and its underlying molecular mechanism in Ptychodera flava, an indirect-developing hemichordate. I performed immunostaining and in situ hybridization on markers of differentiated neurons, neural progenitors and neuronal subtypes, including Synaptotagmin, Ngn, AcSc, chat, th and Serotonin. I observed that differentiated neurons appeared initially in the apical region, then in the ciliary bands at the late gastrula stage, and the neurons became hardwired at the tornaria larval stage. My results also revealed that, a few hours before the Synaptotagmin-positive neurons were observed, neural progenitor genes, Ngn and AcSc, were expressed in a salt-and-pepper pattern in the ciliary bands and the apical ectoderm, respectively. In embryos treated with DAPT, a Notch signaling inhibitor, I observed broader expression domains of the neural progenitor genes and a disorganized nervous system, indicating that P. flava neurogenesis is mediated by Notch signaling. In addition, I observed that development of the ciliary bands and the eye spots were affected by DAPT. In the BMP-treated embryos, it is known that neural patterning is affected, and I observed that expression of Ngn and AcSc was accumulated ventrally or decreased, respectively. From these results, I conclude that similar to chordates and other animals, P. flava employs Notch and BMP signaling pathways for neurogenesis and neural patterning. My study suggests that changes of where neurogenesis occurs, rather than the neurogenic process, may be the driving force for the emergence of diverse nervous systems in the bilaterian.
口試委員會審定書 i
謝辭 ii
摘要 iv
Abstract v
Table of Contents vii
List of Figures iix
List of Appendix x
Introduction 1
Background 1
Neural patterning in Bilateria 2
Neurogenesis in the Bilateria 3
Using hemichordates to investigate the evolutionary origins of the CNS of chordates 4
Overview of Ptychodera flava development 6
Previous studies of the nervous system in hemichordates 7
Aim of this study 8
Materials and Methods 9
Animal collection 9
Spawning induction, fertilization and embryo culture 9
Molecular cloning 10
DIG-labeled RNA probe preparation 10
DNP-labeled RNA probe preparation 11
Fixation of the P. flava embryos 12
Fixation of the P. flava embryos for Synaptotagmin immunostaining 12
Whole mount in situ hybridization (WMISH) 13
Double fluorescence in situ hybridization (double FISH) 14
Immunofluorescence staining 16
Treatments with DAPT 17
Results 18
Spatiotemporal development of the embryonic nervous system of P. flava 18
Expression patterns of the proneural bHLH transcription factors, Pf-neurogenin and Pf-achaete-scute, in P. flava embryos 19
Investigation of the neuronal subtypes 21
Neural progenitor genes are regulated by Notch signaling in P. flava 23
Treating DAPT before or after the late gastrula stage affects the organization of the nervous system 25
Treating DAPT before the late gastrula stage affects development of the ciliary band 26
Treating embryos with DAPT affects development of the eye 27
Overactivation of BMP signaling represses neurogenesis in P. flava 28
Discussion 31
Similar molecular mechanisms are used for neurogenesis in Metazoa 31
Larval nervous systems of indirect-developing hemichordates and sea urchins might be homologous 32
Treating DAPT before the late gastrula stage affects development of the ciliary bands 34
DAPT influences development of the eye spots 34
References 36
Figure 1. The nervous system of P. flava (A-M) Synaptotagmin immunostaining in P. flava from late gastrula (45 hpf) to tornaria larva (96 hpf) 42
Figure 2. Numbers of the neuronal cell bodies in different regions and at different stages of P. flava 43
Figure 3. Basic helix-loop-helix domain of Pf-Ngn and Pf-AcSc 44
Figure 4. Expression of Pf-Ngn and Pf-AcSc. (A-D) Expression of Pf-Ngn was detected by WMISH from 45 hpf to 72 hpf 46
Figure 5. Expression of the th and chat genes and distributions of Serotonin during P. flava embryogenesis 47
Figure 6. The timescale of neurogenesis in P. flava based on molecular markers. 48
Figure 7. Expression of Pf-delta during embryogenesis 49
Figure 8. Schemes of DAPT treating periods in P. flava 51
Figure 9. Expressions patterns of Pf-Ngn and Pf-AcSc in DAPT-treated embryos 52
Figure 10. Expression of Pf-delta in DAPT-treated embryos 54
Figure 11. Synaptotagmin immunostaining in the DAPT-treated embryos 55
Figure 12. Expression of Pf-chat and Pf-th in the DAPT-treated embryos 57
Figure 13. Serotonin immunostaining in the DAPT-treated embryos 58
Figure 14. Expression of Pf-onecut, an ciliary bands marker, in the DAPT-treated embryos 59
Figure 15. Expression of Pf-vsx and Pf-opsin in the DAPT-treated embryos 60
Figure 16. Scheme of the mBMP4 treating period in P. flava 61
Figure 17. Expression of Pf-Ngn and Pf-AcSc in mBMP4 overactivated embryos 62
Figure 18. Expression of Pf-chat and Pf-th in mBMP4 overactivated embryos 63
Appendix 1. Deuterostome phylogeny 65
Appendix 2. Development stages of P. flava 66
Appendix 3. Primers used for cloning P. flava genes 67
Appendix 4. Experimental solution recipes 68
Arendt, D. (2018). Animal Evolution: Convergent Nerve Cords? Curr Biol, 28(5), R225-R227. doi:10.1016/j.cub.2018.01.056
Bernardos, R. L., Lentz, S. I., Wolfe, M. S., & Raymond, P. A. (2005). Notch-Delta signaling is required for spatial patterning and Muller glia differentiation in the zebrafish retina. Dev Biol, 278(2), 381-395. doi:10.1016/j.ydbio.2004.11.018
Brown, F. D., Prendergast, A., & Swalla, B. J. (2008). Man is but a worm: chordate origins. Genesis, 46(11), 605-613. doi:10.1002/dvg.20471
Brzezinski, J. A., & Reh, T. A. (2015). Photoreceptor cell fate specification in vertebrates. Development, 142(19), 3263-3273. doi:10.1242/dev.127043
Brzezinski, J. A. t., Kim, E. J., Johnson, J. E., & Reh, T. A. (2011). Ascl1 expression defines a subpopulation of lineage-restricted progenitors in the mammalian retina. Development, 138(16), 3519-3531. doi:10.1242/dev.064006
Cameron, C. B. (2005). A phylogeny of the hemichordates based on morphological characters. Can. J. Zool, 83, 196-215. doi:10.1139/Z04-190
Campbell, L. J., West, M. C., & Jensen, A. M. (2018). A high content, small molecule screen identifies candidate molecular pathways that regulate rod photoreceptor outer segment renewal. Sci Rep, 8(1), 14017. doi:10.1038/s41598-018-32336-y
Cannon, J. T., Kocot, K. M., Waits, D. S., Weese, D. A., Swalla, B. J., Santos, S. R., & Halanych, K. M. (2014). Phylogenomic resolution of the hemichordate and echinoderm clade. Curr Biol, 24(23), 2827-2832. doi:10.1016/j.cub.2014.10.016
Cunningham, D., & Casey, E. S. (2014). Spatiotemporal development of the embryonic nervous system of Saccoglossus kowalevskii. Dev Biol, 386(1), 252-263. doi:10.1016/j.ydbio.2013.12.001
De Robertis, E. M. (2008). Evo-devo: variations on ancestral themes. Cell, 132(2), 185-195. doi:10.1016/j.cell.2008.01.003
Garner, S., Zysk, I., Byrne, G., Kramer, M., Moller, D., Taylor, V., & Burke, R. D. (2016). Neurogenesis in sea urchin embryos and the diversity of deuterostome neurogenic mechanisms. Development, 143(2), 286-297. doi:10.1242/dev.124503
Gerovac, B. J., Valencia, M., Baumlin, N., Salathe, M., Conner, G. E., & Fregien, N. L. (2014). Submersion and hypoxia inhibit ciliated cell differentiation in a notch-dependent manner. Am J Respir Cell Mol Biol, 51(4), 516-525. doi:10.1165/rcmb.2013-0237OC
Gonzalez, P., Jiang, J. Z., & Lowe, C. J. (2018). The development and metamorphosis of the indirect developing acorn worm Schizocardium californicum (Enteropneusta: Spengelidae). Front Zool, 15, 26. doi:10.1186/s12983-018-0270-0
Green, S. A., Simoes-Costa, M., & Bronner, M. E. (2015). Evolution of vertebrates as viewed from the crest. Nature, 520(7548), 474-482. doi:10.1038/nature14436
Guillemot, F., Lo, L. C., Johnson, J. E., Auerbach, A., Anderson, D. J., & Joyner, A. L. (1993). Mammalian achaete-scute homolog 1 is required for the early developmen of olfactory and autonomic neurons. Cell, 75, 463-476
Guseh, J. S., Bores, S. A., Stanger, B. Z., Zhou, Q., Anderson, W. J., Melton, D. A., & Rajagopal, J. (2009). Notch signaling promotes airway mucous metaplasia and inhibits alveolar development. Development, 136(10), 1751-1759. doi:10.1242/dev.029249
Hartenstein, V., & Stollewerk, A. (2015). The evolution of early neurogenesis. Dev Cell, 32(4), 390-407. doi:10.1016/j.devcel.2015.02.004
Hejnol, A., & Lowe, C. J. (2015). Embracing the comparative approach: how robust phylogenies and broader developmental sampling impacts the understanding of nervous system evolution. Philos Trans R Soc Lond B Biol Sci, 370(1684). doi:10.1098/rstb.2015.0045
Hinman, V. F., & Burke, R. D. (2018). Embryonic neurogenesis in echinoderms. Wiley Interdiscip Rev Dev Biol, 7(4), e316. doi:10.1002/wdev.316
Holland, L. Z. (2015). Evolution of basal deuterostome nervous systems. J Exp Biol, 218(Pt 4), 637-645. doi:10.1242/jeb.109108
Hufnagel, R. B., Le, T. T., Riesenberg, A. L., & Brown, N. L. (2010). Neurog2 controls the leading edge of neurogenesis in the mammalian retina. Dev Biol, 340(2), 490-503. doi:10.1016/j.ydbio.2010.02.002
Kageyama, R., Ohtsuka, T., Shimojo, H., & Imayoshi, I. (2009). Dynamic regulation of Notch signaling in neural progenitor cells. Curr Opin Cell Biol, 21(6), 733-740. doi:10.1016/j.ceb.2009.08.009
Kaul-Strehlow, S., Urata, M., Praher, D., & Wanninger, A. (2017). Neuronal patterning of the tubular collar cord is highly conserved among enteropneusts but dissimilar to the chordate neural tube. Sci Rep, 7(1), 7003. doi:10.1038/s41598-017-07052-8
Kruczek, K., Gonzalez-Cordero, A., Goh, D., Naeem, A., Jonikas, M., Blackford, S. J. I., . . . Ali, R. R. (2017). Differentiation and Transplantation of Embryonic Stem Cell-Derived Cone Photoreceptors into a Mouse Model of End-Stage Retinal Degeneration. Stem Cell Reports, 8(6), 1659-1674. doi:10.1016/j.stemcr.2017.04.030
Kruger, M., & Braun, T. (2002). The neuronal basic helix-loop-helix transcription factor NSCL-1 is dispensable for normal neuronal development. Mol Cell Biol, 22(3), 792-800. doi:10.1128/mcb.22.3.792-800.2002
Lin, C. Y., Tung, C. H., Yu, J. K., & Su, Y. H. (2016). Reproductive periodicity, spawning induction, and larval metamorphosis of the hemichordate acorn worm Ptychodera flava. J Exp Zool B Mol Dev Evol, 326(1), 47-60. doi:10.1002/jez.b.22665
Lowe, C. J., Clarke, D. N., Medeiros, D. M., Rokhsar, D. S., & Gerhart, J. (2015). The deuterostome context of chordate origins. Nature, 520(7548), 456-465. doi:10.1038/nature14434
Lu, T. M., Luo, Y. J., & Yu, J. K. (2012). BMP and Delta/Notch signaling control the development of amphioxus epidermal sensory neurons: insights into the evolution of the peripheral sensory system. Development, 139(11), 2020-2030. doi:10.1242/dev.073833
Ma, Q., Kintner, C., & Anderson, D. J. (1996). Identification of neurogenein, a vertebrate neuronal determination gene. Cell, 87, 43-52
Martin-Duran, J. M., Pang, K., Borve, A., Le, H. S., Furu, A., Cannon, J. T., . . . Hejnol, A. (2018). Convergent evolution of bilaterian nerve cords. Nature, 553(7686), 45-50. doi:10.1038/nature25030
McClay, D. R., Miranda, E., & Feinberg, S. L. (2018). Neurogenesis in the sea urchin embryo is initiated uniquely in three domains. Development, 145(21). doi:10.1242/dev.167742
Miyamoto, N., Nakajima, Y., Wada, H., & Saito, Y. (2010). Development of the nervous system in the acorn worm Balanoglossus simodensis: insights into nervous system evolution. Evol Dev, 12(4), 416-424. doi:10.1111/j.1525-142X.2010.00428.x
Miyamoto, N., & Wada, H. (2013). Hemichordate neurulation and the origin of the neural tube. Nat Commun, 4, 2713. doi:10.1038/ncomms3713
Nezlin, L. P. (2000). Tornaria of hemichordates and other dipleurula-type larvae: a comparison. J. Zool. Syst. Evol, 38, 149-156
Nielsen, C., & Hay-Schmidt, A. (2007). Development of the enteropneust Ptychodera flava: ciliary bands and nervous system. J Morphol, 268(7), 551-570. doi:10.1002/jmor.10533
Nomaksteinsky, M., Rottinger, E., Dufour, H. D., Chettouh, Z., Lowe, C. J., Martindale, M. Q., & Brunet, J. F. (2009). Centralization of the deuterostome nervous system predates chordates. Curr Biol, 19(15), 1264-1269. doi:10.1016/j.cub.2009.05.063
Pani, A. M., Mullarkey, E. E., Aronowicz, J., Assimacopoulos, S., Grove, E. A., & Lowe, C. J. (2012). Ancient deuterostome origins of vertebrate brain signalling centres. Nature, 483(7389), 289-294. doi:10.1038/nature10838
Quan, X. J., & Hassan, B. A. (2005). From skin to nerve: flies, vertebrates and the first helix. Cell Mol Life Sci, 62(18), 2036-2049. doi:10.1007/s00018-005-5124-1
Richards, G. S., & Rentzsch, F. (2015). Regulation of Nematostella neural progenitors by SoxB, Notch and bHLH genes. Development, 142(19), 3332-3342. doi:10.1242/dev.123745
Richards, G. S., Simionato, E., Perron, M., Adamska, M., Vervoort, M., & Degnan, B. M. (2008). Sponge genes provide new insight into the evolutionary origin of the neurogenic circuit. Curr Biol, 18(15), 1156-1161. doi:10.1016/j.cub.2008.06.074
Rottinger, E., & Lowe, C. J. (2012). Evolutionary crossroads in developmental biology: hemichordates. Development, 139(14), 2463-2475. doi:10.1242/dev.066712
Rottinger, E., & Martindale, M. Q. (2011). Ventralization of an indirect developing hemichordate by NiCl(2) suggests a conserved mechanism of dorso-ventral (D/V) patterning in Ambulacraria (hemichordates and echinoderms). Dev Biol, 354(1), 173-190. doi:10.1016/j.ydbio.2011.03.030
Sasai, Y. (2001). Roles of Sox factors in neural determination: conserved signaling in evolution? Int. J. Dev. Biol. 45, 321–326.
Simionato, E., Kerner, P., Dray, N., Le Gouar, M., Ledent, V., Arendt, D., & Vervoort, M. (2008). atonal- and achaete-scute-related genes in the annelid Platynereis dumerilii: insights into the evolution of neural basic-Helix-Loop-Helix genes. BMC Evol Biol, 8, 170. doi:10.1186/1471-2148-8-170
Slota, L. A., & McClay, D. R. (2018). Identification of neural transcription factors required for the differentiation of three neuronal subtypes in the sea urchin embryo. Dev Biol, 435(2), 138-149. doi:10.1016/j.ydbio.2017.12.015
Slota, L. A., Miranda, E., Peskin, B., & McClay, D. R. (2020). Developmental origin of peripheral ciliary band neurons in the sea urchin embryo. Dev Biol, 459(2), 72-78. doi:10.1016/j.ydbio.2019.12.011
Stubbs, J. L., Oishi, I., Izpisua Belmonte, J. C., & Kintner, C. (2008). The forkhead protein Foxj1 specifies node-like cilia in Xenopus and zebrafish embryos. Nat Genet, 40(12), 1454-1460. doi:10.1038/ng.267
Su, Y. H., Chen, Y. C., Ting, H. C., Fan, T. P., Lin, C. Y., Wang, K. T., & Yu, J. K. (2019). BMP controls dorsoventral and neural patterning in indirect-developing hemichordates providing insight into a possible origin of chordates. Proc Natl Acad Sci U S A, 116(26), 12925-12932. doi:10.1073/pnas.1901919116
Sur, A., Magie, C. R., Seaver, E. C., & Meyer, N. P. (2017). Spatiotemporal regulation of nervous system development in the annelid Capitella teleta. Evodevo, 8, 13. doi:10.1186/s13227-017-0076-8
Volkner, M., Zschatzsch, M., Rostovskaya, M., Overall, R. W., Busskamp, V., Anastassiadis, K., & Karl, M. O. (2016). Retinal Organoids from Pluripotent Stem Cells Efficiently Recapitulate Retinogenesis. Stem Cell Reports, 6(4), 525-538. doi:10.1016/j.stemcr.2016.03.001
Wei, Z., Angerer, L. M., & Angerer, R. C. (2016). Neurogenic gene regulatory pathways in the sea urchin embryo. Development, 143(2), 298-305. doi:10.1242/dev.125989
Wijesena, N., Simmons, D. K., & Martindale, M. Q. (2017). Antagonistic BMP-cWNT signaling in the cnidarian Nematostella vectensis reveals insight into the evolution of mesoderm. Proc Natl Acad Sci U S A, 114(28), E5608-E5615. doi:10.1073/pnas.1701607114
Yankura, K. A., Koechlein, C. S., Cryan, A. F., Cheatle, A., & Hinman, V. F. (2013). Gene regulatory network for neurogenesis in a sea star embryo connects broad neural specification and localized patterning. Proc Natl Acad Sci U S A, 110(21), 8591-8596. doi:10.1073/pnas.1220903110
Yu, J. K., Meulemans, D., McKeown, S. J., & Bronner-Fraser, M. (2008). Insights from the amphioxus genome on the origin of vertebrate neural crest. Genome Res, 18(7), 1127-1132. doi:10.1101/gr.076208.108
Yu, J. K., Satou, Y., Holland, N. D., Shin, I. T., Kohara, Y., Satoh, N., . . . Holland, L. Z. (2007). Axial patterning in cephalochordates and the evolution of the organizer. Nature, 445(7128), 613-617. doi:10.1038/nature05472
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top