跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/13 23:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐凡
研究生(外文):HSU-FAN
論文名稱:廢寶特瓶容器標籤與生質物混合製作衍生燃料之可行性研究
論文名稱(外文):A Feasibility Study on Producing Derived Fuel from Waste PET Bottle Label and Biomass
指導教授:戴華山戴華山引用關係
指導教授(外文):TAI,HUA-SHAN
口試委員:盧幸成蕭友晉戴華山
口試委員(外文):LU,HSING-CHENGHSIAO,YU-CHINTAI,HUA-SHAN
口試日期:2019-06-27
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:環境與安全衛生工程系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:105
中文關鍵詞:廢寶特瓶容器標籤熱裂解動力學活化能衍生燃料
外文關鍵詞:waste bottle labelpyrolysis kineticsactivation energyderived fuel
相關次數:
  • 被引用被引用:5
  • 點閱點閱:512
  • 評分評分:
  • 下載下載:91
  • 收藏至我的研究室書目清單書目收藏:0
  廢寶特瓶容器標籤為寶特瓶經過回收處理後所產生之廢棄物,因材質成分複雜不易分辨,導致回收業者回收意願較低,目前處理方式以焚化為主,但此處理方式不盡理想;本研究將廢寶特瓶容器標籤與黑板樹作為材料,進行基本性質分析及配比設計後,利用熱裂解、RDF-5擠壓成型試驗及熱裂解反應動力學模型,評估其製成衍生燃料之可行性。依基本性質分析結果設定熱裂解及RDF-5擠壓成型試驗參數,分析不同條件下之產物,探討製作衍生燃料之可行性。研究結果顯示,廢棄寶特瓶容器標籤與黑板樹皆具高可燃分及高熱值等特性;熱裂解動力學結果顯示,隨黑板樹添加比例增加,整體活化能有降低之趨勢,有助於減少熱處理所需之能源;固定最終溫度500 ℃、不同升溫速率5、10、15 ℃/min進行熱裂解試驗結果顯示,廢棄寶特瓶容器標籤於添加黑板樹後,能源產率及固態產物產率大幅提升,其產物性質接近煤炭與無煙煤;以固定壓力150 Kg/cm2、溫度120~200 ℃條件下進行RDF-5擠壓成型試驗結果顯示,以廢棄寶特瓶容器標籤與黑板樹比例(75:25),具有最高之能源產率(112.1%);綜合上述結果,廢棄寶特瓶容器標籤與黑板樹混合具有製作衍生燃料之可行性,並以RDF-5擠壓成型技術具有較佳之產物產率、能源產率及單位體積發熱量等能源效益。
  Waste bottle label is a kind of waste generated from the process of recycling and treating waste bottles. Since the composition of the waste label is complicated and is difficult to distinguish as well as separate, most recycle dealers aren't willing to recycle these waste labels. As a result, the current processing method for the waste labels is incineration, which is less than ideal. Consequently, we could reduce its impact to environment by taking advantage of its high-calorific-value characteristic. Palimara Alstonia (Alstonia scholaris) is a common tree species in Taiwan, which also produces a large amount of yard waste. If we could use waste bottle label and yard waste to produce residue derived fuels, the life cycle of these waste would be extended, and so did its added value. Therefore, this study is aimed to take waste bottle label and Palimara Alstonia as raw materials; samples were collected and analyzed with experimental parameters designed in advance. The feasibility of producing residue derived fuels was evaluated by conducting experiments including pyrolysis, RDF-5 extrusion test, and pyrolysis kinetic models. The parameters of pyrolysis and RDF-5 extrusion expriments were determined based on the results of basic property analysis. Furthermore, the feasibility of producing derived fuels was investigated by analyzing the products produced under various conditions. The results revealed that, both waste bottle label and Palimara Alstonia samples contained high combustible components and possess high calorific value. In addition, the results of pyrolysis kinetic analysis indicated that the activation energy required for the pyrolysis process decreased with the amount of Palimara Alstonia added. The pyrolysis experiment performed with a terminal temperature at 500 ℃, and heating rates of 5, 10, and 15 ℃/min revealing that both energy yield and solid product yield dramatically increased when Palimara Alstonia was added to waste bottle labels, and the characteristics of the produced char was similar to those of coal and anthracite. The extrusion experiment performed with a pressure of 150 Kg/cm2, and a temperature at 120~200 ℃ showing that the mix ratio of 75% to 25% (as waste bottle label to Palimara Alstonia) produced the sample with highest energy yield (112.1%). To sum up, it's feasible to produce derived fuels from waste bottle label and Palimara Alstonia, such derived fuels with optimal energy yield and unit volume calorific value could be produced under the application of extrusion technology.
摘要 I
ABSTRACT II
目錄 V
表目錄 VIII
圖目錄 X
第一章 緒論 1
1-1 研究緣起 1
1-2 研究目的 2
第二章 文獻回顧 3
2-1 塑膠 3
2-1-1寶特瓶容器標籤來源與性質 5
2-1-2寶特瓶容器標籤處理方式 6
2-2 生質能 8
2-2-1 生質能 8
2-2-2 生質物 11
2-2-3 生質能轉換技術 11
2-3 熱裂解 14
2-3-1 熱裂解原理 14
2-3-2 熱裂解產物性質 15
2-4 熱裂解反應動力學理論 17
2-4-1 Friedman法 19
2-4-2 積分法 21
2-5 廢棄物衍生燃料(Refuse Derived Fuel,RDF) 23
2-5-1 RDF之定義與分類(RDF-1~RDF-7) 23
第三章 實驗材料及方法 26
3-1 實驗架構 26
3-2 實驗材料 28
3-3 實驗設備 29
3-4 實驗分析方法 32
3-4-1 基本性質分析 32
3-4-2 試驗配比 35
3-4-3 熱重分析 36
3-4-4 前處理 36
3-4-5 熱焓分析 36
3-4-6 熱裂解試驗 37
3-4-7 RDF-5擠壓成型試驗 37
3-4-8 產物分析 38
第四章 結果與討論 40
4-1 材料基本性質分析 40
4-1-1三成分分析 40
4-1-2熱值分析 40
4-1-3單位容積重 41
4-1-4元素分析 41
4-1-5鉀含量分析 42
4-2 熱重分析 43
4-3 熱裂解反應動力學 49
4-3-1 Friedman法動力學 49
4-3-2 積分法動力學 54
4-3-3 Friedman法與積分法之比較 61
4-4 熱裂解試驗產物分析 63
4-4-1配比對產物之影響 63
4-4-2升溫速率對產物之影響 69
4-4-3不同參數之產物性質 79
4-5 RDF-5擠壓成形試驗產物分析 86
4-5-1 產物分析 87
第五章 結論與建議 98
5-1結論 98
5-2建議 100
參考文獻 101

1.行政院環境保護署,108年環境保護統計年報, 2019。
2.行政院環境保護署資源回收管理基金管理會, 廢容器回收處理流程, Available from: https://recycle.epa.gov.tw/epa/ShowPage2.aspx?sno=30&subsno=288.
3.行政院環境保護署,環保政策月刊, 2000。
4.Saidur, R., et al., A review on biomass as a fuel for boilers. Journal, 2011. 15: p. 2262-2289.
5.高雄市政府工務局養護工程處,高雄市常見行道樹導覽手冊, 2017。
6.Liu, Y., et al., The resource utilization of ABS plastic waste with subcritical and supercritical water treatment. Journal, 2018.
7.Balakrishnan, R.K., et al., Thermal degradation of polystyrene in the presence of hydrogen by catalyst in solution. Journal, 2007. 92: p. 1583-1591.
8.衛生福利部食品藥物管理署,不可不問的塑膠類100問, 2013。
9.Groh, K.J., et al., Overview of known plastic packaging-associated chemicals and their hazards. Journal, 2019. 651: p. 3253-3268.
10.行政院衛生署食品藥物管理局, 常見塑膠材質、特性、產品及耐熱程度。
11.大豐環保科技股份有限公司, Available from: https://blog.zerozero.com.tw/19973/plastic_recycle/.
12.行政院環境保護署,環保政策月刊, 1999。
13.衛生福利部, 2016; Available from: https://www.mohw.gov.tw/cp-2626-19208-1.html.
14.塑膠e學苑, 2005; Available from: http://psdn.pidc.org.tw/ike/doclib/2005/2005doclib/2005ike11-0/2005ike11-0-319.asp.
15.行政院環境保護署基管會, 環保署預告修正聚氯乙烯塑膠容器徵收費率, 2018; Available from: https://enews.epa.gov.tw/enews/fact_Newsdetail.asp?InputTime=1070411140252.
16.寰宇尖端薄膜有限公司, Available from: http://www.film-top1.com/product-info.asp?id=656.
17.行政院環境保護署,行政院公報農業環保篇,2018。
18.Jin, Q., et al., Synergistic effects during co-pyrolysis of biomass and plastic: Gas, tar, soot, char products and thermogravimetric study. Journal, 2019. 92: p. 108-117.
19.Uzoejinwa, B.B., et al., Co-pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production: Recent progress and future directions elsewhere worldwide. Journal, 2018. 163: p. 468-492.
20.Nowakowski, D., et al., Potassium catalysis in the pyrolysis behaviour of short rotation willow coppice. Journal, 2007. 86: p. 2389-2402.
21.Zhou, L., et al., Effect of potassium on thermogravimetric behavior and co-pyrolytic kinetics of wood biomass and low density polyethylene. Journal, 2017. 102: p. 134-141.
22.陳俊宇,稻稈與 PET, PLA 廢棄物共同熱裂解之可行性及動力學研究, 國立高雄第一科技大學工程科技博士班,2016。
23.Pradhan, P., et al., Production and utilization of fuel pellets from biomass: A review. Journal, 2018. 181: p. 215-232.
24.Mao, G., et al., Research on biomass energy and environment from the past to the future: A bibliometric analysis. Journal, 2018. 635: p. 1081-1090.
25.法務部全球法規資料庫, 再生能源發展條例, 2009; Available from: https://law.moj.gov.tw/LawClass/LawAll.aspx?PCode=J0130032.
26.REN21, Renewables 2018 Global Status Report, Available from: http://www.ren21.net/wp-content/uploads/2018/06/17-8652_GSR2018_FullReport_web_final_.pdf.
27.經濟部能源局,再生能源2018年度全球概況報告, 2018。
28.經濟部能源局,106年能源統計年報, 2017。
29.經濟部,能源轉型白皮書, 2018。
30.台灣中油公司綠能科技研究所,21世紀能源革命-生質能, 科學發展,2016。
31.工業技術研究院,台灣綠色產業報告, 2018。
32.經濟部能源局,能源產業技術白皮書, 2016。
33.環境資訊中心, 2018; Available from: https://e-info.org.tw/node/211936.
34.LLC, S.B., 2017; Available from: https://www.syntechbioenergy.com/blog/biomass-advantages-disadvantages.
35.Demirbaş, A., Biomass resource facilities and biomass conversion processing for fuels and chemicals. Journal, 2001. 42: p. 1357-1378.
36.能源教育資訊網, 生質能, Available from: https://energy.mt.ntnu.edu.tw/CH/CH_Kind_Content_live.aspx.
37.Ellabban, O., et al., Renewable energy resources: Current status, future prospects and their enabling technology. Journal, 2014. 39: p. 748-764.
38.McKendry, P., Energy production from biomass (part 1): overview of biomass. Journal, 2002. 83: p. 37-46.
39.萬皓鵬,生質物-後化石世代的重要能源與工業原料,科學發展 2014: p. 52-59。
40.荒野保護協會, Available from: https://sowhc.sow.org.tw/html/observation/plant/a11plant/a111201-hei-ban-su/hei-ban-su.htm.
41.中央研究院數位典藏資源網, 黑板樹, Available from: http://digiarch.sinica.edu.tw/content/subject/resource_content.jsp?id=681.
42.古森本,生質能源作物之開發與潛力,農業生技產業季刊 2008: p. 46-53。
43.吳耿東、李宏台,全球生質能源應用現況與未來展望, 2007。
44.吳照雄,紙類與塑膠類在氮氣及蒸汽中之熱裂解動力學,博士論文,國立台灣大學環境工程研究所,1994。
45.周明憲,都市下水污泥熱裂解行為之研究,碩士論文,國立中央大學環境工程研究所,2005。
46.Varma, A.K., et al., Pyrolysis of sugarcane bagasse in semi batch reactor: Effects of process parameters on product yields and characterization of products. Journal, 2017. 95: p. 704-717.
47.Park, Y.-K., et al., Wild reed of Suncheon Bay: Potential bio-energy source. Journal, 2012. 42: p. 168-172.
48.Patel, M., et al., Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: A review. Journal, 2016. 53: p. 1486-1499.
49.Dhyani, V., et al., A comprehensive review on the pyrolysis of lignocellulosic biomass. Journal, 2018. 129: p. 695-716.
50.Tripathi, M., et al., Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Journal, 2016. 55: p. 467-481.
51.Williams, P.T., et al., The influence of temperature and heating rate on the slow pyrolysis of biomass. Journal, 1996. 7: p. 233-250.
52.Iribarren, D., et al., Life cycle assessment of transportation fuels from biomass pyrolysis. Journal, 2012. 97: p. 812-821.
53.Isahak, W.N.R.W., et al., A review on bio-oil production from biomass by using pyrolysis method. Journal, 2012. 16: p. 5910-5923.
54.Kebelmann, K., et al., Intermediate pyrolysis and product identification by TGA and Py-GC/MS of green microalgae and their extracted protein and lipid components. Journal, 2013. 49: p. 38-48.
55.Horne, P.A., et al., Influence of temperature on the products from the flash pyrolysis of biomass. Journal, 1996. 75: p. 1051-1059.
56.Maggi, R., et al., Comparison between ‘slow’ and ‘flash’ pyrolysis oils from biomass. Journal, 1994. 73: p. 671-677.
57.de Jongh, W.A., et al., Vacuum pyrolysis of intruder plant biomasses. Journal, 2011. 92: p. 184-193.
58.Garcìa-Pérez, M., et al., Vacuum pyrolysis of softwood and hardwood biomass: Comparison between product yields and bio-oil properties. Journal, 2007. 78: p. 104-116.
59.Garcı̀a-Pèrez, M., et al., Vacuum pyrolysis of sugarcane bagasse. Journal, 2002. 65: p. 111-136.
60.Peacocke, G.V.C., et al., Ablative plate pyrolysis of biomass for liquids. Journal, 1994. 7: p. 147-154.
61.Doyle, C.D., Kinetic analysis of thermogravimetric data. Journal, 1961. 5: p. 285-292.
62.Xu, F., et al., Thermal degradation of typical plastics under high heating rate conditions by TG-FTIR: Pyrolysis behaviors and kinetic analysis. Journal, 2018. 171: p. 1106-1115.
63.Nasner, A.M.L., et al., Refuse Derived Fuel (RDF) production and gasification in a pilot plant integrated with an Otto cycle ICE through Aspen plus modelling: Thermodynamic and economic viability. Journal, 2017. 69: p. 187-201.
64.Bosmans, A., et al., The crucial role of Waste-to-Energy technologies in enhanced landfill mining: a technology review. Journal, 2013. 55: p. 10-23.
65.馬佩霙,ASR摻混電纜線脫脂油泥製作ASRDF之研究,碩士論文,國立高雄第一科技大學環境與安全衛生工程所,2004。
66.工業技術研究院, 固態廢棄物衍生燃料製造技術, Available from: https://www.itri.org.tw/chi/Content/techtransfer/tech_tran_cont.aspx?&SiteID=1&MmmID=620622510126045723&Keyword=&MSid=2512.
67.賀偉雄,廢機動車輛粉碎殘餘物製作固態衍生燃料之實證研究,博士論文 國立高雄第一科技大學工程科技研究所,2013。
68.Wan, H.-P., et al., Emissions during co-firing of RDF-5 with bituminous coal, paper sludge and waste tires in a commercial circulating fluidized bed co-generation boiler. Journal, 2008. 87: p. 761-767.
69.Demirbas, A., Combustion characteristics of different biomass fuels. Journal, 2004. 30: p. 219-230.
70.Kaliyan, N., et al., Factors affecting strength and durability of densified biomass products. Journal, 2009. 33: p. 337-359.
71.ASTM, Standard Definitions of Terms and Abbreviations Relating to Physical and Chemical Characteristics of Refuse Derived Fuel. Journal, 1998.
72.萬皓鵬、李宏台,廢棄物衍生燃料的使用,科學發展,2010 450: p. 34-43。
73.林健三、林健榮,固體廢棄物處理,2012: p. 50-51。
74.Friedl, A., et al., Prediction of heating values of biomass fuel from elemental composition. Journal, 2005. 544: p. 191-198.
75.Safar, M., et al., Catalytic effects of potassium on biomass pyrolysis, combustion and torrefaction. Journal, 2019. 235: p. 346-355.
76.Huang, J., et al., Combustion behaviors of spent mushroom substrate using TG-MS and TG-FTIR: Thermal conversion, kinetic, thermodynamic and emission analyses. Journal, 2018. 266: p. 389-397.
77.Trubetskaya, A., et al., Modeling the influence of potassium content and heating rate on biomass pyrolysis. Journal, 2017. 194: p. 199-211.
78.王韻婷,塑膠廢棄物與生質物共同熱裂解之動力學研究, 碩士論文,國立高雄第一科技大學環境與安全衛生工程研究所,2014。
79.Zhou, L., et al.,Thermogravimetric characteristics and kinetic of plastic and biomass blends co-pyrolysis,Fuel Processing Technology 87(11): p. 963-969。
80.Magalhães, D., et al., Comparison of single particle combustion behaviours of raw and torrefied biomass with Turkish lignites. Journal, 2019. 241: p. 1085-1094.
81.Safdari, M.-S., et al., Heating rate and temperature effects on pyrolysis products from live wildland fuels. Journal, 2019. 242: p. 295-304.
82.McKendry, P.,Energy production from biomass (part 2): conversion technologies,Bioresource Technology 83(1): p. 47-54。
83.許育銘,廢棄菇包製作生質燃料之可行性研究, 碩士論文,國立高雄第一科技大學環境與安全衛生工程研究所,2018。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top