1.行政院環境保護署,108年環境保護統計年報, 2019。
2.行政院環境保護署資源回收管理基金管理會, 廢容器回收處理流程, Available from: https://recycle.epa.gov.tw/epa/ShowPage2.aspx?sno=30&subsno=288.
3.行政院環境保護署,環保政策月刊, 2000。
4.Saidur, R., et al., A review on biomass as a fuel for boilers. Journal, 2011. 15: p. 2262-2289.
5.高雄市政府工務局養護工程處,高雄市常見行道樹導覽手冊, 2017。
6.Liu, Y., et al., The resource utilization of ABS plastic waste with subcritical and supercritical water treatment. Journal, 2018.
7.Balakrishnan, R.K., et al., Thermal degradation of polystyrene in the presence of hydrogen by catalyst in solution. Journal, 2007. 92: p. 1583-1591.
8.衛生福利部食品藥物管理署,不可不問的塑膠類100問, 2013。
9.Groh, K.J., et al., Overview of known plastic packaging-associated chemicals and their hazards. Journal, 2019. 651: p. 3253-3268.
10.行政院衛生署食品藥物管理局, 常見塑膠材質、特性、產品及耐熱程度。
11.大豐環保科技股份有限公司, Available from: https://blog.zerozero.com.tw/19973/plastic_recycle/.
12.行政院環境保護署,環保政策月刊, 1999。
13.衛生福利部, 2016; Available from: https://www.mohw.gov.tw/cp-2626-19208-1.html.
14.塑膠e學苑, 2005; Available from: http://psdn.pidc.org.tw/ike/doclib/2005/2005doclib/2005ike11-0/2005ike11-0-319.asp.
15.行政院環境保護署基管會, 環保署預告修正聚氯乙烯塑膠容器徵收費率, 2018; Available from: https://enews.epa.gov.tw/enews/fact_Newsdetail.asp?InputTime=1070411140252.
16.寰宇尖端薄膜有限公司, Available from: http://www.film-top1.com/product-info.asp?id=656.
17.行政院環境保護署,行政院公報農業環保篇,2018。
18.Jin, Q., et al., Synergistic effects during co-pyrolysis of biomass and plastic: Gas, tar, soot, char products and thermogravimetric study. Journal, 2019. 92: p. 108-117.
19.Uzoejinwa, B.B., et al., Co-pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production: Recent progress and future directions elsewhere worldwide. Journal, 2018. 163: p. 468-492.
20.Nowakowski, D., et al., Potassium catalysis in the pyrolysis behaviour of short rotation willow coppice. Journal, 2007. 86: p. 2389-2402.
21.Zhou, L., et al., Effect of potassium on thermogravimetric behavior and co-pyrolytic kinetics of wood biomass and low density polyethylene. Journal, 2017. 102: p. 134-141.
22.陳俊宇,稻稈與 PET, PLA 廢棄物共同熱裂解之可行性及動力學研究, 國立高雄第一科技大學工程科技博士班,2016。23.Pradhan, P., et al., Production and utilization of fuel pellets from biomass: A review. Journal, 2018. 181: p. 215-232.
24.Mao, G., et al., Research on biomass energy and environment from the past to the future: A bibliometric analysis. Journal, 2018. 635: p. 1081-1090.
25.法務部全球法規資料庫, 再生能源發展條例, 2009; Available from: https://law.moj.gov.tw/LawClass/LawAll.aspx?PCode=J0130032.
26.REN21, Renewables 2018 Global Status Report, Available from: http://www.ren21.net/wp-content/uploads/2018/06/17-8652_GSR2018_FullReport_web_final_.pdf.
27.經濟部能源局,再生能源2018年度全球概況報告, 2018。
28.經濟部能源局,106年能源統計年報, 2017。
29.經濟部,能源轉型白皮書, 2018。
30.台灣中油公司綠能科技研究所,21世紀能源革命-生質能, 科學發展,2016。
31.工業技術研究院,台灣綠色產業報告, 2018。
32.經濟部能源局,能源產業技術白皮書, 2016。
33.環境資訊中心, 2018; Available from: https://e-info.org.tw/node/211936.
34.LLC, S.B., 2017; Available from: https://www.syntechbioenergy.com/blog/biomass-advantages-disadvantages.
35.Demirbaş, A., Biomass resource facilities and biomass conversion processing for fuels and chemicals. Journal, 2001. 42: p. 1357-1378.
36.能源教育資訊網, 生質能, Available from: https://energy.mt.ntnu.edu.tw/CH/CH_Kind_Content_live.aspx.
37.Ellabban, O., et al., Renewable energy resources: Current status, future prospects and their enabling technology. Journal, 2014. 39: p. 748-764.
38.McKendry, P., Energy production from biomass (part 1): overview of biomass. Journal, 2002. 83: p. 37-46.
39.萬皓鵬,生質物-後化石世代的重要能源與工業原料,科學發展 2014: p. 52-59。
40.荒野保護協會, Available from: https://sowhc.sow.org.tw/html/observation/plant/a11plant/a111201-hei-ban-su/hei-ban-su.htm.
41.中央研究院數位典藏資源網, 黑板樹, Available from: http://digiarch.sinica.edu.tw/content/subject/resource_content.jsp?id=681.
42.古森本,生質能源作物之開發與潛力,農業生技產業季刊 2008: p. 46-53。
43.吳耿東、李宏台,全球生質能源應用現況與未來展望, 2007。
44.吳照雄,紙類與塑膠類在氮氣及蒸汽中之熱裂解動力學,博士論文,國立台灣大學環境工程研究所,1994。45.周明憲,都市下水污泥熱裂解行為之研究,碩士論文,國立中央大學環境工程研究所,2005。46.Varma, A.K., et al., Pyrolysis of sugarcane bagasse in semi batch reactor: Effects of process parameters on product yields and characterization of products. Journal, 2017. 95: p. 704-717.
47.Park, Y.-K., et al., Wild reed of Suncheon Bay: Potential bio-energy source. Journal, 2012. 42: p. 168-172.
48.Patel, M., et al., Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: A review. Journal, 2016. 53: p. 1486-1499.
49.Dhyani, V., et al., A comprehensive review on the pyrolysis of lignocellulosic biomass. Journal, 2018. 129: p. 695-716.
50.Tripathi, M., et al., Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Journal, 2016. 55: p. 467-481.
51.Williams, P.T., et al., The influence of temperature and heating rate on the slow pyrolysis of biomass. Journal, 1996. 7: p. 233-250.
52.Iribarren, D., et al., Life cycle assessment of transportation fuels from biomass pyrolysis. Journal, 2012. 97: p. 812-821.
53.Isahak, W.N.R.W., et al., A review on bio-oil production from biomass by using pyrolysis method. Journal, 2012. 16: p. 5910-5923.
54.Kebelmann, K., et al., Intermediate pyrolysis and product identification by TGA and Py-GC/MS of green microalgae and their extracted protein and lipid components. Journal, 2013. 49: p. 38-48.
55.Horne, P.A., et al., Influence of temperature on the products from the flash pyrolysis of biomass. Journal, 1996. 75: p. 1051-1059.
56.Maggi, R., et al., Comparison between ‘slow’ and ‘flash’ pyrolysis oils from biomass. Journal, 1994. 73: p. 671-677.
57.de Jongh, W.A., et al., Vacuum pyrolysis of intruder plant biomasses. Journal, 2011. 92: p. 184-193.
58.Garcìa-Pérez, M., et al., Vacuum pyrolysis of softwood and hardwood biomass: Comparison between product yields and bio-oil properties. Journal, 2007. 78: p. 104-116.
59.Garcı̀a-Pèrez, M., et al., Vacuum pyrolysis of sugarcane bagasse. Journal, 2002. 65: p. 111-136.
60.Peacocke, G.V.C., et al., Ablative plate pyrolysis of biomass for liquids. Journal, 1994. 7: p. 147-154.
61.Doyle, C.D., Kinetic analysis of thermogravimetric data. Journal, 1961. 5: p. 285-292.
62.Xu, F., et al., Thermal degradation of typical plastics under high heating rate conditions by TG-FTIR: Pyrolysis behaviors and kinetic analysis. Journal, 2018. 171: p. 1106-1115.
63.Nasner, A.M.L., et al., Refuse Derived Fuel (RDF) production and gasification in a pilot plant integrated with an Otto cycle ICE through Aspen plus modelling: Thermodynamic and economic viability. Journal, 2017. 69: p. 187-201.
64.Bosmans, A., et al., The crucial role of Waste-to-Energy technologies in enhanced landfill mining: a technology review. Journal, 2013. 55: p. 10-23.
65.馬佩霙,ASR摻混電纜線脫脂油泥製作ASRDF之研究,碩士論文,國立高雄第一科技大學環境與安全衛生工程所,2004。66.工業技術研究院, 固態廢棄物衍生燃料製造技術, Available from: https://www.itri.org.tw/chi/Content/techtransfer/tech_tran_cont.aspx?&SiteID=1&MmmID=620622510126045723&Keyword=&MSid=2512.
67.賀偉雄,廢機動車輛粉碎殘餘物製作固態衍生燃料之實證研究,博士論文 國立高雄第一科技大學工程科技研究所,2013。68.Wan, H.-P., et al., Emissions during co-firing of RDF-5 with bituminous coal, paper sludge and waste tires in a commercial circulating fluidized bed co-generation boiler. Journal, 2008. 87: p. 761-767.
69.Demirbas, A., Combustion characteristics of different biomass fuels. Journal, 2004. 30: p. 219-230.
70.Kaliyan, N., et al., Factors affecting strength and durability of densified biomass products. Journal, 2009. 33: p. 337-359.
71.ASTM, Standard Definitions of Terms and Abbreviations Relating to Physical and Chemical Characteristics of Refuse Derived Fuel. Journal, 1998.
72.萬皓鵬、李宏台,廢棄物衍生燃料的使用,科學發展,2010 450: p. 34-43。
73.林健三、林健榮,固體廢棄物處理,2012: p. 50-51。
74.Friedl, A., et al., Prediction of heating values of biomass fuel from elemental composition. Journal, 2005. 544: p. 191-198.
75.Safar, M., et al., Catalytic effects of potassium on biomass pyrolysis, combustion and torrefaction. Journal, 2019. 235: p. 346-355.
76.Huang, J., et al., Combustion behaviors of spent mushroom substrate using TG-MS and TG-FTIR: Thermal conversion, kinetic, thermodynamic and emission analyses. Journal, 2018. 266: p. 389-397.
77.Trubetskaya, A., et al., Modeling the influence of potassium content and heating rate on biomass pyrolysis. Journal, 2017. 194: p. 199-211.
78.王韻婷,塑膠廢棄物與生質物共同熱裂解之動力學研究, 碩士論文,國立高雄第一科技大學環境與安全衛生工程研究所,2014。79.Zhou, L., et al.,Thermogravimetric characteristics and kinetic of plastic and biomass blends co-pyrolysis,Fuel Processing Technology 87(11): p. 963-969。
80.Magalhães, D., et al., Comparison of single particle combustion behaviours of raw and torrefied biomass with Turkish lignites. Journal, 2019. 241: p. 1085-1094.
81.Safdari, M.-S., et al., Heating rate and temperature effects on pyrolysis products from live wildland fuels. Journal, 2019. 242: p. 295-304.
82.McKendry, P.,Energy production from biomass (part 2): conversion technologies,Bioresource Technology 83(1): p. 47-54。
83.許育銘,廢棄菇包製作生質燃料之可行性研究, 碩士論文,國立高雄第一科技大學環境與安全衛生工程研究所,2018。