跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2026/01/02 20:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳潔人
研究生(外文):CHEN,JIE-REN
論文名稱:晶界擴散滲Dy對釹鐵硼永久磁石磁特性之影響
論文名稱(外文):Effect Of Grain Boundary Diffusion Dy On The Magnetic Properties Of Ndfeb Permanent Magnets
指導教授:黃靖謙
指導教授(外文):HUANG,CHING-CHIEN
口試委員:方得華徐曉萱
口試委員(外文):FANG,TE-HUAHSU,Hsiao-Hsuan
口試日期:2023-06-12
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:87
中文關鍵詞:燒結釹鐵硼磁石晶界擴散磁性能
外文關鍵詞:Sintered NdFeB permanent magnetGrain Boundary Diffusion(GBD)Magnetic propertiesDy Metal
相關次數:
  • 被引用被引用:0
  • 點閱點閱:280
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
燒結釹鐵硼永久磁石是目前最高磁性能的永磁材料,近年來在電動車及離岸風力發電設施用途日益漸增。應用於上述設施之磁石必須具備高熱穩定性預防工作溫度過高造成熱退磁現象,可藉由提高磁石的矯頑磁力增加磁石的抗退磁能力。Dy核殼結構形成的高磁晶各向異性可以大大提高燒結NdFeB磁體的矯頑磁力。常見晶界擴散(GBD)方式以塗佈、濺射、沉積法等方式將稀土元素、合金或化合物覆於磁石表面再進行熱處理,可使重稀土元素在高溫下沿著晶界向磁石內部擴散; 然而,此方式造成磁石表面稀土濃度過高致使形成「晶內擴散」,反而使磁石的最大磁能積下降。此外,磁石表面在趨入擴散熱處理結束後會殘留未擴散完之HRE結晶造成額外浪費。儘管蒸鍍晶界擴散法可避免磁石表面之重稀土殘留,但傳統蒸鍍晶界擴散法之蒸發量少,Dy元素不易覆於燒結釹鐵硼永久磁石表面,磁特性提升效果不佳。另一方面,傳統蒸鍍晶界擴散法使大量HRE元素沉積於沉積系統,如在真空室和處理容器的內壁上,也造成製程成本增加。本研究對應用Dy蒸鍍晶界擴散法獲得之燒結NdFeB永久磁石在不同時間、溫度和溫度梯度的驅入擴散熱處理下的HRE(重稀土元素)分佈和整體磁性能進行了評價。研究中分別使用電子探針顯微分析儀 (EPMA)、輝光放電光譜儀 (GDS) 和磁滯迴線儀研究了燒結 Dy 擴散 NdFeB 永磁體的 HRE 分佈和磁性能。研究結果顯示,以850℃→950℃之趨入擴散溫度梯度進行10小時Dy晶界擴散熱處理,獲得最佳綜合磁特性,其磁特性量測結果為iHc=1415 kJ/m及(BH)max=394.1 kJ/m3,達N52H等級; 而未經處理之釹鐵硼永久磁石,其磁特性量測結果則為iHc=1105 kJ/m及(BH)max=400.3 kJ/m3,為N52M等級。相較之下,本研究之最佳製程條件所獲得釹鐵硼永久磁石之iHc 及BHH (i.e., BHH= iHc + (BH)max)分別高於未經處理之釹鐵硼永久磁石21.9 %及16.8%。本研究將為透過控制晶界擴散過程中的溫度梯度開發具有高本質矯頑力的低重稀土燒結NdFeB磁石提供啟示,使之更適合應用於全球積極推動之電動車及離岸風力發電機等之重要節能設施中。
Sintered NdFeB permanent magnet is the permanent magnet material with the highest magnetic performance at present. In recent years, it has been increasingly used in electric vehicles and offshore wind power facilities. The magnets used in the above facilities must have high thermal stability to prevent thermal demagnetization caused by high working temperature, and the anti-demagnetization ability of the magnets can be increased by increasing the intrinsic coercivity of the magnets. The high magnetocrystalline anisotropy formed by the core-shell structure of Dy could significantly enhance the intrinsic coercivity of the sintered NdFeB magnets. The traditional grain boundary diffusion (GBD) method covers the rare earth elements, alloys or compounds on the surface of the magnet by coating, sputtering, deposition, etc. and then heat treatment. In this way, the heavy rare earth elements will diffuse along the grain boundary to the inside of the magnet at high temperature; however, this method leads to an excessively high rare earth concentration on the surface of the magnet, resulting in the formation of "intragranular diffusion", which reduces the maximum magnetic energy product of the magnet. In addition, undiffused HRE residues will remain on the surface of the magnet after the diffusion heat treatment is completed, resulting in additional waste. Although the evaporation grain boundary diffusion method can avoid heavy rare earth residues on the surface of the magnet, the evaporation amount of the traditional evaporation grain boundary diffusion method is small, and the Dy element is not easy to cover the surface of the sintered NdFeB permanent magnet, and the effect of improving the magnetic properties is poor. On the other hand, the traditional vapor deposition grain boundary diffusion method causes a large amount of HRE elements to be deposited on the deposition system, such as on the inner wall of the vacuum chamber and the processing container, which also increases the process cost. In this research, the evaluation of HRE (i.e., heavy rare-earth-elements) distribution and magnetic properties of sintered NdFeB permanent magnets obtained by applying Dy evaporation grain boundary diffusion method under different time, temperature and temperature gradient of the drive-in diffusion heat treatment is discussed. HRE distribution and magnetic properties of the sintered Dy-diffused NdFeB permanent magnets was investigated by investigated using an electron probe microanalyzer (EPMA), glow discharge spectrometer (GDS) and hysteresis loop meter, respectively. The results show that the best magnetic properties are obtained under the temperature gradient of 850℃→950℃ for 10 hours of Dy grain boundary diffusion heat treatment. The measured magnetic properties of the sintered Dy-diffused NdFeB permanent magnets are iHc =1415 kJ/m and (BH)max =394.1 kJ/m3, reaching N52H grade, while the magnetic properties of untreated NdFeB permanent magnets are iHc =1105 kJ/m and (BH)max=400.3 kJ/m3, which is N52M grade. In contrast, the iHc and BHH (i.e., BHH= iHc + (BH)max) of the NdFeB permanent magnets obtained under the optimal process in this study were 21.9 % and 16.8 higher than those of the untreated NdFeB permanent magnets, respectively. The novel manufacturing method proposed in this study can not only effectively improve the utilization of heavy rare earths but also enhance the overall magnetic properties. This research would shed light on developing low heavy rare earth sintered NdFeB magnets with high intrinsic coercivity through controlling the temperature gradient in the grain boundary diffusion process, making them more suitable for important energy-saving facilities such as electric vehicles and offshore wind power generators that are actively promoted around the world.
目錄
摘要 i
Abstract iii
致謝 vi
目錄 vii
圖目錄 x
表目錄 xi
符號說明 xii
第一章 緒論 1
1.1前言 1
1.2 硬磁磁石 3
1.3釹鐵硼磁石介紹 4
1.4 釹鐵硼磁石製程 5
1.4.1氫碎(HD) 6
1.4.2氣流粉碎(JM) 7
1.4.3磁場成行 7
1.4.4冷均壓成型(CIP) 8
1.4.5真空燒結 8
1.4.6熱處理 11
1.4.7加工與表面處理 11
1.4.8充磁 11
1.5晶界擴散(Grain Boundary Diffusion,GBD) 14
1.5.1表面塗佈的HAL(High-Anisotropy field Layer) 14
1.5.2蒸鍍 15
1.5.3蒸發 15
1.6晶界擴散(GBD)滲Dy文獻回顧 16
1.7研究動機與目的 18
第二章 磁性理論 20
2.1磁性 20
2.2磁性分類 21
2.2.1.鐵磁性(ferromagnetism) 21
2.2.2. 陶鐵磁性(ferrimagnetism) 22
2.2.3.反鐵磁性(antiferromagnetism) 22
2.2.4.順磁性(paramagnetism) 22
2.2.5.抗磁性(diamagnetism) 22
2.3磁滯曲線 24
2.4磁各向異性 27
2.5稀土永磁之矯頑機制 29
2.5.1.反向磁疇孕核成長型 30
2.5.2.磁疇壁栓固型 30
2.5.3.單磁疇型和微晶型 30
2.6粒徑大小對矯頑磁力之影響 32
2.6.1.磁粒子大小 32
2.6.2.晶粒大小 33
2.7擴散理論 34
第三章 實驗方法 37
3.1實驗流程 37
3.2擴散原重稀土之選用 39
3.3晶界擴散 44
3.4分析與量測 45
3.4.1 B-H tracer 磁特性量測 45
3.4.2 電子微探儀(EPMA)微觀組織觀察 46
3.4.3輝光放電發射光譜儀(General information about ,GDOES) 47
第四章 結果與討論 49
4.1晶界擴散熱處理時長及溫度對磁特性之影響及微觀結構分析 49
4.1.1 900℃下分別針對10小時及20小時之Dy晶界擴散趨入擴散熱處理實驗 49
4.1.2 850℃及950℃10小時Dy晶界擴散熱處理的溫度之磁性能趨勢變化 53
4.2最佳化晶界擴散熱處理條件 57
4.2.1 增加於900℃趨入擴散溫度下進行15小時Dy晶界擴散熱處理之實驗條件 57
4.2.2不同溫度梯度之趨入擴散之實驗條件 61
第5章 結論 67
參考文獻 68


參考文獻
[1]王以真, ”實用磁路設計, ”全華科技圖書股有限公司, ISBN:9572111507,1995.
[2]Oliver Gutfleisch,Matthew A. Willard, Ekkes Brück,Christina H. Chen ,S. G. Sankar,and J. Ping Liu ,“Magnetic Materials and Devices for the 21st Century:Stronger, Lighter, and More Energy Efficient,” Advanced Materials
Volume 23, Issue 7, pp. 821-842.
[3]Ruihua Du,Renjie Chen,Guangfei Ding,Xiaodong Fan,Xu Tang,Shuai Cao,Shuai Guo,Aru Yan,Xincai Liu,“Coercivity enhancement of the sintered Nd-Ce-Fe-B magnet via grain boundary diffusion with Tb70Fe30 alloy,”Jou rnal of Magnetism and Magnetic Materials,Volume 551, June 2022, Article 169034.
[4]JiaLi,QingrongYao,ZhaoLu,WeichaoHuang,DongwenChen,JianqiuDeng,JiangWang,GuanghuiRao,HuaiyingZhou,”Improvement of the coercivity and corrosion resistance of Nd–Fe–B sintered magnets by intergranular addition of Tb62.5Co37.5,” Journal of Magnetism and Magnetic Materials,Volume 530, 15 July 2021, Article 167935.
[5]劉仲武,何家毅,”釹鐵硼永磁晶界擴散技術和理論發展的幾個問題,”ACTA METALLURGICA SINICA,Vol.57 No.9,Sep. 2021
[6]K. Hono,H Sepehri-Amin, “Strategy for high-coercivity Nd–Fe–B magnets,” Scripta Materialia, Volume 67,ISSUE 6,September 2012,pp.530-535
[7]YutakaMatsuura, ” Recent development of Nd–Fe–B sintered magnets and their applications,” Journal of Magnetism and Magnetic Materials,Volume 303,Issue 2 ,August 2006,pp.344-347.
[8]周壽增,董清飛,高學飛” 燒結釹鐵硼稀土永磁材料與技術,”冶金工業出版社,ISBN:9787502456795,2011.
[9]Addmaker, https://addmaker.tw/tw/subject/57
[10]Liu Xianglian,Zhou Shouzeng, ” Gmin Gmwth Behavior in Sintelled Nd-Fe-B mets,” JOURNAL OF RARE EARTHS 25 ,2007, pp.329 – 335.
[11]F. Vial ,F. Joly ,E. Nevalainen ,M. Sagawa ,K. Hiraga ,K.T. Park” Improvement of coercivity of sintered NdFeB permanent magnets by heat treatment” Journal of Magnetism and Magnetic Materials, Volume242-245,Part 2, April 2002, pp.1329-1334
[12]H.Sepehri-Amin,T.OhkuboK.Hono,” The mechanism of coercivity enhancement by the grain boundary diffusion process of Nd–Fe–B sintered magnets,” Acta Materialia,Volume 61, Issue 6, April 2013, pp. 1982-1990.
[13]Tech Journal, https://product. tdk.com/ system/files/dam/doc/content/ /archive /en/tdk_tj_hal_e_0420_2.pdf
[14]T. Odaka, K. Morimoto, S. Yoshimura, H. Takaki, US patent 8 177 922 B2, May 15; 2012
[15]K. Hirota, H. Nakamura,T. Minowa,M. Honshima,” Coercivity Enhancement by the Grain Boundary Diffusion Process to Nd–Fe–B Sintered Magnets,” IEEE Transactions on Magnetics, Volume 42, Issue 10, 2006.
[16]Matahiro Komuro,Yuichi Satsu, Hiroyuki Suzuki,” Increase of Coercivity and Composition Distribution in Fluoride-Diffused NdFeB Sintered Magnets Treated by Fluoride Solutions,” IEEE Transactions on Magnetics,Volume 46, Issue 11, 2010.
[17]NaokoOono,MasatoSagawa;RyutaKasada,HidekiMatsui,AkihikoKimura,” roduction of thick high-performance sintered neodymium magnets by grain boundary diffusion treatment with dysprosium–nickel–aluminum alloy,” Journal of Magnetism and Magnetic Materials ,Volume 323, Issues 3–4, 2011, pp.297-300
[18]H. Nakamura,K. Hirota,M. Shimao, T. Minowa,M. Honshima,” Magnetic properties of extremely small Nd-Fe-B sintered magnets,” IEEE Transactions on Magnetics ,Volume 41, Issue 10, 2005.
[19]MarkoSoderžnik,Kristina ŽužekRožman,SpomenkaKobe,PaulMcGuiness,” The grain-boundary diffusion process in Nd–Fe–B sintered magnets based on the electrophoretic deposition of DyF3,” Intermetallics Volume 23, 2012, pp.158-162.
[20]K.Löewe,C.Brombacher,M.Katter,O.Gutfleisch, ” Temperature-dependent Dy diffusion processes in Nd–Fe–B permanent magnets,” Acta Materialia, Volume 83, 2015, pp.248-255.
[21]XinMing,XuHan,MengweiYang,GaolinYan,” Enhanced magnetic performance of sintered Nd-Fe-B magnets by Dy-Co film grain boundary diffusion,” Journal of Magnetism and Magnetic Materials,Volume 550, 2022, 169064.
[22]鄭振東,”實用磁性材料,” 全華科技圖書股有限公司.
[23]磁性技術手冊,中華民國磁性技術協會, 2002.
[24]Cullity,B. D. & Graham, C. D. Introduction to magnetic materials,John Wiley & Sons, 2011.
[25]Cullity, B. D. & Graham, C. D,” Introduction to magnetic materials,”John Wiley & Sons, 2011.
[26]Becker, J,” Reversal mechanism in copper-modified cobalt-rare-earths,” IEEE Transactions on Magnetics 12, 1976,pp.965-967.
[27]Hilscher, G., Grössinger, R., Heisz, S., Sassik, H. & Wiesinger, G,”Magnetic and anisotropy studies of Nd-Fe-B based permanent magnets,” Journal of Magnetism and Magnetic Materials 54–57, Part 1,1986,pp. 577-578.
[28]Craig R. Barrett, William D. Nix, A. S. Tetelman,” The Principles of Engineering Materials,” Pearson,1973.
[29]Schaffer, J. P., Saxena, A., Antolovich, S. D., Thomas H. Sanders, J. & Warner, S. B,” The Science and Design of Engineering Materials,”The McGraw-Hill Companies, Inc., 1999.
[30]場發射電子微探儀(FE-EPMA),型號為JXA-iHP200F,https://www.jeol.co.jp/ en/products/detail/JXA-iHP200F.html
[31]Y. L. Huang, Q. Rao, Q. Feng, Z. J. Wu, Y. F. Yao Y. H. Hou, W. Li, J. M. Luo,” An insight into the improved microstructure and elevated comprehensive properties of sintered Nd-Fe-B magnets via the infiltration of DyCu alloy,” Journal of Materials Research andTechnology, vol. 20, pp. 3094-3102, 2022.
[32]E. A. Perigo, H. Takiishi, C. C. Motta, R. N. Faria,” On the Squareness Factor Behavior of RE-FeB (RE = Nd or Pr) Magnets Above Room Temperature,” IEEE Transactions on Magnetics, vol. 45, no. 10, October 2009.

電子全文 電子全文(網際網路公開日期:20280613)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top