|
Adida, C., Crotty, P. L., McGrath, J., Berrebi, D., Diebold, J., & Altieri, D. C. (1998). Developmentally regulated expression of the novel cancer anti-apoptosis gene survivin in human and mouse differentiation. Am J Pathol, 152(1) pp. 43-49. Aita, V. M., Liang, X. H., Murty, V. V., Pincus, D. L., Yu, W., Cayanis, E., et al. (1999). Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21. Genomics, 59(1) pp. 59-65. Ambrosini, G., Adida, C., & Altieri, D. C. (1997). A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med, 3(8) pp. 917-921. An, C. H., Kim, M. S., Yoo, N. J., Park, S. W., & Lee, S. H. (2011). Mutational and expressional analyses of ATG5, an autophagy-related gene, in gastrointestinal cancers. Pathol Res Pract, 207(7) pp. 433-437. Aplin, A., Jasionowski, T., Tuttle, D. L., Lenk, S. E., & Dunn, W. A., Jr. (1992). Cytoskeletal elements are required for the formation and maturation of autophagic vacuoles. J Cell Physiol, 152(3) pp. 458-466. Birgisdottir, A. B., Lamark, T., & Johansen, T. (2013). The LIR motif - crucial for selective autophagy. J Cell Sci, 126(Pt 15) pp. 3237-3247. Cartier, J., Berthelet, J., Marivin, A., Gemble, S., Edmond, V., Plenchette, S., et al. (2011). Cellular inhibitor of apoptosis protein-1 (cIAP1) can regulate E2F1 transcription factor-mediated control of cyclin transcription. J Biol Chem, 286(30) pp. 26406-26417. Chantalat, L., Skoufias, D. A., Kleman, J. P., Jung, B., Dideberg, O., & Margolis, R. L. (2000). Crystal structure of human survivin reveals a bow tie-shaped dimer with two unusual alpha-helical extensions. Mol Cell, 6(1) pp. 183-189. Chen, P., Zhu, J., Liu, D. Y., Li, H. Y., Xu, N., & Hou, M. (2014). Over-expression of survivin and VEGF in small-cell lung cancer may predict the poorer prognosis. Med Oncol, 31(1) p. 775. Cheng, Q., Ling, X., Haller, A., Nakahara, T., Yamanaka, K., Kita, A., et al. (2012). Suppression of survivin promoter activity by YM155 involves disruption of Sp1-DNA interaction in the survivin core promoter. Int J Biochem Mol Biol, 3(2) pp. 179-197. Cheng, S. M., Chang, Y. C., Liu, C. Y., Lee, J. Y. C., Chan, H. H., Kuo, C. W., et al. (2015). YM155 down-regulates survivin and XIAP, modulates autophagy and induces autophagy-dependent DNA damage in breast cancer cells. Br J Pharmacol, 172(1) pp. 214-234. Cheung, C. H., Chen, H. H., Cheng, L. T., Lyu, K. W., Kanwar, J. R., & Chang, J. Y. (2010). Targeting Hsp90 with small molecule inhibitors induces the over-expression of the anti-apoptotic molecule, survivin, in human A549, HONE-1 and HT-29 cancer cells. Mol Cancer, 9 p. 77. Cheung, C. H., Sun, X., Kanwar, J. R., Bai, J. Z., Cheng, L., & Krissansen, G. W. (2010). A cell-permeable dominant-negative survivin protein induces apoptosis and sensitizes prostate cancer cells to TNF-alpha therapy. Cancer Cell Int, 10 p. 36. Cho, K. S., Yoon, Y. H., Choi, J. A., Lee, S. J., & Koh, J. Y. (2012). Induction of autophagy and cell death by tamoxifen in cultured retinal pigment epithelial and photoreceptor cells. Invest Ophthalmol Vis Sci, 53(9) pp. 5344-5353. Choi, M. S., Kim, Y., Jung, J.-Y., Yang, S. H., Lee, T. R., & Shin, D. W. (2013). Resveratrol induces autophagy through death-associated protein kinase 1 (DAPK1) in human dermal fibroblasts under normal culture conditions. Exp Dermatol, 22(7) pp. 491-494. Clem, R. J., Fechheimer, M., & Miller, L. K. (1991). Prevention of apoptosis by a baculovirus gene during infection of insect cells. Science, 254(5036) pp. 1388-1390. Clemens, M., Gladkov, O., Gartner, E., Vladimirov, V., Crown, J., Steinberg, J., et al. (2015). Phase II, multicenter, open-label, randomized study of YM155 plus docetaxel as first-line treatment in patients with HER2-negative metastatic breast cancer. Breast Cancer Res Treat, 149(1) pp. 171-179. Croci, D. O., Cogno, I. S., Vittar, N. B., Salvatierra, E., Trajtenberg, F., Podhajcer, O. L., et al. (2008). Silencing survivin gene expression promotes apoptosis of human breast cancer cells through a caspase-independent pathway. J Cell Biochem, 105(2) pp. 381-390. Damgaard, R. B., Nachbur, U., Yabal, M., Wong, W. W., Fiil, B. K., Kastirr, M., et al. (2012). The ubiquitin ligase XIAP recruits LUBAC for NOD2 signaling in inflammation and innate immunity. Mol Cell, 46(6) pp. 746-758. Daugas, E., Susin, S. A., Zamzami, N., Ferri, K. F., Irinopoulou, T., Larochette, N., et al. (2000). Mitochondrio-nuclear translocation of AIF in apoptosis and necrosis. FASEB J, 14(5) pp. 729-739. De Duve, C., & Wattiaux, R. (1966). Functions of lysosomes. Annu Rev Physiol, 28 pp. 435-492. Degenhardt, K., Mathew, R., Beaudoin, B., Bray, K., Anderson, D., Chen, G., et al. (2006). Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell, 10(1) pp. 51-64. Dengjel, J., Schoor, O., Fischer, R., Reich, M., Kraus, M., Muller, M., et al. (2005). Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proc Natl Acad Sci U S A, 102(22) pp. 7922-7927. Dennemarker, J., Lohmuller, T., Muller, S., Aguilar, S. V., Tobin, D. J., Peters, C., et al. (2010). Impaired turnover of autophagolysosomes in cathepsin L deficiency. Biol Chem, 391(8) pp. 913-922. Dogan, M., Cagli, S., Yuce, I., Bayram, A., Somdas, M. A., Karatas, D., et al. (2015). Survivin expression correlates with nodal metastasis in T1-T2 squamous cell carcinoma of the tongue. Eur Arch Otorhinolaryngol, 272(3) pp. 689-694. Dong, H., Liu, G., Jiang, B., Guo, J., Tao, G., Yiu, W., et al. (2014). Overexpression of the Survivin gene in SGC7901 cell resistance to cisplatin. Oncol Lett, 8(5) pp. 1953-1956. Eskelinen, E.-L., Illert, A. L., Tanaka, Y., Schwarzmann, G., Blanz, J., von Figura, K., et al. (2002). Role of LAMP-2 in Lysosome Biogenesis and Autophagy. Mol Biol Cell, 13(9) pp. 3355-3368. Eskelinen, E. L., Schmidt, C. K., Neu, S., Willenborg, M., Fuertes, G., Salvador, N., et al. (2004). Disturbed cholesterol traffic but normal proteolytic function in LAMP-1/LAMP-2 double-deficient fibroblasts. Mol Biol Cell, 15(7) pp. 3132-3145. Felbor, U., Kessler, B., Mothes, W., Goebel, H. H., Ploegh, H. L., Bronson, R. T., et al. (2002). Neuronal loss and brain atrophy in mice lacking cathepsins B and L. Proc Natl Acad Sci U S A, 99(12) pp. 7883-7888. Feltham, R., Bettjeman, B., Budhidarmo, R., Mace, P. D., Shirley, S., Condon, S. M., et al. (2011). Smac mimetics activate the E3 ligase activity of cIAP1 protein by promoting RING domain dimerization. J Biol Chem, 286(19) pp. 17015-17028. Fortugno, P., Beltrami, E., Plescia, J., Fontana, J., Pradhan, D., Marchisio, P. C., et al. (2003). Regulation of survivin function by Hsp90. Proc Natl Acad Sci U S A, 100(24) pp. 13791-13796. Furuya, N., Yu, J., Byfield, M., Pattingre, S., & Levine, B. (2005). The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy and tumor suppressor function. Autophagy, 1(1) pp. 46-52. Ganley, I. G., Lam du, H., Wang, J., Ding, X., Chen, S., & Jiang, X. (2009). ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem, 284(18) pp. 12297-12305. Gill, S. R., Schroer, T. A., Szilak, I., Steuer, E. R., Sheetz, M. P., & Cleveland, D. W. (1991). Dynactin, a conserved, ubiquitously expressed component of an activator of vesicle motility mediated by cytoplasmic dynein. J Cell Biol, 115(6) pp. 1639-1650. Goossens-Beumer, I. J., Zeestraten, E. C., Benard, A., Christen, T., Reimers, M. S., Keijzer, R., et al. (2014). Clinical prognostic value of combined analysis of Aldh1, Survivin, and EpCAM expression in colorectal cancer. Br J Cancer, 110(12) pp. 2935-2944. Gutierrez, M. G., Munafo, D. B., Beron, W., & Colombo, M. I. (2004). Rab7 is required for the normal progression of the autophagic pathway in mammalian cells. J Cell Sci, 117(Pt 13) pp. 2687-2697. Hanada, T., Noda, N. N., Satomi, Y., Ichimura, Y., Fujioka, Y., Takao, T., et al. (2007). The Atg12-Atg5 Conjugate Has a Novel E3-like Activity for Protein Lipidation in Autophagy. J Biol Chem, 282(52) pp. 37298-37302. Hara, K., Yonezawa, K., Weng, Q. P., Kozlowski, M. T., Belham, C., & Avruch, J. (1998). Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem, 273(23) pp. 14484-14494. Hara, T., Takamura, A., Kishi, C., Iemura, S., Natsume, T., Guan, J. L., et al. (2008). FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol, 181(3) pp. 497-510. Hayashi-Nishino, M., Fujita, N., Noda, T., Yamaguchi, A., Yoshimori, T., & Yamamoto, A. (2009). A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol, 11(12) pp. 1433-1437. He, S. Q., Rehman, H., Gong, M. G., Zhao, Y. Z., Huang, Z. Y., Li, C. H., et al. (2007). Inhibiting survivin expression enhances TRAIL-induced tumoricidal activity in human hepatocellular carcinoma via cell cycle arrest. Cancer Biol Ther, 6(8) pp. 1247-1257. Hinds, M. G., Norton, R. S., Vaux, D. L., & Day, C. L. (1999). Solution structure of a baculoviral inhibitor of apoptosis (IAP) repeat. Nat Struct Biol, 6(7) pp. 648-651. Hosokawa, N., Sasaki, T., Iemura, S., Natsume, T., Hara, T., & Mizushima, N. (2009). Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy, 5(7) pp. 973-979. Hsu, K.-F., Wu, C.-L., Huang, S.-C., Wu, C.-M., Hsiao, J.-R., Yo, Y.-T., et al. (2009). Cathepsin L mediates resveratrol-induced autophagy and apoptotic cell death in cervical cancer cells. Autophagy, 5(4) pp. 451-460. Huynh, K. K., Eskelinen, E. L., Scott, C. C., Malevanets, A., Saftig, P., & Grinstein, S. (2007). LAMP proteins are required for fusion of lysosomes with phagosomes. EMBO J, 26(2) pp. 313-324. Ichimura, Y., Kumanomidou, T., Sou, Y. S., Mizushima, T., Ezaki, J., Ueno, T., et al. (2008). Structural basis for sorting mechanism of p62 in selective autophagy. J Biol Chem, 283(33) pp. 22847-22857. Jager, S., Bucci, C., Tanida, I., Ueno, T., Kominami, E., Saftig, P., et al. (2004). Role for Rab7 in maturation of late autophagic vacuoles. J Cell Sci, 117(Pt 20) pp. 4837-4848. Jeyaprakash, A. A., Klein, U. R., Lindner, D., Ebert, J., Nigg, E. A., & Conti, E. (2007). Structure of a Survivin-Borealin-INCENP core complex reveals how chromosomal passengers travel together. Cell, 131(2) pp. 271-285. Johansen, T., & Lamark, T. (2011). Selective autophagy mediated by autophagic adapter proteins. Autophagy, 7(3) pp. 279-296. Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., et al. (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J, 19(21) pp. 5720-5728. Kallio, M. J., Nieminen, M., & Eriksson, J. E. (2001). Human inhibitor of apoptosis protein (IAP) survivin participates in regulation of chromosome segregation and mitotic exit. FASEB J, 15(14) pp. 2721-2723. Kalvari, I., Tsompanis, S., Mulakkal, N. C., Osgood, R., Johansen, T., Nezis, I. P., et al. (2014). iLIR: A web resource for prediction of Atg8-family interacting proteins. Autophagy, 10(5) pp. 913-925. Kang, M. R., Kim, M. S., Oh, J. E., Kim, Y. R., Song, S. Y., Kim, S. S., et al. (2009). Frameshift mutations of autophagy-related genes ATG2B, ATG5, ATG9B and ATG12 in gastric and colorectal cancers with microsatellite instability. J Pathol, 217(5) pp. 702-706. Kawamura, K., Yu, L., Tomizawa, M., Shimozato, O., Ma, G., Li, Q., et al. (2007). Transcriptional regulatory regions of the survivin gene activate an exogenous suicide gene in human tumors and enhance the sensitivity to a prodrug. Anticancer Res, 27(1a) pp. 89-93. Kawasaki, H., Altieri, D. C., Lu, C. D., Toyoda, M., Tenjo, T., & Tanigawa, N. (1998). Inhibition of apoptosis by survivin predicts shorter survival rates in colorectal cancer. Cancer Res, 58(22) pp. 5071-5074. Kawasaki, H., Toyoda, M., Shinohara, H., Okuda, J., Watanabe, I., Yamamoto, T., et al. (2001). Expression of survivin correlates with apoptosis, proliferation, and angiogenesis during human colorectal tumorigenesis. Cancer, 91(11) pp. 2026-2032. Kelly, A. E., Ghenoiu, C., Xue, J. Z., Zierhut, C., Kimura, H., & Funabiki, H. (2010). Survivin reads phosphorylated histone H3 threonine 3 to activate the mitotic kinase Aurora B. Science, 330(6001) pp. 235-239. Khan, Z., Khan, N., Varma, A. K., Tiwari, R. P., Mouhamad, S., Prasad, G. B., et al. (2010). Oxaliplatin-mediated inhibition of survivin increases sensitivity of head and neck squamous cell carcinoma cell lines to paclitaxel. Curr Cancer Drug Targets, 10(7) pp. 660-669. Kim, D. H., Sarbassov, D. D., Ali, S. M., King, J. E., Latek, R. R., Erdjument-Bromage, H., et al. (2002). mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell, 110(2) pp. 163-175. Kim, J., Kundu, M., Viollet, B., & Guan, K.-L. (2011). AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol, 13(2) pp. 132-141. Kirkin, V., Lamark, T., Sou, Y. S., Bjorkoy, G., Nunn, J. L., Bruun, J. A., et al. (2009). A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol Cell, 33(4) pp. 505-516. Kirkin, V., McEwan, D. G., Novak, I., & Dikic, I. (2009). A role for ubiquitin in selective autophagy. Mol Cell, 34(3) pp. 259-269. Kogo, R., How, C., Chaudary, N., Bruce, J., Shi, W., Hill, R. P., et al. (2015). The microRNA-218~Survivin axis regulates migration, invasion, and lymph node metastasis in cervical cancer. Oncotarget, 6(2) pp. 1090-1100. Komatsu, M., Waguri, S., Koike, M., Sou, Y. S., Ueno, T., Hara, T., et al. (2007). Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell, 131(6) pp. 1149-1163. Komatsu, M., Waguri, S., Ueno, T., Iwata, J., Murata, S., Tanida, I., et al. (2005). Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol, 169(3) pp. 425-434. Krieg, A., Werner, T. A., Verde, P. E., Stoecklein, N. H., & Knoefel, W. T. (2013). Prognostic and clinicopathological significance of survivin in colorectal cancer: a meta-analysis. PLoS One, 8(6) p. e65338. Kuma, A., Mizushima, N., Ishihara, N., & Ohsumi, Y. (2002). Formation of the approximately 350-kDa Apg12-Apg5.Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J Biol Chem, 277(21) pp. 18619-18625. Lamark, T., Kirkin, V., Dikic, I., & Johansen, T. (2009). NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets. Cell Cycle, 8(13) pp. 1986-1990. Lebovitz, C. B., Bortnik, S. B., & Gorski, S. M. (2012). Here, there be dragons: charting autophagy-related alterations in human tumors. Clin Cancer Res, 18(5) pp. 1214-1226. Lee, I. H., & Finkel, T. (2009). Regulation of Autophagy by the p300 Acetyltransferase. J Biol Chem, 284(10) pp. 6322-6328. Leung, E., Kannan, N., Krissansen, G. W., Findlay, M. P., & Baguley, B. C. (2010). MCF-7 breast cancer cells selected for tamoxifen resistance acquire new phenotypes differing in DNA content, phospho-HER2 and PAX2 expression, and rapamycin sensitivity. Cancer Biol Ther, 9(9) pp. 717-724. Levine, B., & Klionsky, D. J. (2004). Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell, 6(4) pp. 463-477. Li, C., Wu, Z., Liu, M., Pazgier, M., & Lu, W. (2008). Chemically synthesized human survivin does not inhibit caspase-3. Protein Sci, 17(9) pp. 1624-1629. Li, F., & Altieri, D. C. (1999). The cancer antiapoptosis mouse survivin gene: characterization of locus and transcriptional requirements of basal and cell cycle-dependent expression. Cancer Res, 59(13) pp. 3143-3151. Li, X., Dang, X., & Sun, X. (2012). Expression of survivin and VEGF-C in breast cancer tissue and its relation to lymphatic metastasis. Eur J Gynaecol Oncol, 33(2) pp. 178-182. Li, X. U. E., Wu, D. I., Shen, J., Zhou, M., & Lu, Y. A. N. (2013). Rapamycin induces autophagy in the melanoma cell line M14 via regulation of the expression levels of Bcl-2 and Bax. Oncol Lett, 5(1) pp. 167-172. Liang, C., Feng, P., Ku, B., Dotan, I., Canaani, D., Oh, B. H., et al. (2006). Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol, 8(7) pp. 688-699. Liang, X. H., Jackson, S., Seaman, M., Brown, K., Kempkes, B., Hibshoosh, H., et al. (1999). Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature, 402(6762) pp. 672-676. Liu, Y. B., Gao, X., Deeb, D., Brigolin, C., Zhang, Y., Shaw, J., et al. (2014). Ubiquitin-proteasomal degradation of antiapoptotic survivin facilitates induction of apoptosis in prostate cancer cells by pristimerin. Int J Oncol, 45(4) pp. 1735-1741. Lopez, J., John, S. W., Tenev, T., Rautureau, G. J., Hinds, M. G., Francalanci, F., et al. (2011). CARD-mediated autoinhibition of cIAP1's E3 ligase activity suppresses cell proliferation and migration. Mol Cell, 42(5) pp. 569-583. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J Biol Chem, 193(1) pp. 265-275. Maloney, A., & Workman, P. (2002). HSP90 as a new therapeutic target for cancer therapy: the story unfolds. Expert Opin Biol Ther, 2(1) pp. 3-24. Matsushita, M., Suzuki, N. N., Obara, K., Fujioka, Y., Ohsumi, Y., & Inagaki, F. (2007). Structure of Atg5•Atg16, a Complex Essential for Autophagy. J Biol Chem, 282(9) pp. 6763-6772. Matteoni, R., & Kreis, T. E. (1987). Translocation and clustering of endosomes and lysosomes depends on microtubules. J Cell Biol, 105(3) pp. 1253-1265. Mirza, A., McGuirk, M., Hockenberry, T. N., Wu, Q., Ashar, H., Black, S., et al. (2002). Human survivin is negatively regulated by wild-type p53 and participates in p53-dependent apoptotic pathway. Oncogene, 21(17) pp. 2613-2622. Miyachi, K., Sasaki, K., Onodera, S., Taguchi, T., Nagamachi, M., Kaneko, H., et al. (2003). Correlation between survivin mRNA expression and lymph node metastasis in gastric cancer. Gastric Cancer, 6(4) pp. 217-224. Mizushima, N., Kuma, A., Kobayashi, Y., Yamamoto, A., Matsubae, M., Takao, T., et al. (2003). Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. J Cell Sci, 116(Pt 9) pp. 1679-1688. Mizushima, N., Noda, T., Yoshimori, T., Tanaka, Y., Ishii, T., George, M. D., et al. (1998). A protein conjugation system essential for autophagy. Nature, 395(6700) pp. 395-398. Morselli, E., Marino, G., Bennetzen, M. V., Eisenberg, T., Megalou, E., Schroeder, S., et al. (2011). Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome. J Cell Biol, 192(4) pp. 615-629. Munafo, D. B., & Colombo, M. I. (2001). A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation. J Cell Sci, 114(Pt 20) pp. 3619-3629. Nakagawa, I., Amano, A., Mizushima, N., Yamamoto, A., Yamaguchi, H., Kamimoto, T., et al. (2004). Autophagy defends cells against invading group A Streptococcus. Science, 306(5698) pp. 1037-1040. Nakahara, T., Takeuchi, M., Kinoyama, I., Minematsu, T., Shirasuna, K., Matsuhisa, A., et al. (2007). YM155, a Novel Small-Molecule Survivin Suppressant, Induces Regression of Established Human Hormone-Refractory Prostate Tumor Xenografts. Cancer Res, 67(17) pp. 8014-8021. Nakamura, N., Matsuura, A., Wada, Y., & Ohsumi, Y. (1997). Acidification of vacuoles is required for autophagic degradation in the yeast, Saccharomyces cerevisiae. J Biochem, 121(2) pp. 338-344. Nakatogawa, H., Suzuki, K., Kamada, Y., & Ohsumi, Y. (2009). Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol, 10(7) pp. 458-467. Nixon, R. A. (2013). The role of autophagy in neurodegenerative disease. Nat Med, 19(8) pp. 983-997. Noda, N. N., Kumeta, H., Nakatogawa, H., Satoo, K., Adachi, W., Ishii, J., et al. (2008). Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells, 13(12) pp. 1211-1218. Noda, N. N., Ohsumi, Y., & Inagaki, F. (2010). Atg8-family interacting motif crucial for selective autophagy. FEBS Lett, 584(7) pp. 1379-1385. Novak, I., Kirkin, V., McEwan, D. G., Zhang, J., Wild, P., Rozenknop, A., et al. (2010). Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep, 11(1) pp. 45-51. O'Connor, D. S., Schechner, J. S., Adida, C., Mesri, M., Rothermel, A. L., Li, F., et al. (2000). Control of apoptosis during angiogenesis by survivin expression in endothelial cells. Am J Pathol, 156(2) pp. 393-398. Ohkuma, S., & Poole, B. (1978). Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci U S A, 75(7) pp. 3327-3331. Pankiv, S., Clausen, T. H., Lamark, T., Brech, A., Bruun, J.-A., Outzen, H., et al. (2007). p62/SQSTM1 Binds Directly to Atg8/LC3 to Facilitate Degradation of Ubiquitinated Protein Aggregates by Autophagy. J Biol Chem, 282(33) pp. 24131-24145. Pankiv, S., Clausen, T. H., Lamark, T., Brech, A., Bruun, J. A., Outzen, H., et al. (2007). p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem, 282(33) pp. 24131-24145. Penninger, J. M., & Kroemer, G. (2003). Mitochondria, AIF and caspases--rivaling for cell death execution. Nat Cell Biol, 5(2) pp. 97-99. Petrarca, C. R., Brunetto, A. T., Duval, V., Brondani, A., Carvalho, G. P., & Garicochea, B. (2011). Survivin as a predictive biomarker of complete pathologic response to neoadjuvant chemotherapy in patients with stage II and stage III breast cancer. Clin Breast Cancer, 11(2) pp. 129-134. Qu, X., Yu, J., Bhagat, G., Furuya, N., Hibshoosh, H., Troxel, A., et al. (2003). Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest, 112(12) pp. 1809-1820. Rabinowitz, J. D., & White, E. (2010). Autophagy and metabolism. Science, 330(6009) pp. 1344-1348. Ravikumar, B., Acevedo-Arozena, A., Imarisio, S., Berger, Z., Vacher, C., O'Kane, C. J., et al. (2005). Dynein mutations impair autophagic clearance of aggregate-prone proteins. Nat Genet, 37(7) pp. 771-776. Riedl, S. J., Renatus, M., Schwarzenbacher, R., Zhou, Q., Sun, C., Fesik, S. W., et al. (2001). Structural basis for the inhibition of caspase-3 by XIAP. Cell, 104(5) pp. 791-800. Riolo, M. T., Cooper, Z. A., Holloway, M. P., Cheng, Y., Bianchi, C., Yakirevich, E., et al. (2012). Histone deacetylase 6 (HDAC6) deacetylates survivin for its nuclear export in breast cancer. J Biol Chem, 287(14) pp. 10885-10893. Romanov, J., Walczak, M., Ibiricu, I., Schüchner, S., Ogris, E., Kraft, C., et al. (2012). Mechanism and functions of membrane binding by the Atg5–Atg12/Atg16 complex during autophagosome formation. EMBO J, 31(22) pp. 4304-4317 Rossi, A., Deveraux, Q., Turk, B., & Sali, A. (2004). Comprehensive search for cysteine cathepsins in the human genome. Biol Chem, 385(5) pp. 363-372. Saftig, P., Beertsen, W., & Eskelinen, E.-L. (2008). LAMP-2: A control step for phagosome and autophagosome maturation. Autophagy, 4(4) pp. 510-512. Sarbassov, D. D., Ali, S. M., Kim, D. H., Guertin, D. A., Latek, R. R., Erdjument-Bromage, H., et al. (2004). Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol, 14(14) pp. 1296-1302. Sato, T., Nakashima, A., Guo, L., Coffman, K., & Tamanoi, F. (2010). Single amino-acid changes that confer constitutive activation of mTOR are discovered in human cancer. Oncogene, 29(18) pp. 2746-2752. Seglen, P. O., Berg, T. O., Blankson, H., Fengsrud, M., Holen, I., & Stromhaug, P. E. (1996). Structural aspects of autophagy. Adv Exp Med Biol, 389 pp. 103-111. Shin, S., Sung, B. J., Cho, Y. S., Kim, H. J., Ha, N. C., Hwang, J. I., et al. (2001). An anti-apoptotic protein human survivin is a direct inhibitor of caspase-3 and -7. Biochemistry, 40(4) pp. 1117-1123. Shintani, T., Mizushima, N., Ogawa, Y., Matsuura, A., Noda, T., & Ohsumi, Y. (1999). Apg10p, a novel protein-conjugating enzyme essential for autophagy in yeast. EMBO J, 18(19) pp. 5234-5241. Silke, J., & Vucic, D. (2014). IAP family of cell death and signaling regulators. Methods Enzymol, 545 pp. 35-65. Song, Z., Yao, X., & Wu, M. (2003). Direct interaction between survivin and Smac/DIABLO is essential for the anti-apoptotic activity of survivin during taxol-induced apoptosis. J Biol Chem, 278(25) pp. 23130-23140. Srirangam, A., Mitra, R., Gorski, C., Li, L., Sledge, G. W., Kishimoto, H., et al. (2004). Ritonavir blocks the growth of breast cancer line MDA-MB-231 in a mammary fat pad xenograft model, in part through calpain inhibition of cell cycle progression. Cancer Res, 64(7 Supplement) p. 123. Su, L., Wang, Y., Xiao, M., Lin, Y., & Yu, L. (2010). Up-regulation of survivin in oral squamous cell carcinoma correlates with poor prognosis and chemoresistance. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 110(4) pp. 484-491. Sun, C., Nettesheim, D., Liu, Z., & Olejniczak, E. T. (2005). Solution structure of human survivin and its binding interface with Smac/Diablo. Biochemistry, 44(1) pp. 11-17. Sun, M., Ouzounian, M., de Couto, G., Chen, M., Yan, R., Fukuoka, M., et al. (2013). Cathepsin‐L Ameliorates Cardiac Hypertrophy Through Activation of the Autophagy–Lysosomal Dependent Protein Processing Pathways. J Am Heart Assoc, 2(2). Sun, Q., Zhang, J., Fan, W., Wong, K. N., Ding, X., Chen, S., et al. (2011). The RUN Domain of Rubicon Is Important for hVps34 Binding, Lipid Kinase Inhibition, and Autophagy Suppression. J Biol Chem, 286(1) pp. 185-191. Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., Snow, B. E., Brothers, G. M., et al. (1999). Molecular characterization of mitochondrial apoptosis-inducing factor. Nature, 397(6718) pp. 441-446. Suzuki, K., Kubota, Y., Sekito, T., & Ohsumi, Y. (2007). Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells, 12(2) pp. 209-218. Takahashi, R., Deveraux, Q., Tamm, I., Welsh, K., Assa-Munt, N., Salvesen, G. S., et al. (1998). A single BIR domain of XIAP sufficient for inhibiting caspases. J Biol Chem, 273(14) pp. 7787-7790. Tanaka, Y., Guhde, G., Suter, A., Eskelinen, E. L., Hartmann, D., Lullmann-Rauch, R., et al. (2000). Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature, 406(6798) pp. 902-906. Tanida, I. (2011). Autophagosome formation and molecular mechanism of autophagy. Antioxid Redox Signal, 14(11) pp. 2201-2214. Tanida, I., Tanida-Miyake, E., Komatsu, M., Ueno, T., & Kominami, E. (2002). Human Apg3p/Aut1p homologue is an authentic E2 enzyme for multiple substrates, GATE-16, GABARAP, and MAP-LC3, and facilitates the conjugation of hApg12p to hApg5p. J Biol Chem, 277(16) pp. 13739-13744. Tanida, I., Tanida-Miyake, E., Ueno, T., & Kominami, E. (2001). The human homolog of Saccharomyces cerevisiae Apg7p is a Protein-activating enzyme for multiple substrates including human Apg12p, GATE-16, GABARAP, and MAP-LC3. J Biol Chem, 276(3) pp. 1701-1706. Tanida, I., Wakabayashi, M., Kanematsu, T., Minematsu-Ikeguchi, N., Sou, Y. S., Hirata, M., et al. (2006). Lysosomal turnover of GABARAP-phospholipid conjugate is activated during differentiation of C2C12 cells to myotubes without inactivation of the mTor kinase-signaling pathway. Autophagy, 2(4) pp. 264-271. Tsukada, M., & Ohsumi, Y. (1993). Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett, 333(1-2) pp. 169-174. Vaira, V., Lee, C. W., Goel, H. L., Bosari, S., Languino, L. R., & Altieri, D. C. (2007). Regulation of survivin expression by IGF-1/mTOR signaling. Oncogene, 26(19) pp. 2678-2684. Velculescu, V. E., Madden, S. L., Zhang, L., Lash, A. E., Yu, J., Rago, C., et al. (1999). Analysis of human transcriptomes. Nat Genet, 23(4) pp. 387-388. Verdecia, M. A., Huang, H., Dutil, E., Kaiser, D. A., Hunter, T., & Noel, J. P. (2000). Structure of the human anti-apoptotic protein survivin reveals a dimeric arrangement. Nat Struct Biol, 7(7) pp. 602-608. Walczak, M., & Martens, S. (2013). Dissecting the role of the Atg12-Atg5-Atg16 complex during autophagosome formation. Autophagy, 9(3) pp. 424-425. Wei, H., Wei, S., Gan, B., Peng, X., Zou, W., & Guan, J. L. (2011). Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis. Genes Dev, 25(14) pp. 1510-1527. Whitesell, L., & Lindquist, S. L. (2005). HSP90 and the chaperoning of cancer. Nat Rev Cancer, 5(10) pp. 761-772. Wu, L., Feng, Z., Cui, S., Hou, K., Tang, L., Zhou, J., et al. (2013). Rapamycin upregulates autophagy by inhibiting the mTOR-ULK1 pathway, resulting in reduced podocyte injury. PLoS One, 8(5) p. e63799. Xie, Z., & Klionsky, D. J. (2007). Autophagosome formation: core machinery and adaptations. Nat Cell Biol, 9(10) pp. 1102-1109. Xu, R., Zhang, P., Huang, J., Ge, S., Lu, J., & Qian, G. (2007). Sp1 and Sp3 regulate basal transcription of the survivin gene. Biochem Biophys Res Commun, 356(1) pp. 286-292. Yousefi, S., Perozzo, R., Schmid, I., Ziemiecki, A., Schaffner, T., Scapozza, L., et al. (2006). Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol, 8(10) pp. 1124-1132. Yousefi, S., Perozzo, R., Schmid, I., Ziemiecki, A., Schaffner, T., Scapozza, L., et al. (2006). Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol, 8(10) pp. 1124-1132. Zhao, Z., Fux, B., Goodwin, M., Dunay, I. R., Strong, D., Miller, B. C., et al. (2008). Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens. Cell Host Microbe, 4(5) pp. 458-469.
|