跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/28 06:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林俊佃
研究生(外文):Jiunn-Diann Lin
論文名稱:免疫調節因子與自體免疫甲狀腺疾病的相關性
論文名稱(外文):The Association of Immunomodulatory Factors with Autoimmune Thyroid Disease
指導教授:鄭朝文
指導教授(外文):Chao-Wen Cheng
學位類別:博士
校院名稱:臺北醫學大學
系所名稱:醫學科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:76
中文關鍵詞:第八干擾素調節因子葛瑞夫茲氏疾病橋本氏甲狀腺炎自體免疫甲狀腺疾病B細胞活化因子
外文關鍵詞:interferon regulatory factor 8Graves’ diseaseHashimoto’s thyroiditisautoimmune thyroid diseaseB-lymphocyte-activating factor.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:409
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
背景:干擾素調節因子-第一型干擾素(type 1 IFN)- B細胞活化因子?BAFF)的訊息傳導與自體免疫疾病的發病有關,但是,這訊息路徑對自體甲狀腺免疫疾病?AITD?的發病與臨床表徵的影響並不清楚,因此需要進一步去闡明。第八干擾素調節因子?IRF8),可調控第一型干擾素,它的基因變異,被認為與紅斑性狼瘡及多發性硬化症的發病有關。同時,B細胞活化因子?BAFF),被第一型干擾素調控,與B細胞功能有關,而它的基因多型性也被發現與紅斑性狼瘡、類風溼性關節炎、乾燥症有關。在本研究中,我們主要著墨在IRF8-type 1 IFN-BAFF的訊息路徑。我們探討中國人IRF8的基因多型性rs17445836 and rs2280381,與BAFF的基因多型性rs1041569 and rs2893321與AITD的相關性。同時,我們也同時探討血清BAFF與 AITD的相關性。
研究方法與材料:共有葛瑞夫茲氏疾病(GD) 278人,橋本氏甲狀腺炎?HT?55人,健康者252人納入IRF8的基因多型性研究。GD 319人,HT83人,健康者369人,收入BAFF的基因多型性研究。另外,我們也收集了170個GD病人,51 HT患者,與124健康者的血清進行血中BAFF蛋白質的分析。我們使用聚合?連鎖反應-限制?片段長度多型性方法與直接定序來決定基因型。我們也測量了病人發病時的甲狀腺功能與甲狀腺自體抗體,包括甲狀腺刺激素自體抗體 (TSHRAb),抗微粒體抗體(AmiA),與抗甲狀腺球蛋白抗體(ATA)。
結果:在IRF8的研究中,我們發現HT的病人比之健康者的rs17445836有較低比例的的GA genotype與 A allele(p = 0.028, odds ratio (OR) = 4.71 and p = 0.022, OR = 4.40)。rs17445836 與 rs2280381都與AmiA的產生有關。另外,rs17445836在AITD中與AmiA的濃度有關。在BAFF的研究中,我們發現GD與健康者(p = 0.013, OR = 0.76, and p = 0.017, OR = 0.68)及AITD與健康者(p = 0.009, OR = 0.76 and,p = 0.014, OR = 0.69)的rs2893321的G allele 與AG+GG genotype比例不同。在男性中,rs2893321的AA genotype伴隨著較低濃度的TSHRAb。在男性中,rs2893321的AA genotype伴隨著單一種抗體而女性則較易伴隨這兩種抗體。另外,我們發現血清BAFF在GD、HT及AITD的病人中是升高的。在女性中,血清BAFF與TSHRAb(r = 0.238, p = 0.018) , AmiA(p = 0.038) , 及ATA(p = 0.025)濃度都有相關。此外,在女性的active GD中,血清BAFF與游離甲狀腺素(r = 0.430, p = 0.004)及TSHRAb(r = 0.495, p = 0.001)有關,但在inactive GD則無相關。
結論:所有基因多型性與血清蛋白質的研究都高度暗示IRF8-type 1 IFN-BAFF的訊息路徑參與了AITD的發病機轉,這個路徑的破壞有可能誘發AITD或改變AITD的臨床表徵,而這有可能是可以被性荷爾蒙調控的。這些結果提供了未來可以從針對IRF8-type 1 IFN-BAFF的訊息路徑的免疫介入治療AITD病人的重要訊息。
Background: Interferon regulatory factors-type 1 interferon (type 1 IFN)-B-Lymphocyte activating factor (BAFF) signature has been linked to the pathogenesis of autoimmune disease. However, the impact of the signaling pathway on the occurrence and clinical features of autoimmune thyroid disease (AITD) is still unclear and required to be elucidated. The genetic variant of the INF regulatory factor 8 (IRF8), a type 1 INF regulator, is associated with susceptibility to systemic lupus erythematosus (SLE) and multiple sclerosis. At the same time, the B-lymphocyte-activating factor (BAFF) is associated with B-cell functions and is modulated by type 1 INF, and gene polymorphisms of the BAFF have been also linked to SLE, rheumatoid arthritis and Sj?gren''s syndrome. In this study, we mainly focused on the immuno-modulators involved in the IRF8-type 1 IFN-BAFF signaling pathway. We investigated possible associations of the IRF8 polymorphisms (SNP), rs17445836 and rs2280381, and two BAFF SNPs, rs1041569 and rs2893321,with AITD in an ethnic Chinese population. At the same time, we also investigated the association of serum BAFF levels with AITD.
Material and Methods: In total, 278 Graves’ disease (GD) and 55 Hashimoto’s thyroiditis (HT) patients, and 252 healthy controls were enrolled for IRF8 SNP analysis. 319 GD, 83 HT patients, and 369 healthy controls were recruited in the BAFF SNP analysis. At the same time, we collected serum samples from 221 patients with AITD (170 patients with GD, 51 patients with HT) and 124 healthy controls to measure serum BAFF levels. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and direct sequencing were used for genotyping. Thyroid function and thyroid autoantibody (TAb) levels, including of thyroid-stimulating hormone receptor antibody (TSHRAb), anti-microsomal antibody (AmiA) and antithyroglobulin antibody (ATA), were measured at baseline.
Results: In IRF8 analysis, significantly lower frequencies of the GA genotype and A allele of rs17445836 were found in the HT group than in the control group (p = 0.028, odds ratio (OR) = 4.71 and p = 0.022, OR = 4.40, respectively). Both rs17445836 and rs2280381 were associated with the presence of an AmiA. Moreover, rs17445836 was associated the level of AmiA in AITD. In BAFF study, we found there was a significant difference in frequencies of the G allele and AG+GG genotype of rs2893321 between the GD and control groups (p = 0.013, OR = 0.76, and p = 0.017, OR = 0.68, respectively) and between the AITD and control groups (p = 0.009, OR = 0.76, and, p = 0.014, OR = 0.69, respectively). The AA genotype of rs2893321 was associated with low titers of TSHRAb (p = 0.015) in males but not in females. The AA genotype of rs2893321 was associated with the presence of two different types of TAb (TSHRAb and Hashimoto’s autoantibody (ATA or AmiA) in females and with that of one type in males. In serum BAFF protein analysis, we found that serum BAFF levels were higher in the GD, HT, and AITD groups than in the control group. Significant correlations were observed between BAFF and TSHRAb levels (r = 0.238, p = 0.018), between BAFF and AmiA levels (p = 0.038), and between BAFF and ATA titers (p = 0.025) in women but not in men. In addition, serum BAFF levels were significantly associated with free thyroxine (r = 0.430, p = 0.004) and TSHRAb (r = 0.495, p = 0.001) levels in women with active GD but not in those with inactive GD.
Conclusions: All of the genetic and serum protein results highly suggested that the IRF8-type 1 IFN-BAFF signaling could participate in the pathogenesis of AITD and the disruption of the pathway could trigger the AITD and modulate the phenotypes of AITD, which could be controlled by sex hormone. The results offer the important information that that AITD patients might benefit from the immunological intervention targeting to IRF8-type 1 IFN-BAFF pathway.
1. Abstract in Chinese-------------------------------------------------------------------i-ii
2. Abstract in English--------------------------------------------------------------------iii-v
3. Introduction----------------------------------------------------------------------------1-7
3.1. The synthesis of thyroid hormone and thyroid autoantigen------------1
3.2 The immune system---------------------------------------------------------------1-3
3.3. Autoimmune thyroid disease (AITD)-----------------------------------------3-4
3.4. Interferon regulatory factor 8 (IRF8)----------------------------------------4-6
3.5. B-Lymphocyte-activating factor (BAFF)------------------------------------6-7
3.6. Aim of the thesis------------------------------------------------------------------8
4. Materials and methods---------------------------------------------------------------9-12
4.1. Subjects----------------------------------------------------------------------------9
4.2. Genotyping-------------------------------------------------------------------------9-10
4.3. Serum BAFF protein measurement-------------------------------------------10
4.4. Laboratory analyses-------------------------------------------------------------10-11
4.5. Statistical analysis----------------------------------------------------------------11-12
5. Results-----------------------------------------------------------------------------------13-23
5.1. IRF8 SNP study------------------------------------------------------------------13-16
5.1.1 Demographic data of the GD, HT and control groups----------------13
5.1.2 SNP association analysis-----------------------------------------------------13-14
5.1.3 Associations of rs17445836 and rs2280381 with the presence of the AmiA and ATA in AITD----------------------------------------------------------------14
5.1.4 Prevalence of rs17445836 and rs2280381 in GD without the AmiA and ATA, GD with the AmiA or ATA, and HT-------------------------------------------14-15
5.1.5 Associations of rs17445836 and rs2280381 with thyroid function at the baseline and clinical outcomes of GD and HT patients---------------------------15
5.1.6 Associations of rs17445836 and rs2280381 with TSHRAb and AmiA titers------------------------------------------------------------------------------------------15
5.1.7. Multivariate logistic regression analysis for susceptibility to HT----15-16
5.2. BAFF SNP study--------------------------------------------------------------------16-20
5.2.1 Demographic data of the GD, HT, AITD, and control groups--------16
5.2.2 SNP association analysis------------------------------------------------------16-17
5.2.3 Associations of rs1041569 and rs2893321with TSHRAb and AmiA titers------------------------------------------------------------------------------------------18
5.2.4 Prevalences of rs1041569 and rs2893321 with diversity of autoantibody production in AITD-----------------------------------------------------------------------18-19
5.2.5 Associations of rs2893321 and rs1041569 with serum BAFF protein levels-----------------------------------------------------------------------------------------19
5.2.6 Multivariate logistic regression analysis for susceptibility to GD, HT, and AITD-----------------------------------------------------------------------------------20
5.3. Serum BAFF study-----------------------------------------------------------------20-23
5.3.1 Demographic data of the GD, HT, AITD, and control groups-------20-21
5.3.2 Serum BAFF level comparison---------------------------------------------21
5.3.3 Association of BAFF protein levels with thyroid function at baseline---21
5.3.4 Association of BAFF protein levels with TSHRAb, AmiA, and ATA titers------------------------------------------------------------------------------------------21-22
5.3.5. Association of BAFF protein levels with TSHRAb and FT4 levels in active and inactive GD-------------------------------------------------------------------22-23
6. Discussion-------------------------------------------------------------------------------24-32
7.Conclusion and perspective----------------------------------------------------------32-34
8. Reference--------------------------------------------------------------------------------34-41
8.Tables and Figures---------------------------------------------------------------------42-73
9.Appendix---------------------------------------------------------------------------------74-76
1. Gavaret JM, Cahnmann HJ, Nunez J (1981) Thyroid hormone synthesis in thyroglobulin. The mechanism of the coupling reaction. J Biol Chem 256: 9167-9173.
2. Spitzweg C, Morris JC (2002) Sodium iodide symporter (NIS) and thyroid. Hormones (Athens) 1: 22-34.
3. Tomer Y, Huber A (2009) The etiology of autoimmune thyroid disease: a story of genes and environment. J Autoimmun 32: 231-239.
4. Bonilla FA, Oettgen HC (2010) Adaptive immunity. J Allergy Clin Immunol 125: S33-40.
5. Brown RS (2009) Autoimmune thyroid disease: unlocking a complex puzzle. Curr Opin Pediatr 21: 523-528.
6. Betterle C, Zanchetta R (2003) Update on autoimmune polyendocrine syndromes (APS). Acta Biomed 74: 9-33.
7. Simmonds MJ (2013) GWAS in autoimmune thyroid disease: redefining our understanding of pathogenesis. Nat Rev Endocrinol 9: 277-287.
8. Eisenberg R (2003) Mechanisms of autoimmunity. Immunol Res 27: 203-218.
9. Grimaldi CM, Hicks R, Diamond B (2005) B cell selection and susceptibility to autoimmunity. J Immunol 174: 1775-1781.
10. Shevach EM (2000) Regulatory T cells in autoimmmunity*. Annu Rev Immunol 18: 423-449.
11. Hasham A, Tomer Y (2012) Genetic and epigenetic mechanisms in thyroid autoimmunity. Immunol Res 54: 204-213.
12. Tomer Y, Davies TF (2003) Searching for the autoimmune thyroid disease susceptibility genes: from gene mapping to gene function. Endocr Rev 24: 694-717.
13. Smith TJ, Hegedus L (2016) Graves'' Disease. N Engl J Med 375: 1552-1565.
14. McLachlan SM, Rapoport B (2014) Breaking tolerance to thyroid antigens: changing concepts in thyroid autoimmunity. Endocr Rev 35: 59-105.
15. Cartegni L, Chew SL, Krainer AR (2002) Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 3: 285-298.
16. Ban Y, Concepcion ES, Villanueva R, Greenberg DA, Davies TF, et al. (2004) Analysis of immune regulatory genes in familial and sporadic Graves'' disease. J Clin Endocrinol Metab 89: 4562-4568.
17. Ban Y, Davies TF, Greenberg DA, Concepcion ES, Osman R, et al. (2004) Arginine at position 74 of the HLA-DR beta1 chain is associated with Graves'' disease. Genes Immun 5: 203-208.
18. Tomer Y, Concepcion E, Greenberg DA (2002) A C/T single-nucleotide polymorphism in the region of the CD40 gene is associated with Graves'' disease. Thyroid 12: 1129-1135.
19. Sanders J, Oda Y, Roberts S, Kiddie A, Richards T, et al. (1999) The interaction of TSH receptor autoantibodies with 125I-labelled TSH receptor. J Clin Endocrinol Metab 84: 3797-3802.
20. Ban Y, Greenberg DA, Concepcion E, Skrabanek L, Villanueva R, et al. (2003) Amino acid substitutions in the thyroglobulin gene are associated with susceptibility to human and murine autoimmune thyroid disease. Proc Natl Acad Sci U S A 100: 15119-15124.
21. Lee HJ, Li CW, Hammerstad SS, Stefan M, Tomer Y (2015) Immunogenetics of autoimmune thyroid diseases: A comprehensive review. J Autoimmun 64: 82-90.
22. Brkic Z, Maria NI, van Helden-Meeuwsen CG, van de Merwe JP, van Daele PL, et al. (2013) Prevalence of interferon type I signature in CD14 monocytes of patients with Sjogren''s syndrome and association with disease activity and BAFF gene expression. Ann Rheum Dis 72: 728-735.
23. Jacob N, Guo S, Mathian A, Koss MN, Gindea S, et al. (2011) B Cell and BAFF dependence of IFN-alpha-exaggerated disease in systemic lupus erythematosus-prone NZM 2328 mice. J Immunol 186: 4984-4993.
24. Mandac JC, Chaudhry S, Sherman KE, Tomer Y (2006) The clinical and physiological spectrum of interferon-alpha induced thyroiditis: toward a new classification. Hepatology 43: 661-672.
25. Malik UR, Makower DF, Wadler S (2001) Interferon-mediated fatigue. Cancer 92: 1664-1668.
26. Rizza P, Moretti F, Belardelli F (2010) Recent advances on the immunomodulatory effects of IFN-alpha: implications for cancer immunotherapy and autoimmunity. Autoimmunity 43: 204-209.
27. Weckerle CE, Franek BS, Kelly JA, Kumabe M, Mikolaitis RA, et al. (2011) Network analysis of associations between serum interferon-alpha activity, autoantibodies, and clinical features in systemic lupus erythematosus. Arthritis Rheum 63: 1044-1053.
28. Russo MW, Fried MW (2003) Side effects of therapy for chronic hepatitis C. Gastroenterology 124: 1711-1719.
29. Parkin J, Cohen B (2001) An overview of the immune system. Lancet 357: 1777-1789.
30. Burman P, Totterman TH, Oberg K, Karlsson FA (1986) Thyroid autoimmunity in patients on long term therapy with leukocyte-derived interferon. J Clin Endocrinol Metab 63: 1086-1090.
31. Tomer Y (2010) Hepatitis C and interferon induced thyroiditis. J Autoimmun 34: J322-326.
32. Tomer Y, Blackard JT, Akeno N (2007) Interferon alpha treatment and thyroid dysfunction. Endocrinol Metab Clin North Am 36: 1051-1066; x-xi.
33. Markowitz CE (2007) Interferon-beta: mechanism of action and dosing issues. Neurology 68: S8-11.
34. Lu R (2008) Interferon regulatory factor 4 and 8 in B-cell development. Trends Immunol 29: 487-492.
35. Holtschke T, Lohler J, Kanno Y, Fehr T, Giese N, et al. (1996) Immunodeficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene. Cell 87: 307-317.
36. Paun A, Pitha PM (2007) The IRF family, revisited. Biochimie 89: 744-753.
37. Meraro D, Hashmueli S, Koren B, Azriel A, Oumard A, et al. (1999) Protein-protein and DNA-protein interactions affect the activity of lymphoid-specific IFN regulatory factors. J Immunol 163: 6468-6478.
38. Chrabot BS, Kariuki SN, Zervou MI, Feng X, Arrington J, et al. (2013) Genetic variation near IRF8 is associated with serologic and cytokine profiles in systemic lupus erythematosus and multiple sclerosis. Genes Immun 14: 471-478.
39. Gorlova O, Martin JE, Rueda B, Koeleman BP, Ying J, et al. (2011) Identification of novel genetic markers associated with clinical phenotypes of systemic sclerosis through a genome-wide association strategy. PLoS Genet 7: e1002178.
40. Cunninghame Graham DS, Morris DL, Bhangale TR, Criswell LA, Syvanen AC, et al. (2011) Association of NCF2, IKZF1, IRF8, IFIH1, and TYK2 with systemic lupus erythematosus. PLoS Genet 7: e1002341.
41. Li SW, He Y, Zheng ZH, Liu DW, Liu ZS (2014) Single-nucleotide polymorphisms of IRF8 gene are associated with systemic lupus erythematosus in Chinese Han population. Int J Immunogenet 41: 112-118.
42. Yanaba K, Bouaziz JD, Matsushita T, Magro CM, St Clair EW, et al. (2008) B-lymphocyte contributions to human autoimmune disease. Immunol Rev 223: 284-299.
43. Lin JD, Cheng CW (2017) Causal variants in autoimmune disease: a commentary on a recent published fine-mapping algorithm analysis in genome-wide association studies study. Ann Transl Med 5(6): 151.
44. Thompson JS, Schneider P, Kalled SL, Wang L, Lefevre EA, et al. (2000) BAFF binds to the tumor necrosis factor receptor-like molecule B cell maturation antigen and is important for maintaining the peripheral B cell population. J Exp Med 192: 129-135.
45. Wang H, Morse HC, 3rd (2009) IRF8 regulates myeloid and B lymphoid lineage diversification. Immunol Res 43: 109-117.
46. Thien M, Phan TG, Gardam S, Amesbury M, Basten A, et al. (2004) Excess BAFF rescues self-reactive B cells from peripheral deletion and allows them to enter forbidden follicular and marginal zone niches. Immunity 20: 785-798.
47. Moore PA, Belvedere O, Orr A, Pieri K, LaFleur DW, et al. (1999) BLyS: member of the tumor necrosis factor family and B lymphocyte stimulator. Science 285: 260-263.
48. Sjostrand M, Johansson A, Aqrawi L, Olsson T, Wahren-Herlenius M, et al. (2016) The Expression of BAFF Is Controlled by IRF Transcription Factors. J Immunol 196: 91-96.
49. Khare SD, Sarosi I, Xia XZ, McCabe S, Miner K, et al. (2000) Severe B cell hyperplasia and autoimmune disease in TALL-1 transgenic mice. Proc Natl Acad Sci U S A 97: 3370-3375.
50. Zhang J, Roschke V, Baker KP, Wang Z, Alarcon GS, et al. (2001) Cutting edge: a role for B lymphocyte stimulator in systemic lupus erythematosus. J Immunol 166: 6-10.
51. Mariette X, Roux S, Zhang J, Bengoufa D, Lavie F, et al. (2003) The level of BLyS (BAFF) correlates with the titre of autoantibodies in human Sjogren''s syndrome. Ann Rheum Dis 62: 168-171.
52. Migita K, Ilyassova B, Kovzel EF, Nersesov A, Abiru S, et al. (2010) Serum BAFF and APRIL levels in patients with PBC. Clin Immunol 134: 217-225.
53. Cheema GS, Roschke V, Hilbert DM, Stohl W (2001) Elevated serum B lymphocyte stimulator levels in patients with systemic immune-based rheumatic diseases. Arthritis Rheum 44: 1313-1319.
54. Nossent JC, Lester S, Zahra D, Mackay CR, Rischmueller M (2008) Polymorphism in the 5'' regulatory region of the B-lymphocyte activating factor gene is associated with the Ro/La autoantibody response and serum BAFF levels in primary Sjogren''s syndrome. Rheumatology (Oxford) 47: 1311-1316.
55. Kawasaki A, Tsuchiya N, Fukazawa T, Hashimoto H, Tokunaga K (2002) Analysis on the association of human BLYS (BAFF, TNFSF13B) polymorphisms with systemic lupus erythematosus and rheumatoid arthritis. Genes Immun 3: 424-429.
56. Clark WB, Brown-Gentry KD, Crawford DC, Fan KH, Snavely J, et al. (2011) Genetic variation in recipient B-cell activating factor modulates phenotype of GVHD. Blood 118: 1140-1144.
57. Nezos A, Papageorgiou A, Fragoulis G, Ioakeimidis D, Koutsilieris M, et al. (2014) B-cell activating factor genetic variants in lymphomagenesis associated with primary Sjogren''s syndrome. J Autoimmun 51: 89-98.
58. Ruyssen-Witrand A, Rouanet S, Combe B, Dougados M, Le Loet X, et al. (2013) Association between -871C>T promoter polymorphism in the B-cell activating factor gene and the response to rituximab in rheumatoid arthritis patients. Rheumatology (Oxford) 52: 636-641.
59. de Almeida ER, Petzl-Erler ML (2013) Expression of genes involved in susceptibility to multifactorial autoimmune diseases: estimating genotype effects. Int J Immunogenet 40: 178-185.
60. Emmerich F, Bal G, Barakat A, Milz J, Muhle C, et al. (2007) High-level serum B-cell activating factor and promoter polymorphisms in patients with idiopathic thrombocytopenic purpura. Br J Haematol 136: 309-314.
61. Gilbert JA, Kalled SL, Moorhead J, Hess DM, Rennert P, et al. (2006) Treatment of autoimmune hyperthyroidism in a murine model of Graves'' disease with tumor necrosis factor-family ligand inhibitors suggests a key role for B cell activating factor in disease pathology. Endocrinology 147: 4561-4568.
62. Fabris M, Grimaldi F, Villalta D, Picierno A, Fabro C, et al. (2010) BLyS and April serum levels in patients with autoimmune thyroid diseases. Autoimmun Rev 9: 165-169.
63. Vannucchi G, Covelli D, Curro N, Dazzi D, Maffini A, et al. (2012) Serum BAFF concentrations in patients with Graves'' disease and orbitopathy before and after immunosuppressive therapy. J Clin Endocrinol Metab 97: E755-759.
64. Campi I, Tosi D, Rossi S, Vannucchi G, Covelli D, et al. (2015) B Cell Activating Factor (BAFF) and BAFF Receptor Expression in Autoimmune and Nonautoimmune Thyroid Diseases. Thyroid 25: 1043-1049.
65. Feng X, Reder NP, Yanamandala M, Hill A, Franek BS, et al. (2012) Type I interferon signature is high in lupus and neuromyelitis optica but low in multiple sclerosis. J Neurol Sci 313: 48-53.
66. De Jager PL, Jia X, Wang J, de Bakker PI, Ottoboni L, et al. (2009) Meta-analysis of genome scans and replication identify CD6, IRF8 and TNFRSF1A as new multiple sclerosis susceptibility loci. Nat Genet 41: 776-782.
67. Prummel MF, Strieder T, Wiersinga WM (2004) The environment and autoimmune thyroid diseases. Eur J Endocrinol 150: 605-618.
68. Groom J, Kalled SL, Cutler AH, Olson C, Woodcock SA, et al. (2002) Association of BAFF/BLyS overexpression and altered B cell differentiation with Sjogren''s syndrome. J Clin Invest 109: 59-68.
69. Mavragani CP, Niewold TB, Moutsopoulos NM, Pillemer SR, Wahl SM, et al. (2007) Augmented interferon-alpha pathway activation in patients with Sjogren''s syndrome treated with etanercept. Arthritis Rheum 56: 3995-4004.
70. Lopez P, Scheel-Toellner D, Rodriguez-Carrio J, Caminal-Montero L, Gordon C, et al. (2014) Interferon-alpha-induced B-lymphocyte stimulator expression and mobilization in healthy and systemic lupus erthymatosus monocytes. Rheumatology (Oxford) 53: 2249-2258.
71. Kannel K, Alnek K, Vahter L, Gross-Paju K, Uibo R, et al. (2015) Changes in Blood B Cell-Activating Factor (BAFF) Levels in Multiple Sclerosis: A Sign of Treatment Outcome. PLoS One 10: e0143393.
72. Lin JD, Wang YH, Liu CH, Lin YC, Lin JA, et al. (2015) Association of IRF8 gene polymorphisms with autoimmune thyroid disease. Eur J Clin Invest 45: 711-719.
73. Kahles H, Ramos-Lopez E, Lange B, Zwermann O, Reincke M, et al. (2005) Sex-specific association of PTPN22 1858T with type 1 diabetes but not with Hashimoto''s thyroiditis or Addison''s disease in the German population. Eur J Endocrinol 153: 895-899.
74. Liao WL, Chen RH, Lin HJ, Liu YH, Chen WC, et al. (2010) Toll-like receptor gene polymorphisms are associated with susceptibility to Graves'' ophthalmopathy in Taiwan males. BMC Med Genet 11: 154.
75. Ben-Selma W, Ben-Fredj N, Chebel S, Frih-Ayed M, Aouni M, et al. (2015) Age- and gender-specific effects on VDR gene polymorphisms and risk of the development of multiple sclerosis in Tunisians: a preliminary study. Int J Immunogenet 42: 174-181.
76. Avidan N, Le Panse R, Berrih-Aknin S, Miller A (2014) Genetic basis of myasthenia gravis - a comprehensive review. J Autoimmun 52: 146-153.
77. Liu LY, Schaub MA, Sirota M, Butte AJ (2012) Sex differences in disease risk from reported genome-wide association study findings. Hum Genet 131: 353-364.
78. Gregersen PK, Kosoy R, Lee AT, Lamb J, Sussman J, et al. (2012) Risk for myasthenia gravis maps to a (151) Pro-->Ala change in TNIP1 and to human leukocyte antigen-B*08. Ann Neurol 72: 927-935.
79. Zandman-Goddard G, Peeva E, Shoenfeld Y (2007) Gender and autoimmunity. Autoimmun Rev 6: 366-372.
80. Pongratz G, Straub RH, Scholmerich J, Fleck M, Harle P (2010) Serum BAFF strongly correlates with PsA activity in male patients only--is there a role for sex hormones? Clin Exp Rheumatol 28: 813-819.
81. Panchanathan R, Choubey D (2013) Murine BAFF expression is up-regulated by estrogen and interferons: implications for sex bias in the development of autoimmunity. Mol Immunol 53: 15-23.
82. Gavin AL, Ait-Azzouzene D, Ware CF, Nemazee D (2003) DeltaBAFF, an alternate splice isoform that regulates receptor binding and biopresentation of the B cell survival cytokine, BAFF. J Biol Chem 278: 38220-38228.
83. Roescher N, Vosters JL, Alsaleh G, Dreyfus P, Jacques S, et al. (2014) Targeting the splicing of mRNA in autoimmune diseases: BAFF inhibition in Sjogren''s syndrome as a proof of concept. Mol Ther 22: 821-827.
84. Lin JD, Yang SF, Wang YH, Fang WF, Lin YC, et al. (2016) Analysis of Associations of Human BAFF Gene Polymorphisms with Autoimmune Thyroid Diseases. PLoS One 11: e0154436.
85. Carter LM, Isenberg DA, Ehrenstein MR (2013) Elevated serum BAFF levels are associated with rising anti-double-stranded DNA antibody levels and disease flare following B cell depletion therapy in systemic lupus erythematosus. Arthritis Rheum 65: 2672-2679.
86. Moyer RA, Wang D, Papp AC, Smith RM, Duque L, et al. (2011) Intronic polymorphisms affecting alternative splicing of human dopamine D2 receptor are associated with cocaine abuse. Neuropsychopharmacology 36: 753-762.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top