跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 07:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉軒宇
研究生(外文):Liou, Syuan-Yu
論文名稱:一種希爾伯特-黃轉換弗氏海豚聲音訊號時頻特徵分析
論文名稱(外文):Marginal Spectrum of Fraser’s dolphin Voices Using Hilbert-Huang Transform Analysis Method
指導教授:林進豐林進豐引用關係
指導教授(外文):Lin, Chin-Feng
口試委員:張順雄曾敬翔林進豐
口試委員(外文):Chang, Shun-HsyungTseng, Ching-HsiangLin, Chin-Feng
口試日期:2020-06-22
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:65
中文關鍵詞:弗氏海豚語音訊號邊際頻率
外文關鍵詞:Fraser’s dolphinvoicemarginal frequency
相關次數:
  • 被引用被引用:0
  • 點閱點閱:194
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文,使用希爾伯特-黃轉換分析14個弗氏海豚聲音訊號的邊際頻譜樣本,將訊號分類成第一類,第二類和第三類,分別有5、5和4個弗氏海豚聲音訊號樣本。第一類聲音樣本的第1個本質模態函數和第2個本質模態函數的能量參考總能量比例相加,該本質模態函數能量參考總能量比例大於55%。第二類聲音樣本的第1個本質模態函數能量參考總能量比例大於60%。第三類聲音樣本的第1個本質模態函數和第二個本質模態函數的能量參考總能量比例皆大於10%。第一類聲音樣本邊際頻率1、邊際頻率2和邊際頻率4能量參考總能量主要分佈頻帶為8-17KHz、3-5KHz和0-2KHz。第二類聲音樣本邊際頻率1、邊際頻率2和邊際頻率4能量參考總能量主要分佈頻帶為8-18KHz、3-7KHz和1-3KHz。第三類聲音樣本邊際頻率1、邊際頻率2,邊際頻率4和邊際頻率7能量參考總能量主要分佈頻帶為10-16KHz、4-9KHz、0-2KHz和0-1KHz。從這些分析結果,我們可以瞭解到弗氏海豚聲音邊際頻率特徵。
In the thesis, 14 samples of the marginal spectrum (MS) of Fraser’s dolphin voices were analyzed using the Hilbert-Huang transform (HHT) method, and classified as Class I, II, and III, comprising 5, 5, and 4 Fraser’s dolphin voice samples, respectively. The ratios were found to have greater than 55% IMF (intrinsic mode function) energy with respect to the refereed total energy of the 1st IMF plus the 2nd IMF for Class I voice samples; greater than 60% IMF energy with respect to the refereed total energy of the 1st IMF for Class II voice samples; and greater than 10% IMFs energy with respect the refereed total energy of the 1st and 2st IMFs for Class III voice samples. The domain marginal frequencies (MFs), MF1, MF2, and MF4, for Class I voice samples, are 8 -17 KHz, 3-5 KHz, and 0-2 KHz, respectively. MF1, MF2, and MF4, for Class II voice samples, are 8-18 KHz, 3 -7 KHz, and 1-3 KHz, respectively. MF1, MF2, MF4, and MF7 for Class III voice samples, are 10 -16 KHz, 4 -9 KHz, 0-2 KHz , and 0-1 KHz, respectively. From these analysis results, we can observe the MFs characteristics of the Fraser’s dolphin voice samples.
摘要 I
Abstract II
目次 III
圖次 IV
表次 V
第一章 緒論 1
1.1前言 1
1.2 參考文獻回顧 1
1.3研究動機及研究方法 2
1.4研究方法 2
1.5論文大綱 2
第二章 研究背景與相關知識 4
2.1弗氏海豚 4
2.2 希爾伯特-黃轉換(HHT) 4
2.3經驗模態拆解(EMD) 5
2.4本質模態函數(IMF) 5
2.5瞬時頻率(IF) 5
2.6邊際頻率(MF) 5
第三章 弗氏海豚聲音訊號本質模態函數(IMF)特徵分析 7
3.1弗氏海豚聲音訊號 7
3.2弗氏海豚第一類聲音樣本訊號IMF分析 12
3.3弗氏海豚第二類聲音樣本訊號IMF分析 18
3.4弗氏海豚第三類聲音樣本訊號IMF分析 24
第四章 弗氏海豚聲音樣本瞬時頻率(IF)特徵分析 29
4.1弗氏海豚第一類聲音樣本IF分析 29
4.2弗氏海豚第二類聲音樣本IF分析 32
4.3弗氏海豚第三類聲音樣本IF分析 34
第五章 弗氏海豚聲音樣本邊際化頻率(MF)分析 37
5.1弗氏海豚第一類聲音樣本MF分析 37
5.2弗氏海豚第二類聲音樣本MF分析 46
5.3弗氏海豚第三類樣本訊號MF分析 54
第六章 結論與建議 63
參考文獻 64
[1] T. Akamatsu, D. Wang, K. Wang, and Y. Naito, “Biosonar behaviour of free-ranging porpoises,” Proceedings of the Royal Society of London B:Biological Sciences, vol. 272, no. 1565, pp.797-801, 2005.
[2] T. Akamatsu et al., “New stereo acoustic data logger for free-ranging dolphins and porpoises,” Marine Technology Society Journal, vol. 39, no. 2, pp.3-9.
[3] P. L. Tyack, W. J. Williams and G. Cunningham, “Time-frequency fine structure of dolphin whistles,” Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis, Victoria, BC, pp.17-20, 2016.
[4] A. Sankaran and M. J. Reddy, “Analyzing the Hydroclimatic Teleconnections of Summer Monsoon Rainfall in Kerala, India, Using Multivariate Empirical Mode Decomposition and Time-Dependent Intrinsic Correlation,” IEEE Geoscience and Remote Sensing Letters, vol. 13, pp.9, 2016.
[5] S. Liu, G. Qiao, Y. Yu, L. Zhang and T. Chen, “Biologically inspired covert underwater acoustic communication using high frequency dolphin clicks,” Proceedings of the IEEE International Conference on OCEANS - San Diego, San Diego, CA, pp.1-5, 2013.
[6] S. Stanic, B. Brown, E. Kennedy, M. Solangi, D. Vanderpool and T. Hoffland, “Correlation of the broadband spectral characteristics of Bottlenose dolphin signatures with dolphin behavior in the Mississippi Sound,” Proceedings of the IEEE International Conference on OCEANS, Biloxi, MS, pp.1-10, 2009.
[7] L. Zhang et al, “utomatic segmentation and identification of whistles Produced by dolphins,” Proceedings of the IEEE International Conference on Information and Automation, Lijiang, pp.1188-1193,2105.
[8] Huang, NE, Shen, Z, Long, SR, et al, “The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis,” Proceedings of the Royal Society of London Series A —Mathematical Physical and Engineering Sciences.903-995, 1998.
[9] Huang, NE, Hen, SSP, Hilbert-Huang Transform and its Applications, World Scientific Publishing Co, pp.1-307, 2005
[10] 張宗益,“一種長鬚鯨聲音希爾伯特-黃轉換邊際頻譜分析”,國立臺灣海洋大學電機工程所碩士論文,中華民國107年。
[11] L. Yin , B. Chen and P. Cai,“Study of Underwater Acoustic Communication Technology Based on Hilbert-Huang Transform,” Proceedings of the International Conference on Computer Science and Service System, 2012.
[12] S. Li, D. Yang and Y. Lu, “Splash sound feature research based on empirical mode decomposition and Hilbert-Huang spectrum,” Proceedings of the IEEE International Conference on Information and Automation, Harbin, pp.419-423, 2010.
[13] K. Zhang, L. Song and Y. Wang, “Heart rate variability signal analysis based on HHT,” Proceedings of the International Conference on Electrical and Control Engineering, 2011.
[14] 蕭光任,“水下傳輸語音之HHT時頻特徵分析”,國立臺灣海洋大學電機工程所碩士論文,中華民國101年。
[15] X. Zhu, G. T. Beauregard and L. L. Wyse, “Real-Time Signal Estimation From Modified Short-Time Fourier Transform Magnitude Spectra,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 15, no. 5, pp. 1645-1653, 2007.
[16] D. Kbaier Ben Ismail, P. Lazure and I. Puillat, “Advanced Spectral Analysis and Cross Correlation Based on the Empirical Mode Decomposition:Application to the Environmental Time Series,” IEEE Geoscience and Remote Sensing Letters, vol. 12, no. 9, pp.1968-1972, 2015.
[17] M. Song, L. Zhou, J. Hu and X. Li, “Comparison Analysis of HHT and Fourier Transformation in Network Fault,” Proceedings of the Second International Conference on Intelligent System Design and Engineering Application, Sanya, Hainan, pp.1017- 1020, 2012.
[18] Q. Han, “Distinction non-stationary pulse wave signals with HHT method,” Proceedings of the International Conference on Electronic & Mechanical Engineering and Information Technology, Harbin, pp.3317-3320 , 2011.
[19] J. Liu, J. Wang and C. Lin, “Speaker Identification Using HHT Spectrum Features,” Proceedings of the International Conference on Technologies and Applications of Artificial Intelligence, Chung-Li, pp.145-148, 2011.
[20] 弗氏海豚,臺灣國家公園-生物多樣性資料庫與知識平台。https://npgis.cpami.gov.tw/public/detail/SpeciesDetail.aspx?SP_ID=380537
[21] 希爾伯特-黃轉換,維基百科。https://zh.wikipedia.org/wiki/希爾伯特-黃轉換
[22] 經驗模態拆解,維基百科。https://zh.wikipedia.org/wiki/經驗模態拆解
[23] 瞬時頻率,維基百科。https://zh.wikipedia.org/wiki/瞬時頻率
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top