跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/05 14:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳家豪
研究生(外文):CHIA-HAO WU
論文名稱:應用於智能手錶穿戴式天線之設計
論文名稱(外文):Design of Wearable Antenna for Smart watch Applications
指導教授:孫卓勳孫卓勳引用關係
口試委員:莊清松孫卓勳楊昌正程光蛟毛紹綱高立人黃育賢賴柏洲鄭瑞清
口試日期:2018-07-06
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:73
中文關鍵詞:智能手錶聚酰胺基材多输入多输出天線物聯網
外文關鍵詞:WiFi 802.11acMIMO antennapolyamide substratesmart watchIoT
相關次數:
  • 被引用被引用:0
  • 點閱點閱:534
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文為物聯網應用提供了智能手錶中穿戴式之天線,提出了用於可穿戴設備的天線設計概念,利用共面波導短路至背面的接地,天線設計為0.4 mm厚的FR4,尺寸為20 mm×15 mm,實測天線的反射係數時,天線含有人體手腕的實測頻寬為237 MHz(2.38-2.62 GHz;約9%),天線不含人體手腕的實測頻寬為300 MHz(2.33-2.63 GHz;約12%),無論是否含手腕都可以用於2.4 GHz藍牙/ WiFi頻帶,但近年對於連上網路的速度需求越來越大,多天線設計可增進資料量傳輸速率的提昇,因此針對智能手錶的WiFi 802.11ac頻段(5.2-5.84 GHz)設計MIMO天線,此天線採用聚酰胺基材製造,嵌入智能手錶模型的錶帶中;而模型是使用塑料材料的三維蝕刻製成的,先設計二個單極(two-element MIMO)天線,於結構中加入stub和notched設計探討天線隔離度,再設計四個單極多進多出(four-element MIMO)天線,此天線結構簡單,並與智能手錶的系統接地連接,天線的包絡相關係數在工作頻帶中顯著低於0.005。另外,本研究結果顯示其與人體手腕的測量數據於-6 dB阻抗頻寬為5.2-5.84 GHz,符合WiFi 802.11ac範圍,此天線量測之效率為93%-97%,而結合假手量測之效率為45%-55%。
This study presents a wearable antenna on the wrist for IoT application. An antenna design concept for a wearable device is proposed wherein one coplanar waveguide is ground-connected to short the bottom patch. The printed antenna is fabricated on 0.4-mm-thick 20 mm × 15 mm FR4 substrate. The measured bandwidth of the printed antenna with and without human’s wrist exhibited 237 MHz (2.38–2.62 GHz; approximately 9%) and 300 MHz (2.33–2.63 GHz; approximately 12%), which is sufficient for 2.4-GHz Bluetooth/WiFi band.
In order that, the wireless WiFi access points use the multiple input–multiple output (MIMO) multiantenna to achieve a high transmission speed, and the WiFi 802.11ac (5.2–5.8 GHz) standard supports an 8 × 8 antenna, which substantially increases the transmission speed. In second part, a compact two-element MIMO antenna design operating within the WiFi 802.11ac bands (5.2–5.84 GHz) for a smart watch. The antenna is fabricated using a polyamide substrate and embedded into the strap of a smart watch model; the strap is created using three-dimensional etching of plastic materials.
Then the four-element MIMO antenna is designed from two-element MIMO antenna, and is connected to the system ground plane of the smart watch. Due to the stub and notched block between two antennas and the slit in the system ground, the four-element MIMO antenna exhibits favorable isolation. Moreover, the envelope correlation coefficient of the antennas is considerably lower than 0.005 in the operating band. The measured −6-dB impedance bandwidths of the four-element MIMO antenna with the human wrist encompass the WiFi 802.11ac range of 5.2–5.84 GHz; moreover, an isolation of more than 20 dB is achieved. The measured antenna efficiency with and without a phantom hand are 45%–55% and 93%–97%, respectively.
Abstract i
摘要 iii
Acknowledgement iv
Contents. v
List of Tables vii
List of Figures viii
Chapter1 Introduction. 1
1.1 Background 1
1.2 Motivation 2
1.3 Chapter outlines 3
Chapter 2 Design of asymmetric shorted ground printed antenna for wearable device applications 4
2.1 Prepare for Research 4
2.2 Antenna design 4
2.3 Experimental verification of antenna performance 6
2.4 Summary 14
Chapter3 Design of the two-element MIMO antenna for wearable device applications 15
3.1 Prepare for Research 15
3.2 Antenna Configuration 16
3.3 Simulation and analysis 17
3.3.1 Effect of the notched block and stub for the two-element MIMO antenna 17
3.3.2 Effect of bending the two-element MIMO antenna 19
3.4 Experimental Results In free space 23
3.5 Experimental Results compare with the plastic strap
3.6 Summary 26
Chapter 4 Design of the four-element MIMO Antenna for wearable device applications 32
4.1 Antenna design 32
4.1.1 Effects of the slit into the system ground for the four-element MIMO antenna 36
4.1.2 Effects of the via for the four-element MIMO antenna 38
4.2 Experimental Results 41
4.3 Summary 51
Chapter 5 The four-element MIMO antenna worn on the wrist for wearable device applications 52
5.1 Wrist model 52
5.2 Experimental Results 55
5.3 Summary 67
Chapter 6 Conclusions 68
6.1 Dissertation Summary 68
6.2 Suggestions for future research 69
References 71
[1] C. H. Wu, K. L. Wong, Y. C. Lin, and S. W. Su, "Internal Shorted Monopole Antenna for the Watch-type Wireless Communication Device for Bluetooth Operation," Microwave and Optical Technology Letters, vol. 49, pp. 942-946, Apr. 2007.
[2] K. L. Wong and C. I. Lin, "Characteristics of a 2.4-GHz Compact Shorted Patch Antenna in Close Proximity to a Lossy Medium," Microwave and Optical Technology Letters, vol. 45, pp. 480-483, Jun. 2005.
[3] K. Zhao, S. Zhang, C. Y. Chiu, Z. N. Ying, and S. L. He, "SAR Study for Smart Watch Applications," in Proc. IEEE Antennas and Propagation Society International Symposium, 2014, pp. 1198-1199.
[4] K. Zhao, Z. N. Ying, and S. L. He, "Antenna Designs of Smart Watch for Cellular Communications by using Metal Belt," 2015 9th European Conference on Antennas and Propagation (EuCAP), 2015.
[5] S. W. Su and Y. T. Hsieh, "Integrated Metal-Frame Antenna for Smart watch Wearable Device," IEEE Transactions on Antennas and Propagation, vol. 63, pp. 3301-3305, Jul. 2015.
[6] S. I. Kwak, D. U. Sim, J. H. Kwon, and Y. J. Yoon, "Design of PIFA With Metamaterials for Body-SAR Reduction in Wearable Applications," IEEE Transactions on Electromagnetic Compatibility, vol. 59, pp. 297-300, 2017.
[7] M. A. Chung and C. F. Yang, "Built-in Antenna Design for 2.4 GHz ISM Band and GPS Operations in a Wrist-worn Wireless Communication Device," 1et. Microwaves Antennas & Propagation, vol. 10, pp. 1285-1291, Sep. 2016.
[8] W. S. Chen, G. Q. Lin, and W. H. Hsu, "WLAN MIMO Antennas with a GPS Antenna for Smart Watch Applications," in International Workshop on Electromagnetics: Applications and Student Innovation Competition, 2017, pp. 89-90.
[9] C. Y. Chiu and R. D. Murch, "Watch-sized Four-port Dual-band MIMO Antennas," in Proc. IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), 2016, pp. 1-4.
[10] W. S. Chen, C. K. Yang, and W. S. Sin, "MIMO Antenna with Wi-Fi and Blue-Tooth for Smart Watch Applications," in Proc. IEEE MTT-S 2015 International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO), 2015, pp. 212-213.
[11] M. Jeon, W. C. Choi, and Y. J. Yoon, "GPS, Bluetooth and Wi-Fi tri-band Antenna on Metal Frame of Smart watch," in Proc. IEEE International Symposium on Antennas and Propagation (APSURSI), 2016, pp. 2177-2178.
[12] G. S. Li, G. Gao, J. H. Bao, B. Yi, C. Y. Song, and L. A. Bian, "A Watch Strap Antenna for the Applications of Wearable Systems," IEEE Access, vol. 5, pp. 10332-10338, 2017.
[13] B. Hu, G. P. Gao, L. L. He, X. D. Cong, and J. N. Zhao, "Bending and On-Arm Effects on a Wearable Antenna for 2.45 GHz Body Area Network," IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 378-381, 2016.
[14] Z. H. Jiang, D. E. Brocker, P. E. Sieber, and D. H. Werner, "A Compact, Low-Profile Metasurface-Enabled Antenna for Wearable Medical Body-Area Network Devices," IEEE Transactions on Antennas and Propagation, vol. 62, pp. 4021-4030, 2014.
[15] Q. H. Abbasi, M. Ur Rehman, X. D. Yang, A. Alomainy, K. Qaraqe, and E. Serpedin, "Ultrawideband Band-Notched Flexible Antenna for Wearable Applications," IEEE Antennas and Wireless Propagation Letters, vol. 12, pp. 1606-1609, 2013.
[16] J. Lee, S. I. Kwak, and S. Lim, "Wrist-wearable Zeroth-order Resonant Antenna for Wireless Body Area Network Applications," Electronics Letters, vol. 47, pp. 431-432, Mar. 2011.
[17] G. Srivastava and A. Mohan, "Compact MIMO Slot Antenna for UWB Applications," IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 1057-1060, 2016.
[18] P. Gao, S. He, X. B. Wei, Z. Q. Xu, N. Wang, and Y. Zheng, "Compact Printed UWB Diversity Slot Antenna With 5.5-GHz Band-Notched Characteristics," IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 376-379, 2014.
[19] S. A. Zhang, Z. N. Ying, J. Xiong, and S. L. He, "Ultrawideband MIMO/Diversity Antennas With a Tree-Like Structure to Enhance Wideband Isolation," IEEE Antennas and Wireless Propagation Letters, vol. 8, pp. 1279-1282, 2009.
[20] T. S. P. See and Z. N. Chen, "An Ultrawideband Diversity Antenna," IEEE Transactions on Antennas and Propagation, vol. 57, pp. 1597-1605, 2009.
[21] C. M. Luo, J. S. Hong, and L. L. Zhong, "Isolation Enhancement of a Very Compact UWB-MIMO Slot Antenna With Two Defected Ground Structures," IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 1766-1769, 2015.
[22] M. A. Antoniades and G. V. Eleftheriades, "A Compact Multiband Monopole Antenna With a Defected Ground Plane," IEEE Antennas and Wireless Propagation Letters, vol. 7, pp. 652-655, 2008.
[23] S. Zhang and G. F. Pedersen, "Mutual Coupling Reduction for UWB MIMO Antennas With a Wideband Neutralization Line," Ieee Antennas and Wireless Propagation Letters, vol. 15, pp. 166-169, 2016.
[24] S. W. Su, C. T. Lee, and F. S. Chang, "Printed MIMO-Antenna System Using Neutralization-Line Technique for Wireless USB-Dongle Applications," IEEE Transactions on Antennas and Propagation, vol. 60, pp. 456-463, Feb. 2012.
[25] Q. Li, A. P. Feresidis, M. Mavridou, and P. S. Hall, "Miniaturized Double-Layer EBG Structures for Broadband Mutual Coupling Reduction Between UWB Monopoles," IEEE Transactions on Antennas and Propagation, vol. 63, pp. 1170-1173, Mar. 2015.
[26] P. Thongbor, A. Ruengwaree, V. Pirajnanchai, W. Naktong, and N. Fhafhiem, "Rectangular Monopole Antenna with Arrow-Shaped Slot Etching for UWB-MIMO Application," in Proc. 2016 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (Ecti-Con), p. 4, 2016.
[27] C. M. Lee and C. W. Jung, "Radiation-Pattern-Reconfigurable Antenna Using Monopole-Loop for Fitbit Flex Wristband," IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 269-272, 2015.
[28] R. Karimian, H. Oraizi, S. Fakhte, and M. Farahani, "Novel F-Shaped Quad-Band Printed Slot Antenna for WLAN and WiMAX MIMO Systems," IEEE Antennas and Wireless Propagation Letters, vol. 12, pp. 405-408, 2013.
[29] M. Karaboikis, C. Soras, G. Tsachtsiris, and V. Makios, "Compact Dual-printed Inverted-F Antenna Diversity Systems for Portable Wireless Devices," IEEE Antennas and Wireless Propagation Letters, vol. 3, pp. 9-14, 2004.
[30] HFSS 15 Hfss Onlinehelp Ansoft Corp.
[31] M. S. Sharawi, "Current Misuses and Future Prospects for Printed Multiple-Input, Multiple-Output Antenna Systems [Wireless Corner]," IEEE Antennas and Propagation Magazine, vol. 59, pp. 162-170, 2017.
[32] K. L. Wong, J. Y. Lu, L. Y. Chen, W. Y. Li, and Y. L. Ban, "8-antenna and 16-antenna Arrays Using the Quad-antenna Linear Array as a Building Block for the 3.5-GHz LTE MIMO Operation in the Smartphone," Microwave and Optical Technology Letters, vol. 58, pp. 174-181, Jan. 2016.
[33] Y. L. Ban, C. Li, C. Y. D. Sim, G. Wu, and K. L. Wong, "4G/5G Multiple Antennas for Future Multi-Mode Smartphone Applications," IEEE Access, vol. 4, pp. 2981-2988, 2016.
[34] W. Dingliang, H. Yang, W. Hanyang, and Z. Hai, "A Wearable Antenna Design Using a High Impedance Surface for All-metal Smart watch Applications," in Proc. International Workshop on Antenna Technology: Small Antennas, Innovative Structures, and Applications (iWAT), 2017, pp. 274-276.
[35] W. Y. Li, W. Chung, F. R. Hsiao, T. H. Kao, and M. C. Huang, "Conformai Integrated Multi-layer Thin-film Antenna by Novel LITA Technologies for Smart watch Wearable Device Applications," in Proc. International Symposium on Antennas and Propagation (ISAP), 2016, pp. 22-23.
[36] D. Wu and S. W. Cheung, "A Cavity-Backed Annular Slot Antenna With High Efficiency for Smart watches With Metallic Housing," IEEE Transactions on Antennas and Propagation, vol. 65, pp. 3756-3761, 2017.
[37] A. B. Chhabra and A. M. Freilich, "Regional Anatomy and Surgical Interals," chapter 4 wrist and hand, 2015.
[38] A. V. Vorst, A. Ro. and Y. Kotsuka, "RF / Microwave Interaction with Biological Tissues," Wiley, 2006.
[39] A. T. Mobashsher and A. M. Abbosh, "Artificial Human Phantoms: Human Proxy in Testing Microwave Apparatuses That Have Electromagnetic Interaction with the Human Body," IEEE Microwave Magazine, vol. 16, pp. 42-62, 2015.
[40] U. Ali, S. Ullah†, J. Khan, M. Shafi, B. Kamal, A. Basir, J. A Flint, and R. D. Seager, "Design and SAR Analysis of Wearable Antenna on Various Parts of Human Body, Using Conventional and Artificial Ground Planes," Journal of Electrical Engineering and Technology, pp. 317-328, 2017.
[41] MT2502 Chipset Technical Brief, MediaTek Ltd., Hsinchu, Taiwan 2014.
[42] 47498 D01 General RF Exposure Guidance v06, RF Exposure Procedures and Equipment Authorization Policies for Mobile and Portable Devices, Federal Commun. Commission Office Eng. Technol. Lab. Division, Washington, DC, USA, Oct. 2015.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top