跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/07 04:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林益生
研究生(外文):Yi-Sheng Lin
論文名稱:利用平面型光子晶體結構設計新式可見光譜元件
論文名稱(外文):New design of optical devices with visible spectrum based on planar photonic crystal structure
指導教授:吳曜東吳曜東引用關係
指導教授(外文):Yaw-Dong Wu
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:87
中文關鍵詞:光子晶體可見光譜
外文關鍵詞:photonic crystalvisible spectrum
相關次數:
  • 被引用被引用:0
  • 點閱點閱:232
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本論文是討論光子晶體於全光式元件在可見光譜上的應用。光子晶體是指由兩種或兩種以上不同介電質材料組成週期性的排列結構。在此週期性排列介電質材料結構上會造成某部份的電磁波無法在晶體內傳遞,此區域稱為光子能隙。我們在此週期性結構中藉由晶體缺陷、平面展開、有限時域差分法等方法來設計與模擬進而達到欲元件設計的目的。
首先,吾人利用改變光子晶體結構中的橢圓晶格半徑,提出了一個具有左手介質中的負折射現象的結構。接著,利用此結構的特性來控制光行徑路徑,再進一步探討光子晶體結構之光子能隙的現象所產生不同的能隙,我們設計出可應用在可見光譜範圍中具有隱形物件效果的元件。最後,我們利用超低折射率複合材料的概念,設計出一個新穎可見光譜分離之解多工器。此結構結合了金屬與半導體在光子晶體結構應用上的優點,改善了純金屬結構上功率與半波寬等問題。
In this thesis, we discussed the application of all-optical devices in the visible spectrum based on compound-material and Left-handed behavior in the photonic crystals. A photonic crystal is a revolutionary class of artificially periodic electromagnetic media, in which a fundamentally new electromagnetic phenomenon can be achieved. A photonic band gap defines a range of frequencies for which light is forbidden to exist inside the crystal. We by using crystal defect, plane-wave expansion method and finite-difference time-domain method to analyzed photonic crystal optical devices structure.
Firstly, we by varying the radius of the material rods of the left-handed structure,the light beam would be controlled by negative refraction propagating behavior based on photonic crystals. The distance of path 1 is the same as path 2. The source beam can be split to two propagating paths in compound structure. We present a novel photonic crystal cloaking device at visible spectrum based on the association of two lattices working in different regimes, namely, stop band and negative refraction.
Finally, we presented the novel visible wavelength division multiplexer based on ultralow-refractive-index. The metamaterial structure is devoted to the visible optical characterization, through a periodic structure of compound-material of metallic and semiconductor in air. In addition, we are modify our crystals radius of metamaterial, to obtain a better effect with that has cut down loss and cross talk.
List of Figures
Chapter 1: Introduction 1
Chapter 2: Basic Theory and Simulation Methods
2.1 Bloch’s Theorem 7
2.2 Brillouin Zone 10
2.3 Drude Model 16
Chapter 3: Novel design of Cloaking device with visible spectrum based on negative refraction propagating behavior
3.1 Introduction 22
3.2 Analysis of negative refraction propagating behavior
3.2.1 Structure Analysis 24
3.2.2 Numerical Simulation 25
3.3 Design of novel cloaking device
3.2.1 Device Design 26
3.2.2 Numerical Simulation 28
3.4 Summary 29
Chapter 4: Optical Wavelength Router in visible spectrum based on 2D PC metamaterial structure
4.1 Introduction 44
4.2 Structure Analysis 45
4.3 Numerical Simulation 47
4.4 Summary 50
Chapter 5: Rainbow-color photonic crystal demultiplexer based on ultralow-refractive-index metamaterial structure
5.1 Introduction 56
5.2 Structure Analysis 58
5.3 Numerical Simulation 60
5.4 Summary 62
Chapter 6: Conclusions
6.1. Summary 72
6.2. Suggestions for Future Researches 74
References 75
[1] E. Yablonovitch, “Inhibited spontaneous emission in solid- state physical and electronics,” Phy. Rev. Lett., vol. 58, pp. 2059-2062. (1987)
[2] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phy. Rev. Lett., vol. 58, pp. 2486-2489. (1987)
[3]J. D. Joannopoulos, P. R. Villeneuve, “Photonic Crystals: Putting a new twist on light,” Nature, Vol. 386, pp. 143. (1997)
[4]E. Yablonovitch, “Photonic crystals: semiconductors of Light,” Scientific American, Vol. 285, pp. 35. (2001)
[5]A. R. Parker, V. L. Welch, D. Driver, N. Martini, “Structural colour: Opal anlogue discovered in a weevil,” Nature, Vol. 426, pp. 786. (2003)
[6]J. D. Joannopolos, “Self-assembly lights up,” Nature, Vol. 414, pp. 257. (2001)
[7]M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature, Vol. 404, pp. 53-56. (2000)
[8]P. V. Braun, P.Wiltzius, “Microporous materials: Electrochemically grown photonic crystals,” Nature, Vol. 402, pp. 603. (1999)
[9]K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic band gap in periodic structures,” Phys. Rev. Lett., Vol. 65, pp. 3152-3155. (1990)
[10]K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenna Propagat. Vol. 14, pp. 302-307. (1966)
[11]J. Adhidjaja and G. Horhmann, “A finite-difference algorithm for the transient electromagnetic response of a three-dimensional body,” Geophysics J. Int., Vol. 98, pp. 233. (1989)
[12]M. Piket-May and A. Taflove, “Electrodynamics of visible-light interactions with the vertebrate retinal rod,” Optics Letter, Vol. 18, pp. 568-570. (1993)
[13]M. Celuch-Marcysiak and W. Gwarek, “Higher order modeling of media interfaces for enhanced FDTD analysis of microwave circuits,” in 24th European Microwave Conference, Vol. 24, pp. 1530. (1994)
[14]D. Sullivan, D. Borup, and O. Gandhi, “Use of the finite-difference time-domain method in calculating EM absorption in human tissues,” IEEE Trans. Biomed. Eng., Vol. 34, pp. 148. (1987)
[15]M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett., vol. 81, pp. 2680-2682. (2002)
[16]B. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science, vol. 300, 1537. (2003)
[17]M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B, vol. 62, pp. 10696-10705. (2000)
[18]B. Gralak, S. Enoch, and G. Tayeb, “Anomalous refractive properties of photonic crystals,” J. Opt. Soc. Amer. A, Opt. Image Sci., vol. 17, pp. 1012-1020. (2000)
[19]S. Shi, A. Sharkawy, C. Chen, D. M. Pustai, and D. W. Prather, “Dispersion-based beam splitter in photonic crystals,” Opt. Lett., vol. 29, pp. 617-619. (2004)
[20]H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals: toward microscale lightwave circuits,” J. Lightwave Technol., vol. 17, pp. 2032-2038. (1999)
[21]H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett., vol. 74, pp. 1370-1372. (1999)
[22]H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B, vol. 58, pp. R10096-R10099. (1998)
[23]R. Zengerle, “Light propagation in singly and doubly periodic planar waveguides,” J. Mod. Opt., vol. 34, pp. 1589-1617. (1987)
[24]P. St. J. Russell and T. B. Birks, Photonic Band Gap Materials, Kluwer Academic Publishers, Boston. (1996)
[25]K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic band gap in periodic structures,” Phys. Rev. Lett., vol. 65, pp. 3152-3155. (1990)
[26]K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenna Propagat. vol. 14, pp. 302-307. (1966)
[27]J. Adhidjaja and G. Horhmann, “A finite-difference algorithm for the transient electromagnetic response of a three-dimensional body,” Geophysics J. Int., vol. 98, 233. (1989)
[28]M. Piket-May and A. Taflove, “Electrodynamics of visible-light interactions with the vertebrate retinal rod,” Optics Letter, vol. 18, pp. 568-570. (1993)
[29]M. Celuch-Marcysiak and W. Gwarek, “Higher order modeling of media interfaces for enhanced FDTD analysis of microwave circuits,” in 24th European Microwave Conference, vol. 24, 1530. (1994)
[30]D. Sullivan, D. Borup, and O. Gandhi, “Use of the finite-difference time-domain method in calculating EM absorption in human tissues,” IEEE Trans. Biomed. Eng., vol. 34, 148. (1987)
[31]S. Caorsi, A. Massa, and M. Pastorino, “Computation of electromagnetic scattering by nonlinear bounded dielectric objects: A FDTD approach,” Microwave Opt. Technol. Lett., vol. 7, no. 17, 788. (1994)
[32]K. Shlager and J. Schneider, “A selective survey of the finite-difference time-domain literature,” IEEE Antennas and Propagation Magazine, vol. 37, pp. 39-56. (1995)
[33]P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev., vol. 109, pp. 1492-1505. (1958)
[34]Z. Simsa, “Optical properties of charge carriers in magnetite and Mn ferrites,” Phys, Status Solidi B., vol.96, pp.581-587. (1979)
[35]A. V. Sokolov, “Optical Properties of Metals,” American journal of physics, vol.36, pp. 281-281. (1961)
[36]Z. Schlesinger, R. T. Collins, D. L. Kaiser, and F. Holtzberg, “Superconducting energy gap and normal-state reflectivity of single crystal Y-Ba-Cu-O,” Phys. Rev. Lett., vol.59, pp.1958-1961. (1987)
[37]I. Bozovic, D. Kirillov, A. Kapitulnik, K. Char, M. R. Hahn, M. R. Beasley, T. H. Geballe, Y. H. Kim, and A. J. Heeger, “Optical measurements on oriented thin YBa2Cu3O7-δ films: Lack of evidence for excitonic superconductivity,” Phys. Rev. Lett. , vol.59, pp.2219-2221. (1987)
[38]M. P. Petrov, A. I. Grachev, M. V. Krasin’kova, A. A. Nechita.lov, V. V. Poborchi., S. I. Shagin, and S. V. Miridonov, “Anisotropy of the optical characteristics of the superconducting YBa_2Cu_3O_{7-delta} crystals and of the Bi-Sr-Ca-Cu-O system,” JETP Lett., vol.50, pp.25-29. (1989)
[39]I. Bozovic, K. Char, J. B. Yoo, A. Kapitulnik, M. R. Beasley, T. H. Geballe, Z. Z. Wang, S. Hagen, N. P. Ong, D. E. Aspnes, and M. K. Kelly, “Optical anisotropy of YBa2Cu3O7-x,” Phys. Rev. B., vol.38, pp. 5077-5080. (1988)
[40]J. Petzelt, S. Kamba, S. Pacesova, J. Sramek, O. Smrckova, and D. Sikorova, “Infrared Reflectivity of High-Tc YBa2Cu3O7-x and Related Ceramics,” Phys. Status Solidi B, vol.146, pp. 743-755. (1988)
[41]B. Coch, H. P. Geserich, and Th. Wolf, “Anisotropy of the reflectance spectrum and of the dielectric function of YBa2Cu3O7 within the (001) plane,” Solid State Communications., vol.71, pp. 495-499. (1989)
[42]P. Wachter, B. Bucher, and R. Pittini, “Low-energy and low-temperature properties of untwinned YBa2Cu4O8: Gaps or condensation,” Phys. Rev. B, vol. 49, pp. 13164-13171. (1994)
[43]Joseph Orenstein, G. A. Thomas, C. G. Rapkine, C. G. Bethea, B. F. Levine, R. J. Cava, E. A. Rietman, and D. W. Johnson, Jr. , “Normal-state gap transition in Cu-O superconductors,” Phys. Rev. B, vol. 36, pp. 729-732. (1987)
[44]H. Nakano, and M. Imada, “Optical Conductivity of the Two-Dimensional Hubbard Model,” Technical Report of ISSP, Ser. A, pp.3467. (1999)
[45]G. A. Thomas, H. K. Ng, A. J. Millis, R. N. Bhatt, R. J. Cava, E. A. Rietman, D. W. Johnson Jr., G. P. Espinosa, and J. M. Vandenberg, “Far-infrared spectra of polycrystalline Ba2YCu3O9-δ,”Phys. Rev. B. ,vol. 36, pp. 846-849. (1987)
[46]D. C. Mattis and J. Bardeen, “Theory of the Anomalous Skin Effect in Normal and Superconducting Metals,” Phys. Rev., vol. 111, pp. 412-417. (1958)
[47]P. Kostic, Y. Okada, N. C. Collins, Z. Schlesinger, J. W. Reiner, L. Klein, A. Kapitulnik, T. H. Geballe, and M. R. Beasley, “ Non-Fermi-Liquid Behavior of SrRuO 3: Evidence from Infrared Conductivity,” Phys. Rev. Lett., vol. 81, pp. 2498-2501. (1998)
[48]P. Keil, “Planets and Life”, Phys, pp. 214, 251. (1968)
[49]A. J. McAlister and E. A. Stern, “Plasma Resonance Absorption in Thin Metal Films,” Phys. Rev., vol. 132, pp. 1599-1602. (1963)
[50]S. Feng, Z. Y. Li, Z. F. Feng, B. Y. Cheng, and D. Z. Zhang, “Imaging properties of an elliptical-rod photonic-crystal slab lens,” Phys. Rev. B, vol. 72, pp. 075101. (2005)
[51]S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, “Bend loss in surface Plasmon polariton band-gad structures,” Appl. Phys. Lett., vol. 79, pp. 1076-1078. (2001)
[52]E. Cubukcu, K. Aydin, E. O. S. Foteinopoulou, and C. M. Soukoulis, “Negative refraction by photonic crystals,” Nature, vol. 423, pp. 604-605. (2003)
[53]H. Chen, L. Ran, Jiantao, Huangfu, Xianmin Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Left-handed materials composed of only S-shaped resonators,” Phys. Rev. E, vol. 70, pp. 057605. (2004)
[54]R. A. Shelby, D. R. Smith, and S. Schultz, “ Experimental verification of a negative index of refraction,” Science, 292, pp. 77-79. (2001)
[55]E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Negative refraction by photonic crystals,” Nature 423, pp.604. (2003)
[56]P. Markos and C. M. Soukoulis, “Negative refraction and left-handed behavior in two-dimensional photonic crystals,” Phys. Rev. B, vol. 67, pp. 235107-235112. (2003)
[57]S. Foteinopoulou and C. M. Soukoulis, “Negative refraction and left-handed behavior in two-dimensional photonic crystals,” Phys. Rev. B, vol. 67, pp. 235107-235112. (2003)
[58]M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B, vol. 62, pp. 10696-10705. (2000)
[59]C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B, vol. 65, pp. 201104-201108. (2002)
[60]E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens,” Phys. Rev. Lett., vol. 91, pp. 207401-207405. (2003)
[61]P. A. Belov, C. R. Simovski, and P. Ikonen, “Canalization of subwavelength images by electromagnetic crystals,” Phys. Rev. B, vol. 71, pp.193105. (2005)
[62]A. Martinez, and J. Marti, “Analysis of wave focusing inside a negative photonic-crystal slab,” Opt. Express, vol. 13, pp. 2858-2868. (2005)
[63]V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. vol. 10, pp. 509-514. (1968)
[64]S. Foteinopoulou and C. M. Soukoulis, “Negative refraction and left-handed behavior in two-dimensional Photonic Crystals,” Phys. Rev. B, vol. 67, pp. 235107. (2003)
[65]C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-negative refraction without negative effective index,” Phys. Rev. B, vol. 65, pp. 201104. (2002)
[66]E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-state Physics and Electronics,” Phys. Rev. Lett., vol. 58, pp.2059-2062. (1987)
[67]J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystal: putting a new twist on light,” Nature 386, pp. 143-147. (1997)
[68]Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai, and K. Inoue, “AlGaAs-based two-dimensional photonic crystal slab with defect waveguides for planar lightwave circuit applications,” IEEE J. Quantum Electron., vol. 38, pp. 760-769. (2002)
[69]S. J. McNab, N. Moll, and Y. A. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express, vol. 11, pp. 2927-2939. (2003)
[70]K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a Photonic Gap in Periodic Dielectric Structures,” Phys. Rev. Lett., vol.65, pp. 3152-3155. (1990)
[71]S. John, “Electromagnetic Absorption in a Disordered Medium near a Photonic Mobility Edge,” Phys. Rev. Lett., vol. 53, pp. 2169-2172. (1984)
[72]E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and Acceptor Modes in Photonic Band Structure,” Phys. Rev. Lett., vol. 67, pp. 3380-3383. (1991)
[73]C. Dragone, “Efficient nxn star couplers using Fourier optics,” J. Lightwave Technol., vol. 7, pp. 479-489. (1989)
[74]H. A. Haus and Y. Lai, “ Narrow-band optical channel dropping filter,” J. Lightwave Technol., vol.10, pp. 57-62. (1992)
[75]H. Takanashi, S. Suzuki, and I. Nishi, “Wavelength multiplexer based on SiO2-Ta2O5 arrayed-waveguide grating,” J. Lightwave Technol., vol. 12, pp.989-995. (1994)
[76]B. T. Schwartz, and R. Piestun, J., “Total external reflection from metamaterials with ultralow refractive index,” Opt. Soc. Am. B, vol. 20, pp. 2448- 2453. (2003)
[77]V. Poborchii, T. Taya, T. Kanayama, and A. Moroz, “Silver coated silicon pillar photonic: Enhancement of a photonic bandgap,” Appl. Phys. Lett., vol. 82, pp. 508-510. (2003)
[78]S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, “Bend loss in surface plasmon polariton band-gad structures,” Appl. Phys. Lett., vol. 79, pp. 1076-1078. (2001)
[79]O. Takayama, and M. Cada, “Two-dimensional metallo-dielctric photonic crystals embedded in anodic porous alumina for optical wavelengths,” Appl. Phys. Lett., vol. 85, pp. 1311-1313. (2004)
[80]A. Moroz, “ Metallo-dielectric diamond and zinc-blende photonic crystals,” Phys. Rev. B, vol. 66, pp.115109. (2002)
[81]H. Ren, C. Jiang, W. Hu, M. Gao, Y. Qu, and F. Wang, “Channel drop filter in two-dimensional triangular lattice photonic crystals,” Opt. Soc. Am., vol. 24, pp. A7-A11. (2007)
[82]V. Kuzmiak, A. A. Maradudin, and F. Pincemin, “Photonic band structure of two-dimensional systems containimg metallic components,” Phys. Rev. B, vol. 50, pp. 16835-16844. (1994)
[83]N. J. Florous, K. Saikoh, and M. Koshiba, “Three-color photonic crystal demulitplexer based on ultralow-refractive metamaterial technology,” Opt. Lett, vol. 30, pp. 2736-2738. (2005)
[84]R. Ulrich, “Image formation by phase condences in optical waveguides,” Opt. Commun. vol.13, pp. 259-263. (1975).
[85]J. M. Heaton, R. M. Jenkins, and D. R. Wight, “A novel waveguide Mach-Zehnder interferometer based on multimode interference phenimena,” Opt. Commun. vol. 109, pp. 410-424. (1994).
[86]R. Ulrich, and T. Kamiya, “Resolution of self-images in planar optical waveguides,” J. Opt. Soc. Amer. vol. 68, pp. 583-592. (1978).
[87]E. Centeno, B. Guizal, and D. Felbacq, “Multiplexing and demultiplexing with photonic crystals,” J. Opt. A, Pure Appl. Opt. vol. 1, pp. L10–L13. (1999).
[88]F. S. S. Chien, Y. J. Hsu, W. F. Hsieh, and S. C. Cheng, “Dual wavelength demultiplexing by coupling and decoupling of photonic crystal waveguides,” Opt. Express vol. 12, pp. 1119–1125. (2004).
[89]S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett. vol. 80, pp. 960–963. (1998).
[90]K. Asakawa et al. “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys vol. 8, pp. 208. (2006).
[91]S. D. Smith, “Optical bistability, photonic logic, and optical computation,” Appl. Opt. vol. 25, pp. 1550-1564. (1986).
[92]B. T. Schwartz and R. Piestun, “Dynamic properties of photonic crystals and their effective refractive index," J. Opt. Soc. Am. B vol. 22, pp. 2018-2026. (2005)
[93]V. Poborchii, T. Taya, T. Kanayama, and A. Moroz, “Silver-coated silicon pillar photonic crystals: Enhancement of a photonic band gap,” Appl. Phys. Lett., vol. 82, pp.508. (2003)
[94]S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, “Bend loss in surface plasmon polariton band-gap structures,” Appl. Phys. Lett., vol. 79, pp.1076. (2003)
[95]O. Takayama and M. Cada, “Two-dimensional metallo-dielectric photonic crystals embedded in anodic porous alumina for optical wavelengths,”Appl. Phys. Lett., vol. 85, pp.1311. (2004)
[96]A. Moroz, “Metallo-dielectric diamond and zinc-blende photonic crystals,” Phys. Rev. B., vol. 66, pp.115109-115124. (2002)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top