|
[1] E. Yablonovitch, “Inhibited spontaneous emission in solid- state physical and electronics,” Phy. Rev. Lett., vol. 58, pp. 2059-2062. (1987) [2] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phy. Rev. Lett., vol. 58, pp. 2486-2489. (1987) [3]J. D. Joannopoulos, P. R. Villeneuve, “Photonic Crystals: Putting a new twist on light,” Nature, Vol. 386, pp. 143. (1997) [4]E. Yablonovitch, “Photonic crystals: semiconductors of Light,” Scientific American, Vol. 285, pp. 35. (2001) [5]A. R. Parker, V. L. Welch, D. Driver, N. Martini, “Structural colour: Opal anlogue discovered in a weevil,” Nature, Vol. 426, pp. 786. (2003) [6]J. D. Joannopolos, “Self-assembly lights up,” Nature, Vol. 414, pp. 257. (2001) [7]M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature, Vol. 404, pp. 53-56. (2000) [8]P. V. Braun, P.Wiltzius, “Microporous materials: Electrochemically grown photonic crystals,” Nature, Vol. 402, pp. 603. (1999) [9]K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic band gap in periodic structures,” Phys. Rev. Lett., Vol. 65, pp. 3152-3155. (1990) [10]K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenna Propagat. Vol. 14, pp. 302-307. (1966) [11]J. Adhidjaja and G. Horhmann, “A finite-difference algorithm for the transient electromagnetic response of a three-dimensional body,” Geophysics J. Int., Vol. 98, pp. 233. (1989) [12]M. Piket-May and A. Taflove, “Electrodynamics of visible-light interactions with the vertebrate retinal rod,” Optics Letter, Vol. 18, pp. 568-570. (1993) [13]M. Celuch-Marcysiak and W. Gwarek, “Higher order modeling of media interfaces for enhanced FDTD analysis of microwave circuits,” in 24th European Microwave Conference, Vol. 24, pp. 1530. (1994) [14]D. Sullivan, D. Borup, and O. Gandhi, “Use of the finite-difference time-domain method in calculating EM absorption in human tissues,” IEEE Trans. Biomed. Eng., Vol. 34, pp. 148. (1987) [15]M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett., vol. 81, pp. 2680-2682. (2002) [16]B. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science, vol. 300, 1537. (2003) [17]M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B, vol. 62, pp. 10696-10705. (2000) [18]B. Gralak, S. Enoch, and G. Tayeb, “Anomalous refractive properties of photonic crystals,” J. Opt. Soc. Amer. A, Opt. Image Sci., vol. 17, pp. 1012-1020. (2000) [19]S. Shi, A. Sharkawy, C. Chen, D. M. Pustai, and D. W. Prather, “Dispersion-based beam splitter in photonic crystals,” Opt. Lett., vol. 29, pp. 617-619. (2004) [20]H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals: toward microscale lightwave circuits,” J. Lightwave Technol., vol. 17, pp. 2032-2038. (1999) [21]H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett., vol. 74, pp. 1370-1372. (1999) [22]H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B, vol. 58, pp. R10096-R10099. (1998) [23]R. Zengerle, “Light propagation in singly and doubly periodic planar waveguides,” J. Mod. Opt., vol. 34, pp. 1589-1617. (1987) [24]P. St. J. Russell and T. B. Birks, Photonic Band Gap Materials, Kluwer Academic Publishers, Boston. (1996) [25]K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic band gap in periodic structures,” Phys. Rev. Lett., vol. 65, pp. 3152-3155. (1990) [26]K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenna Propagat. vol. 14, pp. 302-307. (1966) [27]J. Adhidjaja and G. Horhmann, “A finite-difference algorithm for the transient electromagnetic response of a three-dimensional body,” Geophysics J. Int., vol. 98, 233. (1989) [28]M. Piket-May and A. Taflove, “Electrodynamics of visible-light interactions with the vertebrate retinal rod,” Optics Letter, vol. 18, pp. 568-570. (1993) [29]M. Celuch-Marcysiak and W. Gwarek, “Higher order modeling of media interfaces for enhanced FDTD analysis of microwave circuits,” in 24th European Microwave Conference, vol. 24, 1530. (1994) [30]D. Sullivan, D. Borup, and O. Gandhi, “Use of the finite-difference time-domain method in calculating EM absorption in human tissues,” IEEE Trans. Biomed. Eng., vol. 34, 148. (1987) [31]S. Caorsi, A. Massa, and M. Pastorino, “Computation of electromagnetic scattering by nonlinear bounded dielectric objects: A FDTD approach,” Microwave Opt. Technol. Lett., vol. 7, no. 17, 788. (1994) [32]K. Shlager and J. Schneider, “A selective survey of the finite-difference time-domain literature,” IEEE Antennas and Propagation Magazine, vol. 37, pp. 39-56. (1995) [33]P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev., vol. 109, pp. 1492-1505. (1958) [34]Z. Simsa, “Optical properties of charge carriers in magnetite and Mn ferrites,” Phys, Status Solidi B., vol.96, pp.581-587. (1979) [35]A. V. Sokolov, “Optical Properties of Metals,” American journal of physics, vol.36, pp. 281-281. (1961) [36]Z. Schlesinger, R. T. Collins, D. L. Kaiser, and F. Holtzberg, “Superconducting energy gap and normal-state reflectivity of single crystal Y-Ba-Cu-O,” Phys. Rev. Lett., vol.59, pp.1958-1961. (1987) [37]I. Bozovic, D. Kirillov, A. Kapitulnik, K. Char, M. R. Hahn, M. R. Beasley, T. H. Geballe, Y. H. Kim, and A. J. Heeger, “Optical measurements on oriented thin YBa2Cu3O7-δ films: Lack of evidence for excitonic superconductivity,” Phys. Rev. Lett. , vol.59, pp.2219-2221. (1987) [38]M. P. Petrov, A. I. Grachev, M. V. Krasin’kova, A. A. Nechita.lov, V. V. Poborchi., S. I. Shagin, and S. V. Miridonov, “Anisotropy of the optical characteristics of the superconducting YBa_2Cu_3O_{7-delta} crystals and of the Bi-Sr-Ca-Cu-O system,” JETP Lett., vol.50, pp.25-29. (1989) [39]I. Bozovic, K. Char, J. B. Yoo, A. Kapitulnik, M. R. Beasley, T. H. Geballe, Z. Z. Wang, S. Hagen, N. P. Ong, D. E. Aspnes, and M. K. Kelly, “Optical anisotropy of YBa2Cu3O7-x,” Phys. Rev. B., vol.38, pp. 5077-5080. (1988) [40]J. Petzelt, S. Kamba, S. Pacesova, J. Sramek, O. Smrckova, and D. Sikorova, “Infrared Reflectivity of High-Tc YBa2Cu3O7-x and Related Ceramics,” Phys. Status Solidi B, vol.146, pp. 743-755. (1988) [41]B. Coch, H. P. Geserich, and Th. Wolf, “Anisotropy of the reflectance spectrum and of the dielectric function of YBa2Cu3O7 within the (001) plane,” Solid State Communications., vol.71, pp. 495-499. (1989) [42]P. Wachter, B. Bucher, and R. Pittini, “Low-energy and low-temperature properties of untwinned YBa2Cu4O8: Gaps or condensation,” Phys. Rev. B, vol. 49, pp. 13164-13171. (1994) [43]Joseph Orenstein, G. A. Thomas, C. G. Rapkine, C. G. Bethea, B. F. Levine, R. J. Cava, E. A. Rietman, and D. W. Johnson, Jr. , “Normal-state gap transition in Cu-O superconductors,” Phys. Rev. B, vol. 36, pp. 729-732. (1987) [44]H. Nakano, and M. Imada, “Optical Conductivity of the Two-Dimensional Hubbard Model,” Technical Report of ISSP, Ser. A, pp.3467. (1999) [45]G. A. Thomas, H. K. Ng, A. J. Millis, R. N. Bhatt, R. J. Cava, E. A. Rietman, D. W. Johnson Jr., G. P. Espinosa, and J. M. Vandenberg, “Far-infrared spectra of polycrystalline Ba2YCu3O9-δ,”Phys. Rev. B. ,vol. 36, pp. 846-849. (1987) [46]D. C. Mattis and J. Bardeen, “Theory of the Anomalous Skin Effect in Normal and Superconducting Metals,” Phys. Rev., vol. 111, pp. 412-417. (1958) [47]P. Kostic, Y. Okada, N. C. Collins, Z. Schlesinger, J. W. Reiner, L. Klein, A. Kapitulnik, T. H. Geballe, and M. R. Beasley, “ Non-Fermi-Liquid Behavior of SrRuO 3: Evidence from Infrared Conductivity,” Phys. Rev. Lett., vol. 81, pp. 2498-2501. (1998) [48]P. Keil, “Planets and Life”, Phys, pp. 214, 251. (1968) [49]A. J. McAlister and E. A. Stern, “Plasma Resonance Absorption in Thin Metal Films,” Phys. Rev., vol. 132, pp. 1599-1602. (1963) [50]S. Feng, Z. Y. Li, Z. F. Feng, B. Y. Cheng, and D. Z. Zhang, “Imaging properties of an elliptical-rod photonic-crystal slab lens,” Phys. Rev. B, vol. 72, pp. 075101. (2005) [51]S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, “Bend loss in surface Plasmon polariton band-gad structures,” Appl. Phys. Lett., vol. 79, pp. 1076-1078. (2001) [52]E. Cubukcu, K. Aydin, E. O. S. Foteinopoulou, and C. M. Soukoulis, “Negative refraction by photonic crystals,” Nature, vol. 423, pp. 604-605. (2003) [53]H. Chen, L. Ran, Jiantao, Huangfu, Xianmin Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Left-handed materials composed of only S-shaped resonators,” Phys. Rev. E, vol. 70, pp. 057605. (2004) [54]R. A. Shelby, D. R. Smith, and S. Schultz, “ Experimental verification of a negative index of refraction,” Science, 292, pp. 77-79. (2001) [55]E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Negative refraction by photonic crystals,” Nature 423, pp.604. (2003) [56]P. Markos and C. M. Soukoulis, “Negative refraction and left-handed behavior in two-dimensional photonic crystals,” Phys. Rev. B, vol. 67, pp. 235107-235112. (2003) [57]S. Foteinopoulou and C. M. Soukoulis, “Negative refraction and left-handed behavior in two-dimensional photonic crystals,” Phys. Rev. B, vol. 67, pp. 235107-235112. (2003) [58]M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B, vol. 62, pp. 10696-10705. (2000) [59]C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B, vol. 65, pp. 201104-201108. (2002) [60]E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens,” Phys. Rev. Lett., vol. 91, pp. 207401-207405. (2003) [61]P. A. Belov, C. R. Simovski, and P. Ikonen, “Canalization of subwavelength images by electromagnetic crystals,” Phys. Rev. B, vol. 71, pp.193105. (2005) [62]A. Martinez, and J. Marti, “Analysis of wave focusing inside a negative photonic-crystal slab,” Opt. Express, vol. 13, pp. 2858-2868. (2005) [63]V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. vol. 10, pp. 509-514. (1968) [64]S. Foteinopoulou and C. M. Soukoulis, “Negative refraction and left-handed behavior in two-dimensional Photonic Crystals,” Phys. Rev. B, vol. 67, pp. 235107. (2003) [65]C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-negative refraction without negative effective index,” Phys. Rev. B, vol. 65, pp. 201104. (2002) [66]E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-state Physics and Electronics,” Phys. Rev. Lett., vol. 58, pp.2059-2062. (1987) [67]J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystal: putting a new twist on light,” Nature 386, pp. 143-147. (1997) [68]Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai, and K. Inoue, “AlGaAs-based two-dimensional photonic crystal slab with defect waveguides for planar lightwave circuit applications,” IEEE J. Quantum Electron., vol. 38, pp. 760-769. (2002) [69]S. J. McNab, N. Moll, and Y. A. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express, vol. 11, pp. 2927-2939. (2003) [70]K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a Photonic Gap in Periodic Dielectric Structures,” Phys. Rev. Lett., vol.65, pp. 3152-3155. (1990) [71]S. John, “Electromagnetic Absorption in a Disordered Medium near a Photonic Mobility Edge,” Phys. Rev. Lett., vol. 53, pp. 2169-2172. (1984) [72]E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and Acceptor Modes in Photonic Band Structure,” Phys. Rev. Lett., vol. 67, pp. 3380-3383. (1991) [73]C. Dragone, “Efficient nxn star couplers using Fourier optics,” J. Lightwave Technol., vol. 7, pp. 479-489. (1989) [74]H. A. Haus and Y. Lai, “ Narrow-band optical channel dropping filter,” J. Lightwave Technol., vol.10, pp. 57-62. (1992) [75]H. Takanashi, S. Suzuki, and I. Nishi, “Wavelength multiplexer based on SiO2-Ta2O5 arrayed-waveguide grating,” J. Lightwave Technol., vol. 12, pp.989-995. (1994) [76]B. T. Schwartz, and R. Piestun, J., “Total external reflection from metamaterials with ultralow refractive index,” Opt. Soc. Am. B, vol. 20, pp. 2448- 2453. (2003) [77]V. Poborchii, T. Taya, T. Kanayama, and A. Moroz, “Silver coated silicon pillar photonic: Enhancement of a photonic bandgap,” Appl. Phys. Lett., vol. 82, pp. 508-510. (2003) [78]S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, “Bend loss in surface plasmon polariton band-gad structures,” Appl. Phys. Lett., vol. 79, pp. 1076-1078. (2001) [79]O. Takayama, and M. Cada, “Two-dimensional metallo-dielctric photonic crystals embedded in anodic porous alumina for optical wavelengths,” Appl. Phys. Lett., vol. 85, pp. 1311-1313. (2004) [80]A. Moroz, “ Metallo-dielectric diamond and zinc-blende photonic crystals,” Phys. Rev. B, vol. 66, pp.115109. (2002) [81]H. Ren, C. Jiang, W. Hu, M. Gao, Y. Qu, and F. Wang, “Channel drop filter in two-dimensional triangular lattice photonic crystals,” Opt. Soc. Am., vol. 24, pp. A7-A11. (2007) [82]V. Kuzmiak, A. A. Maradudin, and F. Pincemin, “Photonic band structure of two-dimensional systems containimg metallic components,” Phys. Rev. B, vol. 50, pp. 16835-16844. (1994) [83]N. J. Florous, K. Saikoh, and M. Koshiba, “Three-color photonic crystal demulitplexer based on ultralow-refractive metamaterial technology,” Opt. Lett, vol. 30, pp. 2736-2738. (2005) [84]R. Ulrich, “Image formation by phase condences in optical waveguides,” Opt. Commun. vol.13, pp. 259-263. (1975). [85]J. M. Heaton, R. M. Jenkins, and D. R. Wight, “A novel waveguide Mach-Zehnder interferometer based on multimode interference phenimena,” Opt. Commun. vol. 109, pp. 410-424. (1994). [86]R. Ulrich, and T. Kamiya, “Resolution of self-images in planar optical waveguides,” J. Opt. Soc. Amer. vol. 68, pp. 583-592. (1978). [87]E. Centeno, B. Guizal, and D. Felbacq, “Multiplexing and demultiplexing with photonic crystals,” J. Opt. A, Pure Appl. Opt. vol. 1, pp. L10–L13. (1999). [88]F. S. S. Chien, Y. J. Hsu, W. F. Hsieh, and S. C. Cheng, “Dual wavelength demultiplexing by coupling and decoupling of photonic crystal waveguides,” Opt. Express vol. 12, pp. 1119–1125. (2004). [89]S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett. vol. 80, pp. 960–963. (1998). [90]K. Asakawa et al. “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys vol. 8, pp. 208. (2006). [91]S. D. Smith, “Optical bistability, photonic logic, and optical computation,” Appl. Opt. vol. 25, pp. 1550-1564. (1986). [92]B. T. Schwartz and R. Piestun, “Dynamic properties of photonic crystals and their effective refractive index," J. Opt. Soc. Am. B vol. 22, pp. 2018-2026. (2005) [93]V. Poborchii, T. Taya, T. Kanayama, and A. Moroz, “Silver-coated silicon pillar photonic crystals: Enhancement of a photonic band gap,” Appl. Phys. Lett., vol. 82, pp.508. (2003) [94]S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, “Bend loss in surface plasmon polariton band-gap structures,” Appl. Phys. Lett., vol. 79, pp.1076. (2003) [95]O. Takayama and M. Cada, “Two-dimensional metallo-dielectric photonic crystals embedded in anodic porous alumina for optical wavelengths,”Appl. Phys. Lett., vol. 85, pp.1311. (2004) [96]A. Moroz, “Metallo-dielectric diamond and zinc-blende photonic crystals,” Phys. Rev. B., vol. 66, pp.115109-115124. (2002)
|