Tang, C. W., VanSlyke, S. A. (1987). Organic electroluminescent diodes. Applied Physics Letters, 51(12), 913-915.
Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackay, K., Friend, R. H., Holmes, A. B. (1990). Light-emitting diodes based on conjugated polymers. Nature, 347, 539-541.
Baldo, M. A., O'brien, D. F., You, Y., Shoustikov, A., Sibley, S., Thompson, M. E., & Forrest, S. R. (1998). Highly efficient phosphorescent emission from organic electroluminescent devices. Nature, 395, 151-154.
Baldo, M. A., O’brien, D. F., Thompson, M. E., Forrest, S. R. (1999). Excitonic singlet-triplet ratio in a semiconducting organic thin film. Physical Review B, 60, 14422.
Suzuki, H., Hoshino, S. (1996). Effects of doping dyes on the electroluminescent characteristics of multilayer organic light‐emitting diodes. Journal of Applied Physics, 79, 8816-8822.
Uchida, M., Adachi, C., Koyama, T., Taniguchi, Y. (1999). Charge carrier trapping effect by luminescent dopant molecules in single-layer organic light emitting diodes. Journal of Applied Physics, 86, 1680-1687.
Lamansky, S., Kwong, R. C., Nugent, M., Djurovich, P. I., Thompson, M. E. (2001). Molecularly doped polymer light emitting diodes utilizing phosphorescent Pt (II) and Ir (III) dopants. Organic Electronics, 2, 53-62.
Lamansky, S., Djurovich, P. I., Abdel-Razzaq, F., Garon, S., Murphy, D. L., & Thompson, M. E. (2002). Cyclometalated Ir complexes in polymer organic light-emitting devices. Journal of Applied Physics, 92, 1570-1575.
He, G., Li, Y., Liu, J., Yang, Y. (2002). Enhanced electroluminescence using polystyrene as a matrix. Applied Physics Letters, 80, 4247-4249.
Ishida, T., Kobayashi, H., Nakato, Y. (1993). Structures and properties of electron‐beam‐evaporated indium tin oxide films as studied by X‐ray photoelectron spectroscopy and work‐function measurements. Journal of Applied Physics, 73(9), 4344-4350.
Kim, J. S., Granström, M., Friend, R. H., Johansson, N., Salaneck, W. R., Daik, R. Cacialli, F. (1998). Indium–tin oxide treatments for single-and double-layer polymeric light-emitting diodes: The relation between the anode physical, chemical, and morphological properties and the device performance. Journal of Applied Physics, 84(12), 6859-6870.
So, S. K., Choi, W. K., Cheng, C. H., Leung, L. M., Kwong, C. F. (1999). Surface preparation and characterization of indium tin oxide substrates for organic electroluminescent devices. Applied Physics A: Materials Science & Processing, 68(4), 447-450.
Mason, M. G., Hung, L. S., Tang, C. W., Lee, S. T., Wong, K. W., Wang, M. (1999). Characterization of treated indium–tin–oxide surfaces used in electroluminescent devices. Journal of Applied Physics, 86(3), 1688-1692.
Van Slyke, S. A., Chen, C. H., Tang, C. W. (1996). Organic electroluminescent devices with improved stability. Applied Physics Letters, 69(15), 2160-2162.
Hsu, C. M., Wu, W. T. (2004). Improved characteristics of organic light-emitting devices by surface modification of nickel-doped indium tin oxide anode. Applied Physics Letters, 85(5).
Borsenberger, P. M., Pautmeier, L., Richert, R., Bässler, H. (1991). Hole transport in 1, 1‐bis (di‐4‐tolylaminophenyl) cyclohexane. The Journal of Chemical Physics, 94(12), 8276-8281.
Kido, J., Ohtaki, C., Hongawa, K., Okuyama, K., Nagai, K. (1993). 1, 2, 4-triazole derivative as an electron transport layer in organic electroluminescent devices. Japanese Journal of Applied Physics, 32(7A), L917.
Xiao, L., Su, S. J., Agata, Y., Lan, H., Kido, J. (2009). Nearly 100% internal quantum efficiency in an organic blue‐light electrophosphorescent device using a weak wlectron transporting material with a wide energy gap. Advanced Materials, 21(12), 1271-1274.
Su, S. J., Gonmori, E., Sasabe, H., Kido, J. (2008). Highly efficient organic blue‐and white‐light‐emitting devices having a carrier‐and exciton‐confining structure for reduced efficiency roll‐off. Advanced Materials, 20(21), 4189-4194.
Adachi, C., Kwong, R. C., Djurovich, P., Adamovich, V., Baldo, M. A., Thompson, M. E., Forrest, S. R. (2001). Endothermic energy transfer: A mechanism for generating very efficient high-energy phosphorescent emission in organic materials. Applied Physics Letters, 79(13), 2082-2084.
Stolka, M., Yanus, J. F., Pai, D. M. (1984). Hole transport in solid solutions of a diamine in polycarbonate. The Journal of Physical Chemistry, 88(20), 4707-4714.
Gong, X., Robinson, M. R., Ostrowski, J. C., Moses, D., Bazan, G. C., Heeger, A. J. (2002). High-efficiency polymer-based electrophosphorescent devices. Advanced Materials, 14(8), 581-585.
Adachi, C., Kwong, R. C., Djurovich, P., Adamovich, V., Baldo, M. A., Thompson, M. E., Forrest, S. R. (2001). Endothermic energy transfer: A mechanism for generating very efficient high-energy phosphorescent emission in organic materials. Applied Physics Letters, 79(13), 2082-2084.
Adamovich, V., Brooks, J., Tamayo, A., Alexander, A. M., Djurovich, P. I., D'Andrade, B. W., Thompson, M. E. (2002). High efficiency single dopant white electrophosphorescent light emitting diodes. New Journal of Chemistry, 26(9), 1171-1178.
Holmes, R. J., Forrest, S. R., Tung, Y. J., Kwong, R. C., Brown, J. J., Garon, S., Thompson, M. E. (2003). Blue organic electrophosphorescence using exothermic host-guest energy transfer. Applied Physics Letters, 82(15), 2422-2424.
Lee, C. W., & Lee, J. Y. (2013). Above 30% external quantum efficiency in blue phosphorescent organic light‐emitting diodes using pyrido [2, 3‐b] indole derivatives as host materials. Advanced Materials, 25(38), 5450-5454.
Udagawa, K., Sasabe, H., Cai, C., Kido, J. (2014). Low‐driving‐voltage blue phosphorescent organic light‐emitting devices with external quantum efficiency of 30%. Advanced Materials, 26(29), 5062-5066.
Seino, Y., Sasabe, H., Pu, Y. J., Kido, J. (2014). High‐performance blue phosphorescent OLEDs using energy transfer from exciplex. Advanced Materials, 26(10), 1612-1616.
Lee, J. H., Cheng, S. H., Yoo, S. J., Shin, H., Chang, J. H., Wu, C. I., Kim, J. J. (2015). An exciplex forming host for highly efficient blue organic light emitting diodes with low driving voltage. Advanced Functional Materials, 25(3), 361-366.
Shin, H., Lee, J. H., Moon, C. K., Huh, J. S., Sim, B., Kim, J. J. (2016). Sky‐blue phosphorescent OLEDs with 34.1% external quantum efficiency using a low refractive index electron transporting layer. Advanced Materials.
陳信仁,利用咔唑衍生物為母體之高效率藍綠磷光有機發光二極體,元智大學,碩士論文,民國102年洪御翔,高外部量子效率之藍色磷光有機發光二極體,元智大學,碩士論文,民國104年Perumal, A., Lüssem, B., Leo, K. (2012). High brightness alternating current electroluminescence with organic light emitting material. Applied Physics Letters, 100(10), 103307.
Fröbel, M., Perumal, A., Schwab, T., Gather, M. C., Lüssem, B., Leo, K. (2013). Enhancing the efficiency of alternating current driven organic light-emitting devices by optimizing the operation frequency. Organic Electronics, 14(3), 809-813.
Fröbel, M., Hofmann, S., Leo, K., Gather, M. C. (2014). Optimizing the internal electric field distribution of alternating current driven organic light-emitting devices for a reduced operating voltage. Applied Physics Letters, 104(7), 071105.
Perumal, A., Lüssem, B., Leo, K. (2012). Ultra-bright alternating current organic electroluminescence. Organic Electronics, 13(9), 1589-1593.
Fröbel, M., Perumal, A., Schwab, T., Fuchs, C., Leo, K., Gather, M. C. (2013). White light emission from alternating current organic light‐emitting devices using high frequency color‐mixing. Physica Status Solidi (a), 210(11), 2439-2444.
Liu, S. Y., Chang, J. H., Wu, I. W., Wu, C. I. (2014). Alternating current driven organic light emitting diodes using lithium fluoride insulating layers. Scientific reports, 4.
Su, S. J., Chiba, T., Takeda, T., Kido, J. (2008). Pyridine‐containing triphenylbenzene derivatives with high electron mobility for highly efficient phosphorescent OLEDs. Advanced Materials, 20(11), 2125-2130.