跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/12 14:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳煒超
研究生(外文):Chen, Wei-Chao
論文名稱:效率最佳化之單相無刷直流風扇馬達使用霍爾感測器或無感測控制
論文名稱(外文):Efficiency Optimization Control for Single-Phase Brushless DC Fan Motors with or without Hall Sensor
指導教授:鄒應嶼鄒應嶼引用關係
指導教授(外文):Tzou, Ying-Yu
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電控工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:98
語文別:英文
論文頁數:111
中文關鍵詞:單相無刷直流風扇馬達數位電流模式控制無感測控制啟動控制
外文關鍵詞:single-phase BLDC fan motordigital current-mode controlsensorless controlstart-up control
相關次數:
  • 被引用被引用:9
  • 點閱點閱:1698
  • 評分評分:
  • 下載下載:410
  • 收藏至我的研究室書目清單書目收藏:1
本論文實現效率最佳化之單相無刷直流風扇馬達使用霍爾感測器或無感測控制策略。本文提出簡單的模型方法並配合適當的參數鑑別,建立符合單相無刷直流風扇馬達特性的數學模型,其非線性的轉子磁通量分布特色是利用建表的方式來代表。經由電腦模擬與實際量測結果比對後,可驗證該模型的準確性。本文比較不同的控制策略,包含開迴路硬換相電壓模式控制、開迴路軟換相電壓模式控制以及閉迴路電流模式控制,分析其電流波形以及運轉效率的優劣。本文結合閉迴路電流模式控制以及開迴路軟換相電壓模式控制的優點,配合霍爾感測器輸出訊號的回授,可使單相無刷直流風扇馬達在廣泛的速度範圍內達到效率最佳化。本論文亦實現高效率且低成本的單相無刷直流風扇馬達無感測驅動,延伸軟換相的控制方法,調整功率開關的空白時間,使線圈上的電流產生不連續導通的狀態,偵測其反抗電動勢的零交越點即為電流的換相點。為了解決無感測啟動的問題,本文配合單相馬達非對稱氣隙的特色,使用特殊的啟動機制,不論轉子初始位置在哪裡,皆可使馬達往既定的方向旋轉,並以kick-off的方式加速馬達,直到反抗電動勢大小足以提供無感測演算法正確的運作,便可切換到無感測驅動模式。在無感測驅動下,亦使用閉迴路電流模式的控制方法來提升風扇馬達的運轉效率,而電流命令係利用查表的方式來取代霍爾感測器的訊號。本文使用數位訊號處理器(TMS320LF2407A)驗證所提出控制策略的可行性與性能。實驗結果顯示,在有感測控制下使用效率最佳化的控制方法,其直流鏈電流的平均值至少有12%的改善,其相電流的方均根值至少有10%的改善,其相電流的峰值至少有42%的改善;在無感測控制下,可使風扇馬達穩定啟動並操作在廣泛的速度範圍,而且其運轉效率幾乎與有感測的結果相同。
This thesis develops efficiency optimization control strategies for single-phase brushless dc (BLDC) fan motors with or without Hall sensor. A simple modeling method with feasible parameter identification is proposed to meet characteristics of single-phase BLDC fan motor. The nonlinear rotor flux distribution is modeled by a look-up table. With simulation assistance, the proposed model has been verified with measurement results. This thesis compares the different control strategies include open-loop voltage-mode control of hard-commutation scheme, open-loop voltage-mode control of soft-commutation scheme, and closed-loop current-mode control scheme, and analyzes the current response and overall efficiency. With the linear Hall sensor feedback, the advantages of current-mode control scheme and soft-commutation scheme are adopted to achieve maximum efficiency over the entire speed range. This thesis also develops a low-cost and high efficiency sensorless control for single-phase BLDC fan motor drives. The proposed scheme detects the back-EMF zero-crossing-point (ZCP) to realize current commutation without Hall sensor. An adjustable blanking time control method is used to ensure correct detection of the ZCP. To overcome the sensorless start-up problem, a specific strategy based on characteristic of asymmetric air gap is developed to ensure the motor running in predefined direction. Then, an open-loop control called kick-off speed up the fan motor to middle-speed where sensorless control algorithm based on the back-EMF can work properly. The closed-loop current-mode control scheme is also applied to improve the overall efficiency. However, the current reference is produced by look-up table to estimate the Hall sensor signal. Experimental implementation has been constructed on a single-chip DSP controller (TMS320LF2407A) to verify the performance and feasibility of the proposed control strategies. When using the control scheme with Hall sensor, experimental results show that there are at least a 12 % reduction for average value of dc-link current, a 10 % reduction for RMS value of phase current, and a 42% reduction for peak value of phase current. When using sensorless commutation control, the fan motor can start-up smoothly and operate under wide speed range, moreover, the overall efficiency is almost the same to the results of control scheme with Hall sensor.
Abstract (Chinese) i
Abstract (English) ii
Acknowledgement iii
Table of contents iv
List of Tables vi
List of Figures vii
Chapter 1 Introduction 1
1.1 Research Background and Recent Development1
1.2 Research Motivation and Objective 4
1.3 Thesis Organization 6
Chapter 2 Basic Operation of Single-Phase BLDC Fan Motors 7
2.1 Structure of Single-Phase BLDC fan motors 7
2.2 Mathematical Modeling 10
2.3 Parameter Identification. 12
2.3.1 Electrical Parameters 12
2.3.2 Mechanical Parameters 14
2.4 A Study of Dynamic Behavior 17
2.4.1 Basic Operation Principle 17
2.4.2 Analyses of Steady-State Response 18
2.4.3 Verification of Proposed Model 23
Chapter 3 Efficiency Optimization of Single-Phase BLDC Fan Motor Drives 27
3.1 PWM Control Strategies 27
3.1.1 PWM Switching Scheme 1 28
3.1.2 PWM Switching Scheme 2 35
3.1.3 PWM Switching Scheme 3 37
3.1.4 PWM Switching Scheme 4 39
3.2 Open-Loop Voltage-Mode Control of Soft-Commutation Scheme 42
3.3 Efficiency Optimization Control Scheme 47
3.3.1 Principle of Efficiency Optimization 47
3.3.2 System Configuration 48
3.3.3 Digital Current-Loop Controller Design and Consideration 50
3.3.4 Analyses of Simulation Results 57
Chapter 4 Sensorless Control for Single-Phase BLDC Fan Motor Drives 63
4.1 Sensorless Control Scheme 63
4.1.1 Basic Operation Principle 63
4.1.2 Zero-Crossing Point Detection 66
4.2 Sensorless Start-Up Strategy 67
4.2.1 Starting Method based on Asymmetric Air Gap 67
4.2.2 Start-Up Procedure 70
4.2.3 Open-Loop Voltage-Mode Control without Hall sensor 72
4.3 Closed-Loop Current-Mode Control of Sensorless Motor Drives 76
4.3.1 System Configuration 76
4.3.2 Analyses of Simulation Results 78
Chapter 5 Laboratory Setup and Implementation of Single-Phase BLDC Fan Motor Control System 82
5.1 Laboratory Setup 82
5.2 Software Implementation 84
5.3 Analyses of Experimental Results 87
5.3.1 Commutation Control with Hall Sensor 87
5.3.2 Sensorless Commutation Control 99
Chapter 6 Conclusions 105
6.1 Conclusions 105
6.2 Future Works 107
References 108
Vita 108

[1] Tetsuya Yoshitomi and Yasuyuki Ueshima, “Driving a single-phase motor,” United States Patent, US 7,148,643 B2.
[2] K. N. Hsu, “Pulse-width modulation speed controllable dc brushless cool fan,” United States Patent, US 5,099,181.
[3] Z. Q. Zhu, S. Bentouati, and D. Howe, “Control of single-phase permanent magnet brushless DC drives for high-speed applications,” IEEE Power Electronics and Variable Speed Drive Conf., pp. 327-332, Sep. 2000.
[4] Laurence Armstrong, “Current control removes brushless DC motor commutation spikes,” Application Note ZE0469, Zetex Semiconductors, Aug. 2005.
[5] L. Sun , Q. Fang, and J. Shang, “Drive of Single-Phase Brushless DC Motors Based on Torque Analysis,” IEEE Trans. Magnetics, vol. 43, no. 1, pp. 46-50, Jan. 2007.
[6] A. Lelkes and M. Bufe, “BLDC motor for fan application with automatically optimized commutation angle,” IEEE Power Electronics Specialists Conf. (PESC), vol. 3, pp. 2277-2281, Jun. 2004.
[7] P. P. Acarnley and J. F. Watson, “Review of position-sensorless operation of brushless permanent-magnet machines,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 352-362, Apr., 2006.
[8] J. Shao, D. Nolan, T. Hopkins, “A novel direct back EMF detection for sensorless brushless DC (BLDC) motor drives,” IEEE Applied Power Electronics Conference and Exposition (APEC), vol. 1, pp. 33-37, Mar. 2002.
[9] J. Shao, D. Nolan, M. Teissier, D. Swanson, “A novel microcontroller-based sensorless brushless DC (BLDC) motor drive for automotive fuel pumps,” IEEE Trans. Ind. Electron., vol. 39, pp. 1734- 1740, Nov.-Dec. 2003.
[10] J. Shao, D. Nolan, T. Hopkins, “Improved direct back EMF detection for sensorless brushless DC (BLDC) motor drives,” IEEE Applied Power Electronics Conference and Exposition (APEC), vol. 1, pp. 300-305, Feb. 2003.
[11] M. F. Rahman, L. Z. E. Haque, and M. A. Rahman, “A direct torque-controlled interior permanent-magnet synchronous motor drive without a speed sensor,” IEEE Trans. Energy Conversion, vol. 18, no. 1, pp. 17-22, Mar. 2003.
[12] S. Bolognani, L. Tubiana, and M. Zigliotto, “ EKF-based sensorless IPM synchronous motor drive for flux-weakening applications,” IEEE Ind. Appl., vol. 39, no. 3, pp. 768-775, May-Jun. 2003.
[13] D. K. Kim, K. W. Lee, B. T. Kim, and B. I. Kwon, “ A novel starting method of the SPM-type BLDC motors without position sensor for reciprocating compressor,” IEEE Industry Application Conf. (IAS), vol. 2, pp. 861-865, Oct. 2006.
[14] L. Ying and N. Ertugrul, “A starting strategy for a robust position sensorless technique in non-salient PM AC motor drives,” IEEE Power Electronics and Motion Control Conf. (IPEMC), vol. 2, pp. 1028-1032, Aug. 2004.
[15] Y. S. Lai, F. S. Shyu, and S. S. Tseng, “New initial position detection technique for three-phase brushless DC motor without position and current sensors,” IEEE Trans. Ind. Appl., vol. 39, pp. 485-491, Mar.-Apr. 2003.
[16] J. S. Mayer and O. Wasynczuk, “Analysis and modeling of a single-phase brushless dc motor drive system,” IEEE Trans. Energy Conversion, vol. 4, pp. 473-479, Sep. 1989.
[17] D. R. Huang, C. Y. Fan, S. J. Wang, H. P. Pan, T. F. Ying, C. M. Chao, and Eric G. Lean, “A new type single-phase spindle motor for HDD and DVD,” IEEE Trans. Magnetics, vol. 35, pp. 839-844, Mar. 1999.
[18] Y. C. Liang and V. J. Gosbell, “Realistic computer model of dc machine for CADA topology on SPICE2,” IEEE Power Electronics Specialists Conf. (PESC), vol. 2, pp. 765-771, Apr. 1988.
[19] C. B. Rajanathan, H. Acikgoz, and R. Egin, “Transient characteristics of the single phase permanent magnet synchronous motor,” IEEE Trans. Magnetics, vol. 35, no. 5, pp. 3589-3591, Sep. 1999.
[20] C. L. Chiu, Y. T. Chen, and W. S. Jhang, “Properties of Cogging Torque, Starting Torque, and Electrical Circuits for the Single-Phase Brushless DC Motor,” IEEE Trans. Magnetics, vol. 44, no. 10, pp. 2317-2323, Oct. 2008.
[21] D. Y. Ohm and R. J. Oleksuk, “Influence of PWM schemes and commutation methods for DC and brushless motors and drives,” P.E. Technology Conference, Oct. 2002.
[22] R. Shao, Z. Guo, and L.Chang, “A PWM Strategy for Acoustic Noise Reduction for Grid-Connected Single-Phase Inverters,” IEEE Applied Power Electronics Conf. (APEC), pp. 301-305, Feb. 2007.
[23] T. H. Sloane, “Effects of switching frequency and input voltage on efficiency of chopper-controlled series-connected DC machines,” IEEE Industry Applications Society Conf. (IAS), pp. 164-168, Oct. 1988.
[24] H. W. Lee, T. H. Kim, and M. Ehsani, “Practical control for improving power density and efficiency of the BLDC generator,” IEEE Trans. Power Electron., vol. 20, no. 1, pp. 192-199, Jan. 2005.
[25] A. I. Maswood, “A PWM voltage source inverter with PI controller for instantaneous motor current control,” IEEE Power Electronics and Drive Systems Conf. (PEDS), pp. 834-837, 1995.
[26] J. Rodriguez, J. Pontt, C. Silva, P. Cortes, U. Amman, and S. Rees, “Predictive current control of a voltage source inverter,” IEEE Power Electronics Specialists Conf. (PESC), vol. 3, pp. 2192-2196, Jun. 2004.
[27] B. H. Cho, H. S. Bae, and J. H. Lee, “Review of current mode control schemes and introduction of a new digital current mode control method for the parallel module DC-DC converters,” IEEE Power Electronics and Motion Control Conf. (IPEMC), pp. 202-210, May 2009.
[28] Y. Duan and H. Jin, “Digital controller design for switchmode power converters,” IEEE Applied Power Electronics Conf. (APEC), pp. 967-973, May 1999.
[29] Y. F. Liu and X. Liu, “Recent developments in digital control strategies for DC/DC switching power converters,” IEEE Power Electronics and Motion Control Conf. (IPEMC), pp. 307-314, May 2009.
[30] B. H. Cho, H. S. Bae, and J. H. Lee, “Review of current mode control schemes and introduction of a new digital current mode control method for the parallel module dc-dc converters,” IEEE Power Electronics and Motion Control Conf. (IPEMC), pp. 202-210, May 2009.
[31] D. M. Van De Sype and K. De Gusseme “Small-signal Laplace-domain analysis of uniformly-sampled pulse-width modulators,” IEEE Power Electronics Specialists Conf. (PESC), vol. 6, pp. 4292-4298, Jun. 2004.
[32] W. Wang, Z. Wu, W. Jin and J. Ying, “Sensorless control technology for single phase BLDCM based on the winding time-sharing method,” IEEE Industrial Electronics Society Conf. (IECON), pp. 5, Nov. 2005.
[33] W. Wang, Z. Wu, W. Jin, J. Ying, S. M. Huang, and W. S. Huang, “Method and circuit for controlling sensorless single-phase BLDCM,” United States Patent, US 0,214,611.
[34] 路承達, 劉添華, “無轉軸偵測元件單相風扇驅動系統及其積體電路晶片研製” 台灣電力工程研討會, 2008.
[35] 潘屏榮, 吳永裕, 陳遵立, “應用於雙相半波無刷直流風扇馬達之無感測轉速控制技術” 台灣電力工程研討會, 2008.
[36] J. C. Dunfield, G. K. Heine, M. Jufer, and K. Oveyssi, “Method for starting and commutating a permanent-magnet direct current motor having a single phase winding,” United States Patent, US 5,598,071.
[37] B. I. Kwon, B. Y. Yang, S. C. Park, and Y. S. Jin, “Novel topology of unequal air gap in a single-phase brushless DC motor,” IEEE Trans. Magnetics, vol. 37, no. 5, pp. 3723-3726, Sep. 2001.
[38] W. Wang, Z. Wu, W. Jin, and J. Ying, “Starting methods for hell-less single phase BLDC motor,” Industrial Electronics Society Conf. (IECON), Nov., 2005.
[39] 鄭光耀,「無刷直流馬達無感測控制方法之研究與DSP實現技術之發展」,博士論文,國立交通大學電機與控制工程研究所,民國九十二年十月。
[40] 賴逸軒,「以DSP為基礎發展永磁同步馬達使用線性型霍爾感測器與無感測控制方法」,碩士論文,國立交通大學電機與控制工程研究所,民國九十四年七月。
[41] 張晏銓,「永磁無刷馬達使用霍爾感測器或無感測之數位控制器設計」,碩士論文,國立交通大學電機與控制工程研究所,民國九十六年七月。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top