跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/12/23 06:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周涵怡
研究生(外文):Chou, Han-Yi E.
論文名稱:探討磷酸化DNA-PKcs與hNuPARP於細胞週期行進中之角色
論文名稱(外文):Functional Roles of Phosphorylated DNA-PKcs and hNuPARP in Cell Cycle Progression
指導教授:呂勝春
指導教授(外文):Lee, Sheng-Chung
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:分子醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
中文關鍵詞:DNA-PK催化次體細胞週期行進惡性肝細胞癌中心體磷酸化特異性抗體核仁調控聚合腺苷二磷酸激酶活性
外文關鍵詞:DNA-PKcsCell cycle progressionHepatocellular carcinomaCentrosomePhosphospecific antibodiesNucleolar regulationPARP activity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:431
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
自1990年DNA-PK催化次體 (DNA-PK catalytic subunit; DNA-PKcs) 被發現以來,許多實驗顯示了此分子在細胞內參與多種重要的功能,包括在DNA傷害修復、 V(D)J重組、DNA複製、細胞週期檢查點的調控和細胞凋亡等。 但由於缺乏適當的研究工具,以至DNA-PKcs在這些作用機制內所扮演的角色和作用模式,至今仍是非常的不清楚。 因此,我們備製了數種DNA-PKcs的專一性抗體,包括能辨識於特定胺機酸上發生磷酸化的DNA-PKcs,也就是其磷酸激脢活性被啟動後的分子。 這使得我們第一次能以活體內的方式,觀察DNA-PKcs在不同生理狀況中被活化的情形,而近一步了解其在生理上扮演的意義。 由臨床病理組織切片的觀察,發現DNA-PKcs的磷酸化與惡性肝細胞癌的進程有高度密切的關係。 再者,我們發現在DNA複製期間, DNA-PKcs會磷酸化並存於複製後的中心體(centrosome)上,且對微小管的形成表現出正面調控的角色。 這些新發現,不但提供了細胞質可如何與DNA複製協調合作的可能機制,並賦予DNA-PKcs在細胞週期調控和腫瘤細胞的進行中所代表的關鍵位置。 本研究的第二部分運用具磷酸化特異性的抗體 P*N 鑑定一個新的核仁蛋白hNuPARP。 結果顯示此蛋白具有聚合腺苷二磷酸激酶的活性,並可被Cdk2/CyclinE磷酸化,而hNuPARP的磷酸化不論在細胞週期行進、或進入生長休止階段的過程中,均呈現受到高度調控的現象。 由於磷酸化hNuPARP與RNA聚合酶I並存於核糖體DNA轉錄點與核仁組織區中,推測此蛋白可能參與於核糖體DNA組織的調控機制中。

Since its first description in 1990, DNA-PK catalytic subunit has been one of the most attractive and intriguing molecules in the research field. The bulk of studies has implicated its participation in a wide array of cellular functions, including DNA damage repair, V(D)J recombination, DNA replication, cell-cycle checkpoint and apoptosis. Nevertheless, the role and mode of action of DNA-PKcs in these pathways still remain obscure, mainly because of its difficulty in manipulation, as well as the lack of reagents for tracking the active molecule in vivo. We have raised several antibodies against different portions of DNA-PKcs, and most importantly, antibodies that can recognize specifically phosphorylated DNA-PKcs, which represents the active kinase in in vivo. These antibodies enable us to describe for the first time the behavior of activated DNA-PKcs in physiological conditions, as well as during cell cycle progression. Our clinicopathological survey revealed a strong correlation between loss of DNA-PKcs phosphorylation and malignant tumor progression. Furthermore, we detected the presence of phosphorylated DNA-PKcs on duplicated centrosomes, and described its positive role in microtubule nucleation. These intriguing observations could offer the key to unravel the role of DNA-PKcs in coordination of DNA replication, control of chromosome integrity, and tumor progression. In second part, we report the identification of a novel nucleolar protein hNuPARP that possesses intrinsic poly ADP-ribosylation activity. Our preliminary studies suggest that hNuPARP may be the major epitope for the P*N antibody, a putative substrate of the Cdk2/cyclinE kinase, that is suppressed in growth arrested cells and associates with the RNA polymerase I machinery.

I. Introduction 1
Part I DNA-PKcs 2
Part II P*N epitope 4
II. Materials and Methods
Cell culture 6
Western blot analysis 6
DNA-PK kinase assay 6
Immunohistochemical staining 7
Immunofluorescence staining 7
Isolation and analysis of centrosomes 8
Microtubule nucleation test 8
Nucleolar isolation 9
In vitro kinase assays 9
Chromosome spreads 10
Nuclease treatment 10
In situ run-on transcription assay 10
PARP activity assay 11
III. Results
Part I: DNA-PKcs 12
Production and characterization of anti-DNA-PKcs antibodies 12
T2609 is a DNA-PKcs autophosphorylatable site 13
Expression of DNA-PKcs proteins in fetal and adult tissues 14
DNA-PKcs T2609 phosphorylation in HCC 15
Clinicopathological significance of DNA-PKcs T2609 Phosphorylation in HCC 15
Correlation of DNA-PKcs T2609 phosphorylation with AFP elevation and p53 and beta-catenin mutations 16
Association of DNA-PKcs T2609 phosphorylation with low-grade,
low-stage HCC, and infrequent high AFP elevation and early tumor recurrence: significance of beta-catenin and p53 mutations 17
Intracellular localization of DNA-PKcsT2609 phosphorylation 18
Identification of DNA-PKcs as a centrosomal protein 19
DNA-PKcs may be involved in microtubule nucleation 19
Part II: hNuPARP
Characterization of the P*N epitope 20
P*N epitope co-fractionates with purified nucleoli. 21
The interphase epitope for P*N is sensitive to Cdk inhibitors and is likely to be hNuPARP 22
Association of the P*N epitope with PolI transcription modules 23
The P*N epitope is not required for initiation of rDNA transcription and ribosome biogenesis 24
hNuPARP is a PARP that ADP-ribosylates itself 25
IV. Discussion
Part I 26
Chromosome instability and stability versus p53 and B-catenin mutations in HCC: role of DNA-PKcs-Ku complex 26
Future directions: linking DNA-PKcx activity to prediction of radiotherapy outcomes 28
DNA-PKcs is a centrosomal protein 29
Part II 31
V. Tables and Figures
Part I
TABLE 1. DNA-PKcs T2609 phosphorylation in 421 unifocal resected
primary hepatocellular carcinoma 34
TABLE 2. DNA-PKcs T2609 phosphorylation in relation to -fetoprotein level, and mutations of beta-catenin and p53 genes in hepatocellular carcinoma 35
TABLE 3. Clinicopathological correlation of DNA-PKcs T2609 phosphorylation and beta-catenin mutation in unifocal hepatocellular carcinoma 36
TABLE 4. Correlation of DNA-PKcs T2609 phosphorylation and p53
mutations with clinicopathological features of unifocal surgically resected hepatocellular carcinoma 37
Figure 1. The DNA-PKcs protein 38
Figure 2. Characterization of the anti-DNA-PKcs antibodies 40
Figure 3. T2609 is a DNA-PKcs autophosphorylatable site 42
Figure 4. Detection of DNA-PKcs T2609 phosphorylation in fetal tissues 43
Figure 5. Phosphorylation of DNA-PKcs at T2609 in different adult human tissues and in HCC samples 44
Figure 6. Cell cycle-dependent distribution of DNA-PKcs 46
Figure 7. DNA-PKcs is a component of the centrosome 48
Figure 8. Inhibition of microtubule nucleation by anti-DNA-PKcs antibodies 50
Part II
Figure 1. The hNuPARP protein 52
Figure 2. Characterization of the P*N antibody in mammalian cell lines 54
Figure 3. P*N recognizes a Cdk-phosphorylated nucleolar protein that is likely to be hNuPARP 56
Figure 4. Association of the P*N epitope with PolI transcription modules 58
Figure 5. The P*N epitope is not required for Initiation of rDNA transcription 60
Figure 6. Suppression of the P*N epitope in growth - arrested/differentiated cells 61
Figure 7. Association of the P*N epitope with PolI is DNA dependent 62
Figure 8. hNuPARP possess poli-ADP rybosylation activity 63
VI. References 65

Achanta G., Pelicano H., Feng L., Plunkett W., Huang P. (2001). Interaction of p53 and DNA-PK in response to nucleoside analogues: potential role as a sensor complex for DNA damage. Cancer Res. 61:8723-8729.
Andersen J.S., Wilkinson C.J., Mayor T., Mortensen P., Nigg E.A., Mann M. (2003).Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426:570-574
Anderson C.W. (1993). DNA damage and the DNA-activated protein kinase. Trends Biochem. Soc. 18:433-437.
Assoro A.B.D., Wilma L.L., Salisburg J.L. (2002). Centrosome amplification and the development of cancer. Oncogene 21:6146-6153.
Chan D.W., Chen B.P., Prithivirajsingh S., Kurimasa A., Story M.D., Qin J., Chen D.J. (2002). Autophosphorylation of the DNA-dependent protein kinase catalytic subunit is required for rejoining of DNA double-strand breaks. Genes Dev. 16:2333-2338.
Chibazakura T., Watanabe F., Kitajima S., Tsukada K., Yasukochi Y., Teraoka H. (1997). Phosphorylation of human general transcription factors TATA-binding protein and transcription factor IIB by DNA-dependent protein kinase: synergistic stimulation of RNA polymerase II basal transcription in vitro. Eur. J. Biochem. 247:1166-1173.
Damia G., Filiberti L., Vikhanskaya F., Carrassa L., Taya Y., D'incalci M., Broggini M. (2001). Cisplatinum and taxol induce different patterns of p53 phosphorylation. Neoplasia 3:10-6
de Murcia G., de Murcia J.M., Schreiber V. (1991). Poly(ADPribose) polymerase: molecular biological aspects. Bioessays 13:455—462.
de Murcia J.M., Niedergang C., Trucco C., Ricoul M., Dutrillaux B., Mark M., Oliver F.J., Masson M., Dierich A., LeMeur M., et al. (1997). Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc. Natl. Acad. Sci. USA 94:7303—7307.
Deutsch E., Dugray A., Karim B.A., Marangoni E., Maggiorella L., Vaganay S., M’Kacher R., Rasy S.D., Eschwege F., Vainchenker W., Turhan A.G., Bourhis J. (2001). BCR-ABL down-regulates the DNA repair protein DNA-PKcs. Blood 97:2084-2090.
Difilippantonio M.J., Zhu J., Chen H.T., Meffre E., Nussenzweig M.C., Max E.E., Ried T., Nussenzweig A. (2000). DNA repair protein Ku80 suppresses chromosomal aberrations and malignant transformation. Nature 404:510-514.
Donehower L.A., Godley L.A., Aldaz C.M., Pyle R., Shi Y.P., Pinkel D., Gray A., et al (1995). Deficiency of p53 accelerates mammary tumorigenesis in Wnt-1 transgenic mice and promotes chromosomal instability. Genes Dev. 9:215-221.
Harvey M., McArthur M.J., Montgomery C.A.Jr., Butel J.S., Bradley A., Donehower L.A. (1993). Spontaneous and carcinogen-induced tumorigenesis in p53-deficient mice. Nature Genet. 5:225-229.
Honda R., Yasuda H. (1999). Association of p19 (ARF) with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53. EMBO J. 18:22-27.
Hsu H.C., Tseng H.J., Lai P.L., Lee P.H., Peng S.Y. (1993). Expression of p53 gene in 184 unifocal hepatocellular carcinomas: association with tumor growth and invasiveness. Cancer Res. 53: 4691-4694
Hsu H.C., Peng S.Y., Lai P.L., Chu J.S., Lee P.H. (1994). Mutations of p53 gene in hepatocellular carcinoma (HCC) correlate with tumor progression and patient prognosis: a study of 138 patients with unifocal HCC. Int. J. Oncol. 4:1341-1347.
Hsu H.C., Jeng Y.M., Mao T.L., Chu J.S., Lai P.L., Peng S.Y. (2000). -Catenin mutations are associated with a subset of low stage hepatocellular carcinoma negative for hepatitis B virus and with favorable prognosis. Am. J. Pathol. 157:763-770.
Hsu I.C., Metcalf R.A., Sun T., Welsh J.A., Wang N.J., Harris C.C. (1991). Mutational hotspot in the p53 gene in human hepatocellular carcinomas. Nature 350:427-428.
Jackson D.A., Hassan A.B., Errington R.J., Cook P.R. (1993). Visualization of focal sites of transcription within human nuclei. EMBO J. 12:1059-1065.
Jeggo P.A. (1998). DNA repair: PARP - another guardian angel? Curr. Biol. 8:R49—R51.
Jhappan C., Morse H.C. 3rd, Fleischmann R.D., Gottesman M.M., Merlino G. (1997). DNA-PKcs: a T-cell tumour suppressor encoded at the mouse scid locus. Nat. Genet. 17:483-486.
Jorden P., Mannervik M., Tora L., Carmo-Fonseca M. (1996). In vivo evidence that TATA-binding protein/SL1 colocalizes with UBF and RNA polymerase I when rRNA systhesis is either active or inactive. J. Cell Biol. 133: 225-234.
Kapoor M., Hamm R., Yan W., Taya Y., Lozano G. (2000). Cooperative phosphorylation at multiple sites is required to activate p53 in response to UV radiation. Oncogene 19:358-364.
Kaufmann S.H., Desnoyers S., Ottaviano Y., Davidson NE, Poirier GG (1993). Specific proteolytic cleavage of poly (ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res. 53:3976— 3985.
Kuhn A., Gotlieb T.M., Jackson S.P., Grummt I. (1995). DNA-dependent protein kinase: a potent inhibitor of transcription by RNA polymerase I. Genes Dev. 9:193-203.
Laurent-Puig P., Legoix P., Bluteau O., Belghiti J., Franco D., Binot F., Monges G., et al.(2001). Genetic alterations associated with hepatocellular carcinomas define distinct pathways of hepatocarcinogenesis. Gastroenterology 120:1763-1773.
Lazebnik Y.A., Kaufmann S.H., Desnoyers S., Poirier G.G., Earnshaw W.C. (1994). Cleavage of poly (ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371:346—347.
Leber R., Wise T.W., Mizuta R., Meek K. (1998). The XRCC4 gene product is a target for and interacts with the DNA-dependent protein kinase. J. Biol. Chem. 273:1794-1801.
Lees-Miller S.P., Sakaguchi K., Ullrich S.J., Appella E., Anderson C.W. (1992). Human DNA-activated protein kinase phosphorylates serines 15 and 37 in the amino-terminal transactivation domain of human p53. Mol. Cell Biol. 12:5041-5049.
Legoix P., Bluteau O., Bayer J., Perret C., Balabaud C., Belghiti J., Franco D., et al.(1999). Beta-catenin mutations in hepatocellular carcinoma correlate with a low rate of loss of heterozygosity. Oncogene 8:4044-4046.
Lengauer C., kinzler K.W., Vogelstein B. (1998). Genetic instabilities in human cancers. Nature 396:643-649
Malkin D. (1993). p53 and the Li-Fraumeni syndrome. Cancer Genet. Cytogenet. 66:83-92.
Mitchison T. and Kirschner M. (1984). Microtubule assembly nucleated by isolated centrosomes. Nature 312:232—237.
Miyoshi Y., Iwao K., Nagasawa Y., Aihara T., Sasaki Y., Imaoka S., Murata M., et al.(1998). Activation of the -catenin gene in primary hepatocellular carcinomas by somatic alterations involving exon 3. Cancer Res. 58:2524-2527.
Morrell D., Cromartie D., Swift M. (1986). Mortality and cancer incidence in 263 patients with ataxia-telangiectasia. J. Natl. Cancer Inst. 77:89-92.
Moss T. and Stefanovsky V.Y. (2002). At the center of eukaryotic life. Cell 109:545-548.
Moudjou M. and Bornens M. (1998). Method of centrosome isolation from cultured animal cells, p. 111—119. In J. E. Celis (ed.), Cell biology: a laboratory handbook, 2nd ed., vol. 2. Academic Press, London, England.
Murakami Y., Hayashi K., Hirohashi S., Sekiya T. (1991). Aberrations of the tumor suppressor p53 and retinoblastoma genes in human hepatocellular carcinoma. Cancer Res. 51:5520-5525.
Nacht M., Strasser A., Chan Y.R., Harris A.W., Schlissel M., Bronson R.T., Jacks T. (1996). Mutations in the p53 and SCID genes cooperate in tumorigenesis. Genes Dev. 10:2055-2066.
Ogden S.K., Lee K.C., Wernke-Dollries K., Stratton S.A., Aronow B., Barton M.C. (2001). p53 targets chromatin structure alteration to repress alpha-fetoprotein gene expression. J. Biol. Chem. 276:42057-42062.
Pan Z.Q., Amin A.A., Bibbs E., Niu H., Hurwitz J. (1994). Phosphorylation of the p34 subunit fo human single-strand-DNA-binding protein in cyclin A-activated G1 extracts is catalyzed by cdk-cyclin A complex and DNA-dependent protein kinase. Proc. Natl. Acad. Sci. USA 91:8343-8347.
Roussel P., Andre L., Comai L., Hernandez-Verdun D. (1996). The rDNA transcription machinery is assembled during mitosis in active NORs and absent in inactive NORs. J. Cell Biol. 133:235-246.
Simonin F., Poch O., de la Rue M., de Murcia G. (1993a). Identification of potential active-site residues in the human poly (ADP-ribose) polymerase. J. Biol. Chem. 268:8529-8535.
Simonin F., Hofferer L., Panzeter P.L., Muller S., de Murcia., Althaus F.R. (1993b). The carboxyl-terminal domain of human poly(ADP-ribose) polymerase. Overproduction in Escherichia coli, large scale purification, and characterization. J. Biol. Chem. 268:13454-13461.
Smith G.C. and Jackson S.P. (1999). The DNA-dependent kinase. Genes Dev. 13:916-934.
Smith S., Giriat I., Schmitt A., de Lange T. (1998). Tankyrase, a poly(ADP-ribose) polymerase at human telomeres. Science 282: 1484-1487.
Spector D.L., Goldman R.D., Leinwand L.A. (1998). Cells — A Laboratory Manual. Cold Spring Harbor Laboratory Press.
Wang S., Guo M., Ouyang H., Li X., Cordon-Cardo C., Kurimasa A., Chen D.J., Fuks Z., Ling C.C., Li G.C. (2000). The catalytic subunit of DNA-dependent protein kinase selectively regulates p53-dependent apoptosis but not cell-cycle arrest. Proc. Natl. Acad. Sci. USA 97:1584-1588.
Wansink D.G., Schul W., van der Kraan I., van Steensel B., van Driel R., de Jong L. (1993). Fluorescent labeling of nascent RNA revels transcription by RNA polymerase II in domains scattered throughout the nucleous. J. Cell Biol. 122:283-293.
Watanable F., Teraoka H., Iijima S., Mimori T., Tsukada K. (1994a). Molecular properties, substrate specificity and regulation of DNA-dependent protein kinase from Raji Burkitt’s lymphoma cells. Biochim. Biophys. Acta 1223:255-260.
Watanable F., Shirakawa H., Yoshida M., Tsukada K., Teraoka H. (1994b). Stimulation of DNA-dependent protein kinase activity by high mobility group proteins 1 and 2. Biochem. Biophys. Res. 202:736-742.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文