跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/12/21 06:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳奕錚
研究生(外文):Yi-Zheng Chen
論文名稱:模糊邏輯導引系統設計
論文名稱(外文):Fuzzy-Logic-Based Guidance System Design
指導教授:林志民林志民引用關係
指導教授(外文):Prof. Chih-Min Lin
學位類別:碩士
校院名稱:元智大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:英文
中文關鍵詞:比例型導引律視線指引導引律魚雷導引飛彈導引模糊邏輯
外文關鍵詞:the PN-type guidance lawthe CLOS guidance lawthe torpedo guidancethe missile guidancefuzzy-logic-based
相關次數:
  • 被引用被引用:0
  • 點閱點閱:565
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究兩大類的導引方式,第一類是比例型的導引律,其中又分為比例、擴增比例、特殊比例及真比例導引律四種傳統的比例型的導引律;第二類則是視線指引導引律。
比例型導引律在本論文是應用在魚雷導引上而且都有一個共通點:當魚雷追擊目標時,這些導引律的導引常數在追擊的過程中都是固定不變的。從導引系統的觀點來看,固定不變的導引常數並不是非常適用於多變的追擊閃避運動。由於模糊邏輯推理技術具備適應性推論能力,因此四種以模糊邏輯為基礎的導引律被提出,分別是模糊邏輯比例、模糊邏輯擴增比例、模糊邏輯特殊比例及模糊邏輯真比例導引律。這些以模糊邏輯為基礎的導引律本質上是一種適應性導引律。藉由模糊邏輯推理技術,我們發現不論在二度空間或三度空間中,以模糊邏輯為基礎的導引律,其終端均方根誤失距離都比傳統的導引律小。
視線指引導引律是應用在飛彈導引上,且提出模糊邏輯視線指引飛彈導引律的設計方法。先將模糊邏輯記憶以適應性網路模糊推論系統來訓練與學習;並配合以線上微調的方法隨時修正模糊邏輯記憶,以獲得更小的誤差距離。模擬結果顯示,這種方法能夠應付來自不同方向的目標,且能夠獲致較小的誤差距離。

In this thesis, two kinds of principal guidance laws are introduced. The first kind is the PN-type guidance laws, where four kinds of traditional PN-type guidance laws are introduced, which are proportional navigation (PN), augmented PN (APN), special PN (SPN) and true PN (TPN) guidance laws. The second kind is the command to line-of-sight (CLOS) guidance law.
We apply the PN-type guidance laws to the torpedo guidance in this thesis and these guidance laws have mutual character : when a torpedo pursues a target, the navigation constants of these guidance laws are invariable in the process of pursuit. For the concept of guidance system, invariable navigation constant is not so suitable for various pursuit-evasion motion. Since fuzzy logic inference technique possesses the adaptive inference scheme, four kinds of fuzzy-logic-based guidance laws are proposed. They are fuzzy-logic-based PN (named FPN), fuzzy-logic-based APN (named FAPN), fuzzy-logic-based SPN (named FSPN) and fuzzy-logic-based TPN (named FTPN) guidance laws. These fuzzy-logic-based guidance laws are essentially the kind of adaptive guidance laws. By fuzzy logic inference technique, it is observed that, the terminal RMS miss distances of fuzzy-logic-based guidance laws are smaller than those of traditional guidance laws in 2D and 3D space.
The fuzzy-logic-based command to line-of-sight (CLOS) guidance law is proposed. The fuzzy associated memory (FAM) are trained and learned by adaptive-network-based fuzzy inference system (ANFIS). An on-line tuning algorithm is also proposed to update the FAM so as to get smaller miss distance. The simulation results demonstrate that it can cope with the target coming from different directions and achieve small miss distance.

1 Introduction
1.1General Remark and Overview of Previous Work 1
1.2Motivation and Contributions of the Thesis 2
1.3Scope and Organization of the Thesis 3
2 Guidance Law Formulations and Fuzzy Control Theory
2.1Overview 4
2.2Formulations Derivation of SPN and TPN Guidance Laws 7
2.2.1TPN Guidance Law Formulations 8
2.2.2SPN Guidance Law Formulations 10
2.3Fuzzy Logic Control System 12
2.3.1Fuzzification Interface 13
2.3.2Decision-Making Logic 13
2.3.3Defuzzification 15
2.3.4Knowledge Base 17
3 Fuzzy-Logic-Based 2D Torpedo Guidance Laws Design
3.1Overview 18
3.2Torpedo Guidance Systems 19
3.3Fuzzy-Logic-Based Guidance Laws 20
3.3.1FPN Guidance Law 22
3.3.2FAPN Guidance Law 24
3.3.3Defuzzification 24
3.4Simulation Results 24
3.4.1Example 1 : the torpedo pursues the submarine 25
3.4.1.1FPN and PN 25
3.4.1.2FAPN and APN 26
3.5Summary 27
4 Fuzzy-Logic-Based 3D Torpedo Guidance Laws Design
4.1Overview 28
4.2Torpedo Guidance Systems 28
4.3Fuzzy-Logic-Based Guidance Laws 30
4.3.1FSPN Guidance Law 32
4.3.2FTPN Guidance Law 35
4.3.3Defuzzification 35
4.4Simulation Results 36
4.4.1Example 1 : The torpedo pursues the submarine with
longitudinally escaping 36
4.4.1.1FSPN and SPN 39
4.4.1.2FTPN and TPN 40
4.4.2Example 2 : The torpedo pursues the submarine with
laterally escaping 41
4.4.2.1FSPN and SPN 43
4.4.2.2FTPN and TPN 44
4.4.3 Example 3:The torpedo intercepts the submarine with
x-axis moving to toward 45
4.4.3.1FSPN and SPN 47
4.4.3.2FTPN and TPN 48
4.5Summary 49
5 Fuzzy-Logic-Based CLOS Guidance Law Design
5.1Overview 50
5.2Problem Formulation 52
5.3Fuzzy Logic Controller Design 54
5.4Simulation Result 59
5.5Summary 62
6 Conclusions and Suggestions for Future Research
6.1Conclusions 67
6.2Suggestions for Future Research 67
References 69

[1] F. P. Adler, "Missile Guidance by Three-Dimensional
Proportional Navigation," Journal of Applied Physics, vol.
27, no. 5, pp. 500-507, 1956.
[2] D. Ghose, "On the Generalization of True Proportional
Navigation," IEEE Transactions on Aerospace and Electronic
Systems, vol. 30, no. 2, pp. 545-555, 1994.
[3] D. Ghose, "True Proportional Navigation with Maneuvering
Target," IEEE Transactions on Aerospace and Electronic
Systems, vol. 30, no. 1, pp. 229-237, 1994.
[4] M. Guelman and J. Shinar, "Optimal Guidance Law in the
Plane," Journal of Guidance, Control, and Dynamics, vol. 7,
no. 4, pp. 471-476, 1984.
[5] C. Hecht and A. Troesch, "Predictive Guidance for
Interceptors with Time Lag in Acceleration," IEEE
Transactions on Automatic Control, vol. 25, no. 2, pp. 270-
274, 1980.
[6] Gordon K. F. Lee, "Estimation of the Time-to-Go Parameter
for Air-to-Air Missiles," Journal of Guidance, Control, and
Dynamics, vol. 8, no. 2, pp. 262-266, 1985.
[7] S. A. Murtaugh and H. E. Criel, "Fundamentals of
Proportional Navigation," IEEE Spectrum, vol. 3, no. 12,
pp. 75-85, 1966.
[8] F. W. Nesline, "Missile Guidance for Low-Altitude Air
Defense," Journal of Guidance, Control, and Dynamics, vol.
2, no. 4, pp. 283-289, 1979.
[9] U. S. Shukla and P. R. Mahapatra, "The Proportional
Navigation Dilemma- Pure or True?," IEEE Transactions on
Aerospace and Electronic Systems, vol. 26, no. 2, pp. 382-
392, 1990.
[10]S. H. Song and I. J. Ha, "A Lyapunov-Like Approach to
Performance Analysis of 3-Dimensional Pure PNG Laws," IEEE
Transactions on Aerospace and Electronic Systems, vol. 30,
no. 1, pp. 238-248, 1994.
[11]T. L. Song and T. Y. Um, "Practical Guidance for Homing
Missiles with Bearings-Only Measurements," IEEE
Transactions on Aerospace and Electronic Systems, vol. 32,
no. 1, pp. 434-443, 1996.
[12]C. D. Yang, F. B. Hsiao, and F. B. Yeh, "Generalized
Guidance Law for Homing Missiles," IEEE Transactions on
Aerospace and Electronic Systems, vol. 25, no. 2, pp. 197-
212, 1989.
[13]C. D. Yang and C. C. Yang, "Analytical Solution of 3D Ideal
Proportional Navigation," 1996 Automatic Control
Conference, Taiwan, 1996, pp. 446-451.
[14]C. D. Yang and F. B. Yeh, "Optimal Proportional
Navigation," Journal of Guidance, Control, and Dynamics,
vol. 11, no. 4, pp. 375-377, 1988.
[15]P. J. Yuan and J. S. Chern, "Ideal Proportional
Navigation," Journal of Guidance, Control, and Dynamics,
vol. 15, no. 5, pp. 1161-1165, 1992.
[16]P. Zarchan, "Proportional Navigation and Weaving Targets,"
Journal of Guidance, Control, and Dynamics, vol. 18, no. 5,
pp. 969-974, 1995.
[17]J. Shinar, Y. Rotsztein, and E. Bezner, "Analysis of Three-
Dimensional Optimal Evasion with Linearized Kinematics,"
Journal of Guidance, Control, and Dynamics, vol. 2, no. 5,
pp. 353-360, 1979.
[18]J. E. Cochran Jr., T. S. No, and D. G. Thaxton, "Analytical
Solutions to a Guidance Problem," Journal of Guidance,
Control, and Dynamics, vol. 14, no. 1, pp. 117-122, 1991.
[19]C. Huang, J. Tylock, S. Engel, and J. Whitson, "Comparison
of Neural-Network-Based, Fuzzy-Logic-Based, and Numerical
Nonlinear Inverse Flight Controls," AIAA Guidance,
Navigation and Control Conference, Pt. 3, Scottsdale, AZ,
1994, pp. 922-929.
[20]C. F. Lin, Modern Navigation, Guidance, and Control
Processing, Prentice Hall, New Jersey, 1991.
[21]C. F. Lin, Advanced Control Systems Design, Prentice Hall,
New Jersey, 1994.
[22]C. M. Lin and J. H. Maa, "Flight Control System Design by
Self-Organizing Fuzzy Logic Controller," Journal of
Guidance, Control, and Dynamics, vol. 20, no. 1, pp. 189-
190, 1997.
[23]W. K. Schroeder and K. Liu, "An Appropriate Application of
Fuzzy Logic : A Missile Autopilot for Dual Control
Implementation," IEEE International Symposium on
Intelligent Control, pp. 93-98, 1994.
[24]S. K. Mishra, I. G. Sarma, and K. N. Swamy, "Performance
Evaluation of Two Fuzzy-Logic-Based Homing Guidance
Schemes," Journal of Guidance, Control, and Dynamics, vol.
17, no. 6, pp. 1389-1391, 1994.
[25]C. C. Lee, "Fuzzy Logic in Control System: Fuzzy Logic
Controller-Part I," IEEE Transactions on Systems, Man, and
Cybernetics, vol. 20, no. 2, pp. 404-418, 1990.
[26]C. T. Lin and C. S. G. Lee, "Reinforcement
Structure/Parameter Learning for Neural-Network-Based Fuzzy
Logic Control Systems," IEEE Transactions on Fuzzy Systems,
vol. 2, no. 1, pp. 46-65, 1994.
[27]C. C. Lee, "Fuzzy Logic in Control System: Fuzzy Logic
Controller-Part II," IEEE Transactions on Systems, Man, and
Cybernetics, vol. 20, no. 2, pp. 419-435, 1990.
[28]P. Garnell, Guided Weapon Systems. Oxford:Pergamon Press,
1980, 2nd edn..
[29]C. F. Lin, Modern navigation, guidance, and control
processing. Englewood Cliffs, NJ: Prentice Hall, 1991.
[30]C. F. Lin, Advanced control systems design, Eng. Clif. NJ:
Prentice Hall, 1994.
[31]C. D. Yang, F. B. Hsiao, and F. B. Yeh, “Generalized
guidance law for homing missile,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 25, no. 2, pp. 197-
212,1989.
[32]R. T. Flerning, and G. W. Irwin, “Filtering controllers
for bank-to-turn CLOS guidance, “ IEE proceedings, Pt. D,
vol 134, no. 1, pp. 17-25, 1987.
[33]I. J. Ha, and S. Chong, “Design of a CLOS guidance law via
feedback linearization,” IEEE Transactions on Aerospace
and Electronic Systems, vol. 28, no. 1, pp. 51-63, 1992.
[34]D. J. Roddy, G. W. Irwin, and H. Wilson, “Optimal
controllers for bank-to-turn CLOS guidance,” IEE
proceedings, Pt. D, vol. 131, no. 4, pp. 109-116, 1984.
[35]J. S. R. Jang, “ANFIS:adaptive-network-based fuzzy
inference system,” IEEE Transactions on Systems, Man, and
Cybernetics, vol. 23, no. 3, pp. 665-684, 1993.
[36]R. G. Cottrell, “Minimizing interceptor size using neural
networks for terminal guidance law synthesis,” Journal of
Guidance, Control, and Dynamics, vol 19, no. 3, pp. 557-
562, 1996.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 29.黃國恭,「生命週期評估之架構與規劃」,工業污染防治報導,第128期,1998年11月。
2. 29.黃國恭,「生命週期評估之架構與規劃」,工業污染防治報導,第128期,1998年11月。
3. 28.黃國恭,「生命週期評估目的與範疇界定及盤查分析之執行」,工業污染防治報導, 第128期,1998年11月。
4. 28.黃國恭,「生命週期評估目的與範疇界定及盤查分析之執行」,工業污染防治報導, 第128期,1998年11月。
5. 25.黃國恭,「認識生命週期評估」,工業污染防治報導, 第112期,1997年7月。
6. 25.黃國恭,「認識生命週期評估」,工業污染防治報導, 第112期,1997年7月。
7. 24.黃雪娟,「工業減廢 VS. ISO14000環境管理系統」,工業污染防治報導, 第113期,1997年8月。
8. 24.黃雪娟,「工業減廢 VS. ISO14000環境管理系統」,工業污染防治報導, 第113期,1997年8月。
9. 15.周金柱、廖述良,「企業與永續發展」,工業污染防治報導, 第128期,1998年11月。
10. 15.周金柱、廖述良,「企業與永續發展」,工業污染防治報導, 第128期,1998年11月。
11. 13.吳幸娟、鄭宏德,「廢棄物清理法新修條文對產業廢棄物清理現況之影響」,工業污染防治報導,第137期,1999b年8月。
12. 13.吳幸娟、鄭宏德,「廢棄物清理法新修條文對產業廢棄物清理現況之影響」,工業污染防治報導,第137期,1999b年8月。
13. 11.李澤民,「事業廢棄物清理法規認知(下) 」,工業污染防治報導,第143期,2000年2月 。
14. 11.李澤民,「事業廢棄物清理法規認知(下) 」,工業污染防治報導,第143期,2000年2月 。
15. 10.李澤民,「事業廢棄物清理法規認知(中) 」,工業污染防治報導,第 142期,2000 年1 月 。