跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/27 10:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林育呈
研究生(外文):Yu-Cheng Lin
論文名稱:加速溫度循環測試對電子元件可靠度壽命之影響
論文名稱(外文):Effects of Accelerate Thermal Cycling Test on the Reliability Life of Electronic Components
指導教授:陳永樹陳永樹引用關係
指導教授(外文):Yeong-ShuChen
口試委員:何旭川黃德言
口試日期:2011-11-11
學位類別:碩士
校院名稱:元智大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
畢業學年度:100
語文別:中文
論文頁數:113
中文關鍵詞:熱循環測試熱應力機械性彎曲測試疲勞壽命可靠度
外文關鍵詞:reliabilityCycling Testthermal stressmechanical bending testfatigue life
相關次數:
  • 被引用被引用:1
  • 點閱點閱:2192
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
電子產品在上市之前通常都須經過一系列的可靠度測試,其中又以熱循環測試(Thermal Cycling Test-TCT)最為廣泛應用。但因其熱循環測試耗時甚久,往往造成測試瓶頸。因此,瞭解相關測試參數對壽命之影響,有助於縮短開發時程,甚至以需時較短之機械性彎曲與剪力測試等取代,都是亟需對熱循環測試有基礎性之研究與瞭解。
因此,本文主要就熱循環測試之若干關鍵測試參數做探究,分別就一般溫度範圍之熱循環測試及更嚴苛溫度範圍之熱循環測試,以目前普遍使用之覆晶球柵陣列構裝元件,進行一系列變更測試參數之測試與分析。同時利用相關疲勞理論計算出疲勞壽命。並利用四點彎曲循環測試,模擬出符合熱循環測試下之應力與應變,探討出其疲勞測試壽命與可靠度之關聯性。研究也藉由有限元素法(FEM)進行錫球應力分析,估算出產品之熱應力應變並與實驗數據做比對。
研究針對一般溫度範圍之熱循環測試及更嚴苛溫度範圍之熱循環測試變更其不同之設定參數後進行實驗,由實驗結果顯現,溫度循環測試之溫變率及溫度範圍皆會影響其測試元件上所產生之熱應力及熱應變讀值大小,高溫變率及溫度範圍較高之環境,會使試片產生較大之應力應變,並且直接影響試片壽命,並發現更嚴苛之溫度範圍所產生之應變也大於由溫變率所產生的應變。而藉由一般溫度範圍之熱循環測試(0~100℃)之實驗,直至試片損壞可得知試片壽命,再代入計算壽命之反冪次方程式,可以得到該公式中之相關材料參數,並應用此公式可推估出更嚴苛溫度範圍之熱循環測試(-55~150℃)之壽命。而此推估之理論壽命進而與實際溫度範圍為-55~150℃之熱循環測試所得之試片壽命進行比較。由實驗結果與理論計算結果誤差為69.2%、25.4%及15.3%,受限於樣本數較為明顯不足使誤差值變動較大,但前述使用此加速因子關係推估壽命之最佳誤差已達15.3%。因此使用此方法不僅可預估試片之壽命,而據此也可推估其他實際測試需時較久的一般溫度範圍之熱循環實驗之試片壽命,可大幅減少測試時間。
Electronic products have to go through a series of reliability test before they are launched to market. Thermal Cycling Test (TCT) is the most widely used test among these reliability tests. However, it often takes too much time thus causes a bottleneck in the test lab loadings. Therefore, Thermal Cycling Test is usually replaced by the mechanical bending test and shearing test owing to the shorter testing time. But what is the difference between thermal stress and mechanical stress during the Thermal Cycling Test of electronic components? Then we have to discuss their relationship before using the replaced way.

For this reason, this paper is mainly talking about the basic theories of Thermal Cycling Tests. Accelerating the Thermal cycling test by Low Temperature Range Thermal Cycling Test and the high temperature range individually, making a series of tests for commonly used Flip Chip Ball Grid Array, and estimate the fatigue life by fatigue theory at the same time. Then using four-point bending test, assuming the stress and strain under the Thermal cycling Test, and discuss the relationship between fatigue life and reliability. Also by Finite Element Method (FEM) to analyze Solder ball’s stress, estimating the thermal stress of products and comparing with the experimental data.

This paper tests Thermal Cycling Test and Accelerating Thermal Cycling Test from different controlling parameters. According to the experimental data, not only the temperature rate but the temperature range of Thermal Cycling Test will influence the thermal stress, strain and sample’s life directly. Finding sample’s life by Low Temperature Range Thermal cycling Test (0~100℃), then using Inverse Power Equation to calculate the parameter of material and estimate Accelerating Thermal Cycling Test (-55~150℃) life. Compare the theory life with the test of Accelerating Thermal Cycling Test (-55~150℃) life of examples. Though the samples were not enough to reduce error, it was still in an accept range by accelerating factor relationship. Therefore, we can use this way to estimate the sample’s life more effectively by using Accelerating Thermal Cycling’s experimental data in Low Temperature Range Thermal Cycling Test’s calculation.
摘要 i
ABSTRACT iii
致謝 v
目錄 vi
表目錄 vii
圖目錄 viii
符號說明 xv
第一章、 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究目的及方法 5
1.4 論文架構 7
第二章、 理論介紹 9
2.1 溫度循環理論 9
2.1.1Hughes方程式 9
2.1.2 Inverse Power(反冪次)方程式 10
2.2 可靠度理論 11
2.3 熱循環規範介紹 15
2.4 熱循環規範比較 17
第三章、 實驗方法 21
3.1 熱循環測試試片簡介 21
3.2 測試設備 24
3.3 測試方法 29
第四章、 熱循環測試與機械性彎曲測試 31
4.1 不同溫變率之熱循環測試 31
4.2 變更高低溫範圍之熱循環測試 40
4.3 元件之熱循環壽命測試 44
4.4 機械性彎曲測試 80
第五章、 有限元素分析 87
5.1 基本假設 87
5.2 有限元素模型與拘束條件 88
5.3 溫度循環負載分析 93
第六章、 結果討論與未來方向 102
參考文獻 110
[1]JEDEC, "Power and Temperature Cycling," JEDEC Standard JESD22-A105C, Solid State Technology Association, 2004
[2]B. L. Chen, X. Q. Shi, G. Y. Li, K. H. Ang, and J. P PICkering, "Rapid Temperature Cycling Methodology for Reliability Assessment of Solder Interconnection in Tape Ball Grid Array Assembly," Trans. ASME, J. Electronic. Packag., 127, pp. 466-473, 2005.
[3]John H. Lau, Solder Joint Reliability, Van Nostrand Reinhold, New York, 1991
[4]范振澤,「剪力與彎曲測試用於替代覆晶球柵陣列構裝元件溫度循環可靠度測試之適用性研究」,碩士論文,元智大學機械工程研究所,台灣,2008
[5]Y. Zhao, C. Basaran, A. Carwright and T. Dishongh, “Inelastic Behavior of MicAroelectronics Solder Joints Under Concurrent Vibration and Thermal Cycling,” IEEE Inter Society Conference on Thermal Phenomena, pp. 174-180, 2000.
[6]L. Goldmann, R.T Howard, D.A. Jeannette, “Package Reliability,” Microelectronics packaging handbook, vol. l. Chapman &; Hall, New York, 1997. p. 469–71.
[7]G. D. Giacomo, Failure mechanisms and modeling. In: Reliability of electronic packages and semiconductor devices. New York: McGraw-Hill; 1998. p. 154–297.
[8]A. Dasguptam, Failure mechanism models for cyclic fatigue. IEEE Trans Reliab 1993;42(4):548–55.
[9]J. H. L. Pang, D. Y. R. Chong, and T. H. Low“Thermal Cycling Analysis of Flip Chip Solder Joint Reliability”, IEEE Transactions on Components and Packaging Technology, Vol.24, NO. 4, December 2001, pp. 705-712.
[10]R. Darveaux, K. Banerji, Fatigue analysis of flip chip assemblies using thermal stress simulations and a coffin–mason relation. In Proceedings, 41st, electronic components and technology conference, 1991. p. 797–805.
[11]X.W Zhang, S.W.R Lee. Effects of temperature profile on the life prediction of PBGFA solder joints under thermal cycling. Key Eng Mater 1998;145–149:1133–8.
[12]Qi Yan, Rex Lam, R. Ghorbani Hamid, Sungovsky Polina, k. Spelt Jan, “Temperature profile effects in accelerated thermal cycling of SnPb and Pb-free solder joints”,Microelectronics Reliability, 2005
[13]J.W.C de Vries, M.Y, Jansen,W.D.van Driel, “On the difference between thermal cycling and thermal shock testing for board level reliability of soldered interconnections”, Microelectronics Reliability, 2006
[14]陳碩鴻,「溫度循環對於電子產品之破壞效應評估」,碩士論文,國立中央大學機械工程研究所,台灣,2000
[15]T. Dishongh, C. Basaran, A. N. Cartwright,“Impact of temperature cycle profile on fatigue life of solder joints”, IEEE Transactions on Advanced Packaging, Vol. 25, No. 3, 2002. Pp.433-438
[16]Y. Guo, J. S. Corbin, “Reliability of Ceramic Ball Grid Array Assembly,” Ball Grid Array Technology, J. H. Lau Editor, McGraw-Hill, 1995.
[17]Z.P. Wang, Y.M. Tan, K.M. Chua, “Board level reliability assessment of chip scale packages”, Microelectronics Reliability, 1999
[18]P. Towashiraporn, K. Gall, G. Subbarayan, B. McIlvanie, B.C. Hunter, “Power cycling thermal fatigue of Sn–Pb solder joints on a chip scale package”, International Journal of Fatigue, 2003
[19]T.Nguyen Tung, Donggun Lee, B.Kwak Jae, Park Seungbae, “Effect of glue on reliability of flip chip BGA packages under thermal cycling” Microelectronics Reliability, 2010
[20]J. de Vries, M. Jansen, W. van Driel, “Solder-joint reliability of HVQFN-packages subjected to thermal cycling” Microelectronics Reliability, 2009
[21]Tong Hong Wang, Ching-Chun Wang, Yi-Shao Lai, “Optimization of board-level thermomechanical reliability of high performance flip-chip package assembly” , Microelectronics Engineering, 2007
[22]Bart Vandevelde, Mario Gonzalez, Paresh Limaye, Petar Ratchev, Eric Beyne, “Thermal cycling reliability of SnAgCu and SnPb solder joints: A comparison for several IC-packages” , Microelectronics Reliability, 2006
[23]R. Darveaux, K. Banerji, Constitutive relations for tin-based solder joints. IEEE Trans Compon, Hybr Manuf Technol 1992;15(6): 1013–24
[24]Darveaux Robert, Heckman Jim, Syed Ahmer, Mawer Andrew, “Solder joint fatigue life of fine pitch BGAs - impact of design and material choices”, Microelectronics Reliability, 1999
[25]魏志鋼,「DOM產品可靠度試驗」,碩士論文,私立華梵大學工業工程與經營資訊學系所,台灣,2006
[26]N. Pascoe, “Environmental Stress Screening of Electronic Assemblies, a Thermal Transient Study” ,Electronic Components and Technology Conference, pp. 93-98, 1993
[27]W. Nelson, “Accelerated Testing, Statistical Models, Test Plans and Data Analyses”, John Wiley &; Sons Inc., 1990.
[28]A. Abel Lois, Ferjutz Kelly, Thomas Penelope, D. Wheaton Nikki, “Electronic Materials Handbook”,ASM NTERNATIONAL, 1989
[29]Jianwen Luo, Kui Ying, Ping He, Jing Bai,“Properties of Savitzky–Golay digital differentiators” ,Digital Signal Processing, 2004
[30]Jianwen Luo, Kui Ying, Ping He, Jing Bai,“Savitzky–Golay Smoothing and differentiation filter for even number data” ,Digital Signal Processing, 2005
[31]JEDEC, "Monotonic Bend Characterization of Board-Level Interconnects", JEDEC Standard IPC/JESD-9702, Solid State Technology Association, 2004
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊