|
[1]R. B. Staszewski, D. Leipold, K. Muhammad, and P. T. Balsara, “Digitally Controlled Oscillator (DCO)-Based Architecture for RF Frequency Synthesis in A Deep-Submicrometer CMOS Process,” IEEE Trans. Circuits Syst. II, vol. 50, no.11, pp. 815–828, Nov. 2003. [2]R. B. Staszewski et al., “All-Digital PLL and Transmitter for Mobile Phone,” IEEE J. Solid-State Circuits, vol. 40, pp. 2469–2482, Dec. 2005. [3]C.-M. Hsu, M. Z. Straayer, and M. H. Perrott, “A Low-Noise Wide-BW 3.6-GHz Digital Sigma-Delta Fractional-N Frequency Synthesizer with A Noise-Shaping Time-to-Digital Converter and Quantization Noise Cancellation,” IEEE J. Solid-State Circuits, vol. 43, pp. 2776–2786, Dec. 2008. [4]B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2000. [5]N. A. D''Andrea and F. Russo, “A Binary Quantized Digital Phase Locked Loop: A Graphical Analysis," IEEE Trans. on Communications, vol. 26, pp. 1355-1364, Sep. 1978. [6]S. C. Gupta, “Status of Digital Phase Locked Loops," Proceedings of the IEEE, vol. 63, pp. 291-306, Feb. 1975. [7]W. Lindsey and C. Chie, “A Survey of Digital Phase-Locked Loops," Proceedings of the IEEE, vol. 69, pp. 410-431, Apr. 1981. [8]I.-C. Hwang, S.-H. Song, and S.-W. Kim, “A Digitally Controlled Phase-Locked Loop with A Digital Phase-Frequency Detector for Fast Acquisition," IEEE J. Solid-State Circuits, vol. 31, pp. 1574-1581, Oct. 2001. [9]W. Bax and M. Copeland, ”A GMSK Modulator using A Sigma-Delta Frequency Discriminator-Based Synthesizer," IEEE J. Solid-State Circuits, vol. 36, pp. 1218-1227, Aug. 2001. [10]R. B. Staszewski et al., “All-Digital Phase-Domain TX Frequency Synthesizer for Bluetooth Radios in 0.13 um CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 272-273, Feb. 2004. [11]N. D. Dalt, E. Thaller, P. Gregorius, and L. Gazsi, “A Compact Triple-Band Low-Jitter Digital LC PLL with Programmable Coil in 130-nm CMOS,” IEEE J. Solid-State Circuits, vol. 40, pp.1482-1490, Jul. 2005. [12]P. Lu and H. Sjoland, “A 5GHz 90-nm CMOS All Digital Phase-Locked Loop,” IEEE A-SSCC, pp. 65-68, Nov. 2009. [13]R. B. Staszewski and P.T. Balsara, “All-Digital Frequency Synthesizer in Deep-Submicron CMOS,” JOHN WILEY & SONS, INC., 2006. [14]C.- M. Hsu, "Techniques for High-Performance Digital Frequency Synthesis and Phase Control," PhD Thesis, Massachusetts Institute of Technology, Sep. 2008. [15]J. Dorsey, Continuous and Discrete Control Systems, Mc Graw Hill. [16]Y.-H. Huang, "A Dynamic Phase Error Compensation Technique for Fast-Locking Phase-Locked Loops," MS Thesis, National Taiwan University, Sep. 2009. [17]W.-H. Chiu, Y.-H. Huang, and T.-H. Lin, “A Dynamic Phase Error Compensation Technique for Fast-Locking Phase-Locked Loops,” IEEE J. Solid-State Circuits, vol. 45, pp. 1137-1149, Jun. 2010. [18]F. M. Gardner, “Charge-Pump Phase-Lock Loops,” IEEE Trans. on Communications, vol. 28, pp. 1849-1858, Nov. 1980. [19]M. V. Paemel, “Analysis of A Charge-Pump PLL: A New Model,” IEEE Trans. on Communications, vol.42, pp. 2490 –2498, Jul. 1994. [20]S.-Y. Yang, "A 10GHz, Fast-Locking All-Digital Frequency Synthesizer," MS Thesis, National Chiao-Tung University, Nov. 2008. [21]X. Gao, E. A. M. Klumperink, P. F. J. Geraedts, and B. Nauta, "Jitter Analysis and A Benchmarking Figure-of-Merit for Phase-Locked Loops," IEEE Trans. Circuits Syst. II, vol. 56, no. 2, pp. 117–121, Feb. 2009. [22]C.-Y. Yang and S.-I. Liu, “Fast-switching Frequency Synthesizer with A Discriminator-Aided Phase Detector,” IEEE J. Solid-State Circuits, vol. 35, pp. 1445-1452, Oct. 2000. [23]X. F. Kuang and N. J. Wu, “A Fast-settling PLL Frequency Synthesizer with Direct Frequency Presetting,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 741-742, Feb. 2006. [24]S. Shin, K. Lee, and S.-M Kang, “4.2mW CMOS Frequency Synthesizer for 2.4GHz ZigBee Application with Fast Settling Time Performance,” Microwave Symposium Digest, pp. 411-414, Jun. 2006. [25]R.-J. Yang and S.-I. Liu “A 40-550 MHz Harmonic-Free All-Digital Delay-Locked Loop using A Variable SAR Algorithm” IEEE J. Solid-State Circuits, vol. 42, no. 2, Feb. 2007. [26]L. Wang, L. Liu, and H. Chen “An Implementation of Fast-Locking and Wide-Range 11-bit Reversible SAR DLL,” IEEE Trans. Circuits Syst. II, vol. 57, no. 6, Jun. 2010. [27]A. Yamagishi, M. Ishikawa, T. Tsukahara, and S. Date, “A 2-V 2-GHz Low-Power Direct Digital Frequency Synthesizer,” IEEE J. Solid-State Circuits, vol. 33, pp. 210-217, Feb. 1998. [28]A. Rofougaran et al., “A Single-Chip 900 MHz Spread-Spectrum Wireless Transceiver in 1-um CMOS. I. Architecture and Transmitter Design,” IEEE J. Solid-State Circuits, pp. 515-533, Apr. 1998. [29]W. Chaivipas and A. Matsuzawa, "Analysis and Design of Direct Reference Feed-Forward Compensation for Fast-Settling All-Digital Phase-Locked Loop", IEICE Trans. Electron, vol. E90-C, no.4, pp. 793-801, Apr. 2007. [30]P.-Y. Wang, J.-H. C. Zhan, H.-H. Chang, and H.-M. S. Chang, "A Digital Intensive Fractional-N PLL and All-Digital Self-Calibration Schemes," IEEE J. Solid-state Circuits, vol. 44, no. 8, pp. 2182-2192, Aug. 2009. [31]S.-Y. Lin, "All-Digital Spread Spectrum Clock Generators," MS Thesis, National Taiwan University, Jan. 2009. [32]A. Hajimiri and T. H. Lee, “Design Issues in CMOS Differential LC Oscillators,” IEEE Journal Solid-State Circuits, vol. 34, pp. 717-724, 1999. [33]D. C. Lee, “Analysis of Jitter in Phase-Locked Loops,” IEEE Trans. Circuits Syst. II, vol. 49, no. 11, pp. 704–711, Nov. 2002. [34]R. C. H. Beek, E. A. M. Klumperink, C. S. Vaucher, and B. Nauta, “Low-Jitter Clock Multiplication: A Comparison between PLLs and DLLs,” IEEE Trans. Circuits Syst. II, vol. 49, no. 8, pp. 555–566, Aug. 2002. [35]M. Mansuri and C.-K. K. Yang, “Jitter Optimization Based on Phase-Locked Loop Design Parameters,” IEEE J. Solid-State Circuits, vol. 37, no. 11, pp. 1375–1382, Nov. 2002. [36]B. Razavi, "Prospects of CMOS Technology for High-Speed Optical Communication Circuits," IEEE J. Solid-State Circuits, vol. 37, no. 9, pp. 1135-1145, Sep. 2002. [37]J. A. Tierno, A. V. Rylyakov, and D. J. Friedman, “A Wide Power Supply Range, Wide Tuning Range, All Static CMOS All Digital PLL in 65 nm SOI,” IEEE J. Solid-State Circuits, vol. 43, no. 1, pp. 42-51, Jan. 2008. [38]D.-S. Kim, H. Song, T. Kim, S. Kim, and D.-K. Jeong, "A 0.3–1.4 GHz All-Digital Fractional-N PLL With Adaptive Loop Gain Controller," IEEE J. Solid-State Circuits, vol. 45, no. 11, pp. 2300-2311, Nov. 2010. [39]W. Grollitsch, R. Nonis, and N. Da Dalt, "A 1.4psrms-Period-Jitter TDC-Less Fractional-N Digital PLL with Digitally Controlled Ring Oscillator in 65nm CMOS" in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 478–480, Feb. 2010. [40]C.-M. Hsu, M. Z. Straayer, and M. H. Perrott, “A low-noise, wide-BW 3.6 GHz digital fractional-N frequency synthesizer with a noise-shaping time-to-digital converter and quantization noise cancellation,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 340–341, Feb. 2008. [41]M. Brownlee, P. K. Hanumolu, K. Mayaram, and U.-K. Moon, "A 0.5 to 2.5 GHz PLL with Fully Differential Supply-Regulated Tuning," in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 588-589, Feb. 2006.
|