跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/12 09:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊昀蓁
研究生(外文):Yun-Chen Chuang
論文名稱:利用動態相位控制機制之快速鎖定全數位鎖相迴路
論文名稱(外文):An All-Digital Phase-Locked Loop with Dynamic Phase Control for Fast Locking
指導教授:林宗賢林宗賢引用關係
指導教授(外文):Tsung-Hsien Lin
口試委員:劉深淵李泰成魏駿愷
口試日期:2011-05-05
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:76
中文關鍵詞:全數位鎖相迴路快速鎖定時脈抖動數位振盪器時序數位轉換器
外文關鍵詞:all-digital phase-locked loop (ADPLL)fast lockingtiming jitterdigital-controlled oscillator (DCO)time-to-digital converter (TDC)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:789
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文實現了一個利用動態時間窗來控制相位資訊的全數位鎖相迴路,實作上提出雙模式雙路徑的操作來達成快速鎖定與低時脈抖動的特性。補償相位的路徑利用動態改變除數的方式,而頻率的修正則由前饋路徑直接調變數位振盪器。除此之外,雙模式的設定使得迴路在鎖定後能切換至窄頻寬且妥善設計其阻尼係數。由於在鎖定過程中,鎖相迴路維持在一個較小的相位誤差,因此鎖定時間可有效地縮短;可程式化的數位濾波器設計也使得鎖定後的效能能夠獲得控制。在電路層面上,使用不對稱延遲單元減少在時序數位轉換器的功耗與面積,後端具有錯誤校正的編碼器可用來減輕時序放大電路的規格要求;數位振盪器的部分,則是選擇具有較細解析度與較佳相位雜訊之電感電容架構。因此,提出之系統架構可實現一低時脈抖動與快速鎖定的全數位鎖相迴路。
使用台積電0.18微米製程設計一應用於2.4 GHz頻帶之全數位頻率合成器。在5-25 MHz的跳頻距離下,鎖定時間皆小於5 us;中心頻率為2.49 GHz時,量測到的時脈抖動為1.93 ps,相位雜訊於100 kHz與1 MHz頻率偏移下分別為-79.6 dBc/Hz和-112.7 dBc/Hz,參考頻率突波於5 MHz頻率偏移下低於-50 dBc。整個鎖相迴路操作在1.8 V共花費10.35 mA電流,晶片面積為1.8 mm2。


This thesis presents an all-digital phase-locked loop (ADPLL) featuring a dynamic phase compensation by a set of the auxiliary timing window. When frequency hopping occurs, the compensation scheme is implemented in both frequency and phase domain for fast settling. The detected phase error is continuously sent to the divider chain which changes the divider ratio, and directly modulates the frequency of the digital-controlled oscillator (DCO) through a digital feed-forward path at the same time. The proposed method allows the ADPLL maintaining a small phase error throughout the frequency acquisition process; thereby reducing setting time. Because of the switching mode operation, the mentioned techniques can solve the trade-off between low jitter and fast lock. An uneven-step time-to-digital converter (TDC) with an error correction encoder is implemented to relax circuit design and save power consumption. The DCO adopts the LC-based architecture because it has the finer tuning gain and better phase noise performance. The proposed ADPLL is implemented to optimize timing jitter and lock time.
The proposed technique is incorporated in the design of a 2.4 GHz ADPLL and fabricated in the TSMC 0.18 um CMOS technology. With less than 5 us lock time in hopping frequency from 5 MHz to 25 MHz, the measured rms jitter from a 2.49 GHz carrier is about 1.93 ps. The phase noise at 100 kHz and 1 MHz is -79.6 dBc/Hz and -112.7 dBc/Hz, respectively. The reference spur at 5 MHz offset is under -50 dBc. The whole circuit dissipates 10.35 mA from a 1.8 V supply and the chip area is 1.8 mm2.

Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Thesis Overview 2
Chapter 2 Introduction to All-Digital Phase-Locked Loops (ADPLLs) 3
2.1 The Basics of Analog Phase-Locked Loop (PLL) 3
2.2 State of the Art ADPLLs 5
2.3 The Basics of ADPLL Building Blocks and Modeling 7
2.3.1 Phase/Frequency Detector (PFD) and Time-to-Digital Converter (TDC) 8
2.3.2 Digital Loop Filter (DLF) and Digital-Controlled Oscillator (DCO) 9
2.3.3 Divider 11
2.4 Summary 13
Chapter 3 A Fast-Locking ADPLL using Dynamic Phase Control 14
3.1 Introduction 14
3.2 Principle of the Proposed Method 16
3.2.1 Background 17
3.2.2 Phase Error Compensation 18
3.2.3 Proposed ADPLL Architecture 20
3.2.4 Control Mechanism of DLF 23
3.3 Linear Model Analysis of Proposed ADPLL 24
3.3.1 ADPLL in Frequency Acquisition Mode 24
3.3.2 ADPLL in Phase Tracking Mode 26
3.3.3 Stability Analysis 28
3.3.4 Transient Behavior 30
3.3.5 Output Spur 31
3.3.6 Phase Noise and Jitter 32
3.3.7 Design Example and Behavior System Simulation 36
Chapter 4 Design and Implementation of the ADPLL 42
4.1 Circuit Implementations 42
4.1.1 PFD and TDC 42
4.1.2 Divider 47
4.1.3 DCO 50
4.1.4 DLF and Delta-Sigma Modulator (DSM) 57
Chapter 5 Experimental Results 59
5.1 Test Setup 59
5.2 Chip Pin Configurations and Printed Circuit Board Design 60
5.2.1 Chip Pin Configurations 60
5.2.2 Printed Circuit Board (PCB) Design 61
5.3 The DC supply Regulator 62
5.4 Experimental Results 63
5.4.1 Lock Time Measurement Results 63
5.4.2 Timing Jitter Measurement Results 65
5.4.3 Phase Noise and Reference Spur Measurement Results 66
5.5 Summary of Measured Results 67
Chapter 6 Conclusions and Future Work 70
6.1 Conclusions 70
6.2 Future work 70
References 71


[1]R. B. Staszewski, D. Leipold, K. Muhammad, and P. T. Balsara, “Digitally Controlled Oscillator (DCO)-Based Architecture for RF Frequency Synthesis in A Deep-Submicrometer CMOS Process,” IEEE Trans. Circuits Syst. II, vol. 50, no.11, pp. 815–828, Nov. 2003.
[2]R. B. Staszewski et al., “All-Digital PLL and Transmitter for Mobile Phone,” IEEE J. Solid-State Circuits, vol. 40, pp. 2469–2482, Dec. 2005.
[3]C.-M. Hsu, M. Z. Straayer, and M. H. Perrott, “A Low-Noise Wide-BW 3.6-GHz Digital Sigma-Delta Fractional-N Frequency Synthesizer with A Noise-Shaping Time-to-Digital Converter and Quantization Noise Cancellation,” IEEE J. Solid-State Circuits, vol. 43, pp. 2776–2786, Dec. 2008.
[4]B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2000.
[5]N. A. D''Andrea and F. Russo, “A Binary Quantized Digital Phase Locked Loop: A Graphical Analysis," IEEE Trans. on Communications, vol. 26, pp. 1355-1364, Sep. 1978.
[6]S. C. Gupta, “Status of Digital Phase Locked Loops," Proceedings of the IEEE, vol. 63, pp. 291-306, Feb. 1975.
[7]W. Lindsey and C. Chie, “A Survey of Digital Phase-Locked Loops," Proceedings of the IEEE, vol. 69, pp. 410-431, Apr. 1981.
[8]I.-C. Hwang, S.-H. Song, and S.-W. Kim, “A Digitally Controlled Phase-Locked Loop with A Digital Phase-Frequency Detector for Fast Acquisition," IEEE J. Solid-State Circuits, vol. 31, pp. 1574-1581, Oct. 2001.
[9]W. Bax and M. Copeland, ”A GMSK Modulator using A Sigma-Delta Frequency Discriminator-Based Synthesizer," IEEE J. Solid-State Circuits, vol. 36, pp. 1218-1227, Aug. 2001.
[10]R. B. Staszewski et al., “All-Digital Phase-Domain TX Frequency Synthesizer for Bluetooth Radios in 0.13 um CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 272-273, Feb. 2004.
[11]N. D. Dalt, E. Thaller, P. Gregorius, and L. Gazsi, “A Compact Triple-Band Low-Jitter Digital LC PLL with Programmable Coil in 130-nm CMOS,” IEEE J. Solid-State Circuits, vol. 40, pp.1482-1490, Jul. 2005.
[12]P. Lu and H. Sjoland, “A 5GHz 90-nm CMOS All Digital Phase-Locked Loop,” IEEE A-SSCC, pp. 65-68, Nov. 2009.
[13]R. B. Staszewski and P.T. Balsara, “All-Digital Frequency Synthesizer in Deep-Submicron CMOS,” JOHN WILEY & SONS, INC., 2006.
[14]C.- M. Hsu, "Techniques for High-Performance Digital Frequency Synthesis and Phase Control," PhD Thesis, Massachusetts Institute of Technology, Sep. 2008.
[15]J. Dorsey, Continuous and Discrete Control Systems, Mc Graw Hill.
[16]Y.-H. Huang, "A Dynamic Phase Error Compensation Technique for Fast-Locking Phase-Locked Loops," MS Thesis, National Taiwan University, Sep. 2009.
[17]W.-H. Chiu, Y.-H. Huang, and T.-H. Lin, “A Dynamic Phase Error Compensation Technique for Fast-Locking Phase-Locked Loops,” IEEE J. Solid-State Circuits, vol. 45, pp. 1137-1149, Jun. 2010.
[18]F. M. Gardner, “Charge-Pump Phase-Lock Loops,” IEEE Trans. on Communications, vol. 28, pp. 1849-1858, Nov. 1980.
[19]M. V. Paemel, “Analysis of A Charge-Pump PLL: A New Model,” IEEE Trans. on Communications, vol.42, pp. 2490 –2498, Jul. 1994.
[20]S.-Y. Yang, "A 10GHz, Fast-Locking All-Digital Frequency Synthesizer," MS Thesis, National Chiao-Tung University, Nov. 2008.
[21]X. Gao, E. A. M. Klumperink, P. F. J. Geraedts, and B. Nauta, "Jitter Analysis and A Benchmarking Figure-of-Merit for Phase-Locked Loops," IEEE Trans. Circuits Syst. II, vol. 56, no. 2, pp. 117–121, Feb. 2009.
[22]C.-Y. Yang and S.-I. Liu, “Fast-switching Frequency Synthesizer with A Discriminator-Aided Phase Detector,” IEEE J. Solid-State Circuits, vol. 35, pp. 1445-1452, Oct. 2000.
[23]X. F. Kuang and N. J. Wu, “A Fast-settling PLL Frequency Synthesizer with Direct Frequency Presetting,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 741-742, Feb. 2006.
[24]S. Shin, K. Lee, and S.-M Kang, “4.2mW CMOS Frequency Synthesizer for 2.4GHz ZigBee Application with Fast Settling Time Performance,” Microwave Symposium Digest, pp. 411-414, Jun. 2006.
[25]R.-J. Yang and S.-I. Liu “A 40-550 MHz Harmonic-Free All-Digital Delay-Locked Loop using A Variable SAR Algorithm” IEEE J. Solid-State Circuits, vol. 42, no. 2, Feb. 2007.
[26]L. Wang, L. Liu, and H. Chen “An Implementation of Fast-Locking and Wide-Range 11-bit Reversible SAR DLL,” IEEE Trans. Circuits Syst. II, vol. 57, no. 6, Jun. 2010.
[27]A. Yamagishi, M. Ishikawa, T. Tsukahara, and S. Date, “A 2-V 2-GHz Low-Power Direct Digital Frequency Synthesizer,” IEEE J. Solid-State Circuits, vol. 33, pp. 210-217, Feb. 1998.
[28]A. Rofougaran et al., “A Single-Chip 900 MHz Spread-Spectrum Wireless Transceiver in 1-um CMOS. I. Architecture and Transmitter Design,” IEEE J. Solid-State Circuits, pp. 515-533, Apr. 1998.
[29]W. Chaivipas and A. Matsuzawa, "Analysis and Design of Direct Reference Feed-Forward Compensation for Fast-Settling All-Digital Phase-Locked Loop", IEICE Trans. Electron, vol. E90-C, no.4, pp. 793-801, Apr. 2007.
[30]P.-Y. Wang, J.-H. C. Zhan, H.-H. Chang, and H.-M. S. Chang, "A Digital Intensive Fractional-N PLL and All-Digital Self-Calibration Schemes," IEEE J. Solid-state Circuits, vol. 44, no. 8, pp. 2182-2192, Aug. 2009.
[31]S.-Y. Lin, "All-Digital Spread Spectrum Clock Generators," MS Thesis, National Taiwan University, Jan. 2009.
[32]A. Hajimiri and T. H. Lee, “Design Issues in CMOS Differential LC Oscillators,” IEEE Journal Solid-State Circuits, vol. 34, pp. 717-724, 1999.
[33]D. C. Lee, “Analysis of Jitter in Phase-Locked Loops,” IEEE Trans. Circuits Syst. II, vol. 49, no. 11, pp. 704–711, Nov. 2002.
[34]R. C. H. Beek, E. A. M. Klumperink, C. S. Vaucher, and B. Nauta, “Low-Jitter Clock Multiplication: A Comparison between PLLs and DLLs,” IEEE Trans. Circuits Syst. II, vol. 49, no. 8, pp. 555–566, Aug. 2002.
[35]M. Mansuri and C.-K. K. Yang, “Jitter Optimization Based on Phase-Locked Loop Design Parameters,” IEEE J. Solid-State Circuits, vol. 37, no. 11, pp. 1375–1382, Nov. 2002.
[36]B. Razavi, "Prospects of CMOS Technology for High-Speed Optical Communication Circuits," IEEE J. Solid-State Circuits, vol. 37, no. 9, pp. 1135-1145, Sep. 2002.
[37]J. A. Tierno, A. V. Rylyakov, and D. J. Friedman, “A Wide Power Supply Range, Wide Tuning Range, All Static CMOS All Digital PLL in 65 nm SOI,” IEEE J. Solid-State Circuits, vol. 43, no. 1, pp. 42-51, Jan. 2008.
[38]D.-S. Kim, H. Song, T. Kim, S. Kim, and D.-K. Jeong, "A 0.3–1.4 GHz All-Digital Fractional-N PLL With Adaptive Loop Gain Controller," IEEE J. Solid-State Circuits, vol. 45, no. 11, pp. 2300-2311, Nov. 2010.
[39]W. Grollitsch, R. Nonis, and N. Da Dalt, "A 1.4psrms-Period-Jitter TDC-Less Fractional-N Digital PLL with Digitally Controlled Ring Oscillator in 65nm CMOS" in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 478–480, Feb. 2010.
[40]C.-M. Hsu, M. Z. Straayer, and M. H. Perrott, “A low-noise, wide-BW 3.6 GHz digital fractional-N frequency synthesizer with a noise-shaping time-to-digital converter and quantization noise cancellation,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 340–341, Feb. 2008.
[41]M. Brownlee, P. K. Hanumolu, K. Mayaram, and U.-K. Moon, "A 0.5 to 2.5 GHz PLL with Fully Differential Supply-Regulated Tuning," in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 588-589, Feb. 2006.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊