跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.208) 您好!臺灣時間:2025/10/03 05:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃子豪
研究生(外文):HUANG, ZIH-HAO
論文名稱:設計與實現一個腹部X光影像中腎結石檢測的電腦輔助診斷系統
論文名稱(外文):Design and implementation a system for Computer-Aided Diagnosis of kidney stone detection from Kidney–Ureter–Bladder Images
指導教授:黃科瑋
指導教授(外文):HUANG, KO-WEI
口試委員:陳瑞樂黃科瑋李仕雄鄭琮生
口試委員(外文):CHEN, JUI-LEHUANG, KO-WEILI,SHIH-HSIUNGCHENG, TSUNG-SHENG
口試日期:2023-05-31
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:75
中文關鍵詞:腎-輸尿管-膀胱影像尿路結石電腦輔助診斷深度學習分類模型語意分割
外文關鍵詞:kidney-ureter-bladderurinary tract stonescomputer-aided diagnosisdeep learningclassification modelsemantic segmentation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:361
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
腎臟-輸尿管-膀胱(Kidney-Ureter-Bladder, KUB)影像是一種低成本、低輻射、方便的放射學檢查,而急診室的臨床醫生很容易將KUB影像作為疑似尿路結石患者的一線檢查。然而沒有經驗的臨床醫生很難正確解讀 KUB 影像。若能開發出一套基於人工智慧的電腦輔助診斷(Computer Aided Diagnosis, CAD)系統便可以有效地輔助非專業的臨床醫生快速做出正確的診斷,以便安排更進一步的治療。有鑑於此,本論文旨在設計一個KUB影像的電腦輔助診斷系統,目的要用來輔助臨床醫生對尿路結石進行準確診斷。本論文所開發的CAD系統分為兩個子系統,系統一使用 Inception-ResNetV2在預處理的 KUB 影像上訓練深度學習模型來驗證提出的影像前處理架構是否具備提升模型精度的能力;系統二則是使用ResNet混合U-net進行影像分割模型的訓練,將尿路結石的輪廓正確辨識,最後在影像資料集的來源則是高雄長庚醫院泌尿科所提供之上尿路結石患者共485張影像,而在實驗結果的分析上則使用混淆矩陣來評估模型的效能,分類模型藉由混淆矩陣計算準確率、靈敏度、特異性和F1-measure來評估;而分割模型則額外多評估三個關於遮罩的指標,IoU、MIoU及FWIoU。實驗結果顯示分類模型的準確率、靈敏度、特異性和F1-measure在驗證集上分別為0.989、1.000、0.980和0.989,在測試集上分別為0.997、1.000、0.995和0.999。此外,本論文提出的模型與現有的基於 CNN 的模型相比具有很好的競爭力,語意分割模型於測試集的整體精度為0.946,其餘評估指標如Precision、Recall、F1-score、IoU、mIoU、FWIoU分別為0.984、0.952、0.968、0.937、0.837、0.905。最後經由實驗結果與專科主治醫生的驗證,本論文提出之尿路結石檢測的電腦輔助診斷系統確實可以幫助臨床醫生做出準確診斷,減少不必要的電腦斷層掃描 (CT) 相關輻射暴露和醫療成本浪費。
關鍵詞:腎-輸尿管-膀胱影像、尿路結石、電腦輔助診斷、深度學習、分類模型、語意分割
The kidney-ureter-bladder (KUB) radiograph is a low-cost, low-radiation, and convenient radiological examination that emergency physicians often use as a first-line diagnostic tool for suspected urinary tract stone patients. However, inexperienced clinical doctors may find it difficult to correctly interpret KUB images. To address this issue, a computer-aided diagnosis (CAD) system based on artificial intelligence could effectively assist non-specialist clinicians in making accurate diagnoses, thereby facilitating further treatment. Therefore, the aim of this paper is to design a CAD system for KUB images that can assist clinical doctors in accurately diagnosing urinary tract stones. The CAD system developed in this paper consists of two subsystems. System one uses Inception-ResNetV2 to train a deep learning model on preprocessed KUB images to verify the proposed image pre-processing framework's ability to improve model accuracy. System two uses ResNet mixed with U-net to train an image segmentation model that correctly identifies the contour of urinary tract stones. The image dataset was obtained from 485 KUB images of urinary tract stone patients provided by the Kaohsiung Chang Gung Memorial Hospital Department of Urology. Confusion matrices were used to evaluate the model's performance in the experimental results analysis. The classification model evaluated the accuracy, sensitivity, specificity, and F1-measure using the confusion matrix. The segmentation model also evaluated three additional mask-related indicators, IoU, MIoU, and FWIoU. The experimental results show that the classification model's accuracy, sensitivity, specificity, and F1-measure on the validation set were 0.989, 1.000, 0.980, and 0.989, respectively, and on the testing set were 0.997, 1.000, 0.995, and 0.999, respectively. In addition, the proposed model showed good competitiveness compared to existing CNN-based models. The semantic segmentation model's overall accuracy on the testing set was 0.946, and other evaluation indicators such as Precision, Recall, F1-score, IoU, mIoU, and FWIoU were 0.984, 0.952, 0.968, 0.937, 0.837, and 0.905, respectively. Finally, through the experimental results and verification by specialist doctors, the proposed computer-aided diagnosis system for urinary tract stone detection can indeed assist clinical doctors in making accurate diagnoses, reducing unnecessary computed tomography (CT) radiation exposure and medical cost waste.

Keywords: kidney-ureter-bladder, urinary tract stones, computer-aided diagnosis, deep learning, classification model, semantic segmentation.
摘要 i
Abstract iii
致謝 v
目錄 vi
表目錄 viii
圖目錄 ix
1、 緒論 (INTRODUCTION) 1
1.1. 研究背景 (General Background Information) 1
1.2. 研究動機與目的 (Research Purpose) 1
1.3. 論文架構 (Thesis Architecture) 3
2. 文獻探討 (LITERATURE REVIEW) 4
2.1. 醫學影像 (Medical imaging) 4
2.1.1. 腹部X光 (Abdominal X-ray) 4
2.1.2. 電腦斷層掃描 (Computed tomography, CT) 5
2.1.3. 磁振照影 (Magnetic Resonance Imaging, MRI) 7
2.2. 卷積神經網路 (Convolutional Neural Networks, CNN) 8
2.2.1. 卷積層 (Convolution layer) 8
2.2.2. 池化層 (Pooling layer) 9
2.2.3. 損失函數 (Loss function) 10
2.2.4. 激活函數 (Activation) 11
2.3. 殘差網路 (Residual Network) 12
2.4. Inception-ResNetV2 14
2.5. 醫學影像語意分割模型 - U-Net (Semantic Segmentation Models for Medical Imaging) 18
3. 研究方法 (METHOD) 20
3.1. 資料集 (Dataset) 20
3.2. 影像前處理 (Image preprocessing) 22
3.2.1. 影像遮罩 (Image mask) 22
3.2.2. 限制對比度自適應直方圖均衡化 (Contrast Limited Adaptive Histogram Equalization, CLAHE) 24
3.2.3. 影像裁切 (Image cropping) 27
3.3. 資料擴增 (Data augmentation) 28
3.4. 系統架構 (System Architecture) 28
4. 研究結果 (RESULTS) 31
4.1. 實驗環境 (Lab environment) 31
4.1.1. 軟硬體資訊 (Software & Hardware information) 31
4.1.2. 資料集 (Training and testing dataset) 32
4.2. 評估指標 (Evaluation metrics) 32
4.3. 數據增強對分類模型訓練的影響 (The effect of data augmentation on classification model training) 34
4.4. 系統一 - 分類模型的測試 (The classification model’s test) 35
4.4.1. ResNet50分類實驗結果 35
4.4.2. Inception-ResNetV2分類實驗結果 38
4.5. 系統二 - 語意分割模型測試 (The segmentation model’s test) 41
5. 結論與未來展望 (CONCLUSIONS & FUTURE RESEARCH) 48
6. 參考文獻 49

1. V. Romero, H. Akpinar, and D. G. Assimos, “Kidney stones: a global picture of prevalence, incidence, and associated risk factors,” Reviews in urology, vol. 12(2-3), p. e86-e96, 2010.
2. A. Chewcharat and G. Curhan, “Trends in the prevalence of kidney stones in the United States from 2007 to 2016,” Urolithiasis, vol. 49, no. 1, pp. 27–39, 2020.
3. G. Tundo, A. Vollstedt, W. Meeks, and V. Pais, “Beyond prevalence: Annual cumulative incidence of kidney stones in the United States,” Journal of Urology, vol. 205, no. 6, pp. 1704–1709, 2021.
4. O. W. E. N. NIALL, J. O. H. N. RUSSELL, R. O. B. E. R. T. MacGREGOR, H. E. N. R. Y. DUNCAN, and J. A. M. E. S. MULLINS, “A comparison of noncontrast computerized tomography with excretory urography in the assessment of acute flank pain,” The Journal of Urology, pp. 534–537, 1999.
5. J.-H. Wang, S.-H. Shen, S.-S. Huang, and C.-Y. Chang, “Prospective comparison of unenhanced spiral computed tomography and intravenous urography in the evaluation of acute renal colic,” Journal of the Chinese Medical Association, vol. 71, no. 1, pp. 30–36, 2008.
6. K. Fujii, T. Aoyama, S. Koyama, and C. Kawaura, “Comparative evaluation of organ and effective doses for paediatric patients with those for adults in chest and abdominal CT Examinations,” The British Journal of Radiology, vol. 80, no. 956, pp. 657–667, 2007.
7. R. Smith-Bindman, M. Moghadassi, N. Wilson, T. R. Nelson, J. M. Boone, C. H. Cagnon, R. Gould, D. J. Hall, M. Krishnam, R. Lamba, M. McNitt-Gray, A. Seibert, and D. L. Miglioretti, “Radiation doses in consecutive CT examinations from five University of California Medical Centers,” Radiology, vol. 277, no. 1, pp. 134–141, 2015.
8. V. I. Metaxas, G. A. Messaris, A. N. Lekatou, T. G. Petsas, and G. S. Panayiotakis, “Patient doses in common diagnostic X-ray examinations,” Radiation Protection Dosimetry, vol. 184, no. 1, pp. 12–27, 2018.
9. D. J. Brenner and E. J. Hall, “Computed tomography — an increasing source of radiation exposure,” New England Journal of Medicine, vol. 357, no. 22, pp. 2277–2284, 2007.
10. Y. Sagara, A. K. Hara, W. Pavlicek, A. C. Silva, R. G. Paden, and Q. Wu, “Abdominal CT: Comparison of low-dose CT with adaptive statistical iterative reconstruction and routine-dose CT with filtered back projection in 53 patients,” American Journal of Roentgenology, vol. 195, no. 3, pp. 713–719, 2010.
11. A. S. Ashour, N. Dey, and W. S. Mohamed, “Abdominal imaging in clinical applications: Computer Aided Diagnosis approaches,” Medical Imaging in Clinical Applications, pp. 3–17, 2016.
12. A. Heidenreich, “Modern approach of diagnosis and management of acute flank pain: Review of all imaging modalities,” European Urology, vol. 41, no. 4, pp. 351–362, 2002.
13. A. S. Panayides, A. Amini, N. D. Filipovic, A. Sharma, S. A. Tsaftaris, A. Young, D. Foran, N. Do, S. Golemati, T. Kurc, K. Huang, K. S. Nikita, B. P. Veasey, M. Zervakis, J. H. Saltz, and C. S. Pattichis, “AI in Medical Imaging Informatics: Current challenges and Future Directions,” IEEE Journal of Biomedical and Health Informatics, vol. 24, no. 7, pp. 1837–1857, 2020.
14. S. K. Zhou, H. Greenspan, C. Davatzikos, J. S. Duncan, B. Van Ginneken, A. Madabhushi, J. L. Prince, D. Rueckert, and R. M. Summers, “A review of deep learning in medical imaging: Imaging Traits, Technology Trends, case studies with progress highlights, and future promises,” Proceedings of the IEEE, vol. 109, no. 5, pp. 820–838, 2021.
15. E. J. Lim, D. Castellani, W. Z. So, K. Y. Fong, J. Q. Li, H. Y. Tiong, N. Gadzhiev, C. T. Heng, J. Y.-C. Teoh, N. Naik, K. Ghani, K. Sarica, J. De La Rosette, B. Somani, and V. Gauhar, “Radiomics in urolithiasis: Systematic review of current applications, limitations, and Future Directions,” Journal of Clinical Medicine, vol. 11, no. 17, p. 5151, 2022.
16. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional Neural Networks,” Communications of the ACM, vol. 60, no. 6, pp. 84–90, 2017.
17. D. Li, X. Chen, M. Becchi, and Z. Zong, “Evaluating the energy efficiency of deep convolutional neural networks on cpus and gpus,” 2016 IEEE International Conferences on Big Data and Cloud Computing (BDCloud), Social Computing and Networking (SocialCom), Sustainable Computing and Communications (SustainCom) (BDCloud-SocialCom-SustainCom), 2016.
18. Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.
19. G. Litjens, T. Kooi, B. E. Bejnordi, A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. W. M. van der Laak, B. van Ginneken, and C. I. Sánchez, “A survey on Deep Learning in medical image analysis,” Medical Image Analysis, vol. 42, pp. 60–88, 2017.
20. D. R. Sarvamangala and R. V. Kulkarni, “Convolutional neural networks in medical image understanding: A survey,” Evolutionary Intelligence, vol. 15, no. 1, pp. 1–22, 2021.
21. Y. Fu, Y. Lei, T. Wang, W. J. Curran, T. Liu, and X. Yang, “Deep Learning in Medical Image Registration: A Review,” Physics in Medicine & Biology, vol. 65, no. 20, 2020.
22. H.-P. Chan, R. K. Samala, L. M. Hadjiiski, and C. Zhou, “Deep learning in medical image analysis,” Advances in Experimental Medicine and Biology, pp. 3–21, 2020.
23. K. Doi, “Computer-aided diagnosis in medical imaging: Historical Review, current status and future potential,” Computerized Medical Imaging and Graphics, vol. 31, no. 4-5, pp. 198–211, 2007.
24. H. P. Chan, L. M. Hadjiiski, and R. K. Samala, “Computer‐aided diagnosis in the era of Deep learning,” Medical Physics, vol. 47, no. 5, 2020.
25. K. H. Cha, L. Hadjiiski, R. K. Samala, H.-P. Chan, E. M. Caoili, and R. H. Cohan, “Urinary bladder segmentation in CT urography using deep-learning convolutional neural network and level sets,” Medical Physics, vol. 43, no. 4, pp. 1882–1896, 2016.
26. M. Längkvist, J. Jendeberg, P. Thunberg, A. Loutfi, and M. Lidén, “Computer aided detection of ureteral stones in thin slice computed tomography volumes using convolutional Neural Networks,” Computers in Biology and Medicine, vol. 97, pp. 153–160, 2018.
27. L. A. Fitri, F. Haryanto, H. Arimura, C. YunHao, K. Ninomiya, R. Nakano, M. Haekal, Y. Warty, and U. Fauzi, “Automated classification of urinary stones based on microcomputed tomography images using convolutional neural network,” Physica Medica, vol. 78, pp. 201–208, 2020.
28. M. Kobayashi, J. Ishioka, Y. Matsuoka, Y. Fukuda, Y. Kohno, K. Kawano, S. Morimoto, R. Muta, M. Fujiwara, N. Kawamura, T. Okuno, S. Yoshida, M. Yokoyama, R. Suda, R. Saiki, K. Suzuki, I. Kumazawa, and Y. Fujii, “Computer-aided diagnosis with a convolutional neural network algorithm for automated detection of urinary tract stones on plain X-ray,” BMC Urology, vol. 21, no. 1, 2021.
29. K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN,” 2017 IEEE International Conference on Computer Vision (ICCV), 2017.
30. W. Shen, W. Xu, H. Zhang, Z. Sun, J. Ma, X. Ma, S. Zhou, S. Guo, and Y. Wang, “Automatic segmentation of the femur and tibia bones from X-ray images based on pure dilated residual U-Net,” Inverse Problems & Imaging, vol. 15, no. 6, p. 1333, 2021.
31. K. Zuiderveld, “Contrast Limited adaptive histogram equalization,” Graphics Gems, pp. 474–485, 1994.
32. J. B. Zimmerman, S. M. Pizer, E. V. Staab, J. R. Perry, W. McCartney, and B. C. Brenton, “An evaluation of the effectiveness of adaptive histogram equalization for contrast enhancement,” IEEE Transactions on Medical Imaging, vol. 7, no. 4, pp. 304–312, 1988.
33. Y.-Y. Liu, Z.-H. Huang, and K.-W. Huang, “Deep learning model for computer-aided diagnosis of urolithiasis detection from kidney–ureter–bladder images,” Bioengineering, vol. 9, no. 12, p. 811, 2022.
34. J. A. Mandeville, E. Gnessin, and J. E. Lingeman, “Imaging evaluation in the patient with renal stone disease,” Seminars in Nephrology, vol. 31, no. 3, pp. 254–258, 2011.
35. E.-S. H. Ibrahim, J. G. Cernigliaro, M. D. Bridges, R. A. Pooley, and W. E. Haley, “The capabilities and limitations of clinical magnetic resonance imaging for Detecting Kidney Stones: A retrospective study,” International Journal of Biomedical Imaging, vol. 2016, pp. 1–6, 2016.
36. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
37. C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-V4, inception-resnet and the impact of residual connections on learning,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31, no. 1, 2017.
38. O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation,” Lecture Notes in Computer Science, pp. 234–241, 2015.
39. A. Fawzi, H. Samulowitz, D. Turaga, and P. Frossard, “Adaptive data augmentation for Image Classification,” 2016 IEEE International Conference on Image Processing (ICIP), 2016.
40. L. Perez, and J. Wang, “The effectiveness of data augmentation in image classification using deep learning,” Convolutional Neural Networks Vis. Recognit, pp. 1-8, 2017.
41. C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation for Deep Learning,” Journal of Big Data, vol. 6, no. 1, 2019.
42. L. Nanni, M. Paci, S. Brahnam, and A. Lumini, “Comparison of different image data augmentation approaches,” Journal of Imaging, vol. 7, no. 12, p. 254, 2021.
43. M. Frid-Adar, I. Diamant, E. Klang, M. Amitai, J. Goldberger, and H. Greenspan, “Gan-based synthetic medical image augmentation for increased CNN performance in liver lesion classification,” Neurocomputing, vol. 321, pp. 321–331, 2018.
44. Y. Ma, J. Liu, Y. Liu, H. Fu, Y. Hu, J. Cheng, H. Qi, Y. Wu, J. Zhang, and Y. Zhao, “Structure and illumination constrained gan for medical image enhancement,” IEEE Transactions on Medical Imaging, vol. 40, no. 12, pp. 3955–3967, 2021.
45. L. Wright, “Ranger—A Synergistic Optimizer,” Available online:{https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer}, 2019. (Accessed: 28-Feb-2023).
46. S.-Y. Wang, O. Wang, R. Zhang, A. Owens, and A. A. Efros, “CNN-generated images are surprisingly easy to spot… for now,” 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020.
47. L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and J. Han, “On the variance of the adaptive learning rate and beyond,” arXiv preprint arXiv:1908.03265, 2019.
48. M. Zhang, J. Lucas, J. Ba, and G. E. Hinton, “Lookahead optimizer: k steps forward, 1 step back,” Advances in neural information processing systems, 32, 2019.
49. C. Chen, M.-Y. Liu, O. Tuzel, and J. Xiao, “R-CNN for small object detection,” Computer Vision – ACCV 2016, pp. 214–230, 2017.
50. M. Z. Islam, M. M. Islam, and A. Asraf, “A combined deep CNN-LSTM network for the detection of novel coronavirus (COVID-19) using X-ray images,” Informatics in Medicine Unlocked, vol. 20, p. 100412, 2020.
51. S. Pathan, P. C. Siddalingaswamy, and T. Ali, “Automated detection of COVID-19 from chest X-ray scans using an optimized CNN architecture,” Applied Soft Computing, vol. 104, p. 107238, 2021.
52. M. Gazda, J. Plavka, J. Gazda, and P. Drotar, “Self-supervised deep convolutional neural network for chest X-ray classification,” IEEE Access, vol. 9, pp. 151972–151982, 2021.
53. Y. Feng, X. Xu, Y. Wang, X. Lei, S. K. Teo, J. Z. Sim, Y. Ting, L. Zhen, J. T. Zhou, Y. Liu, and C. H. Tan, “Deep supervised domain adaptation for pneumonia diagnosis from chest X-ray images,” IEEE Journal of Biomedical and Health Informatics, vol. 26, no. 3, pp. 1080–1090, 2022.
54. B. M. Z. Hameed, M. Shah, N. Naik, H. Singh Khanuja, R. Paul, and B. K. Somani, “Application of artificial intelligence-based classifiers to predict the outcome measures and stone-free status following percutaneous nephrolithotomy for staghorn calculi: Cross-validation of data and estimation of accuracy,” Journal of Endourology, vol. 35, no. 9, pp. 1307–1313, 2021.
55. A. Martinez, D.-H. Trinh, J. El Beze, J. Hubert, P. Eschwege, V. Estrade, L. Aguilar, C. Daul, and G. Ochoa, “Towards an automated classification method for ureteroscopic kidney stone images using ensemble learning,” 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 2020.
56. Pavithra, Sanjurajan, Chitradevi, S. Eliyas, A. Benitta, and S. Kumar, “Kidney Stone prediction using neural network classifier,” 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), 2022.
57. M. A. El-Ghar, H. Farg, D. E. Sharaf, and T. El-Diasty, “CT and MRI in urinary tract infections: A spectrum of different imaging findings,” Medicina, vol. 57, no. 1, p. 32, 2021.
58. H. S. Alghamdi, G. Amoudi, S. Elhag, K. Saeedi, and J. Nasser, “Deep learning approaches for detecting COVID-19 from chest X-ray images: A survey,” IEEE Access, vol. 9, pp. 20235–20254, 2021.
59. M. S. Islam, N. Kaabouch, and W. C. Hu, “A survey of medical imaging techniques used for breast cancer detection,” IEEE International Conference on Electro-Information Technology, EIT 2013, 2013.
60. S. Poovongsaroj, P. Rattanachaisit, T. Patcharatrakul, S. Gonlachanvit, and P. Vateekul, “Ai-assisted diagnosis of DYSSYNERGIC defecation using deep learning approach on abdominal radiography and symptom questionnaire,” 2022 19th International Joint Conference on Computer Science and Software Engineering (JCSSE), 2022.
61. L. Li, M. Wei, B. Liu, K. Atchaneeyasakul, F. Zhou, Z. Pan, S. A. Kumar, J. Y. Zhang, Y. Pu, D. S. Liebeskind, and F. Scalzo, “Deep learning for hemorrhagic lesion detection and segmentation on brain CT images,” IEEE Journal of Biomedical and Health Informatics, vol. 25, no. 5, pp. 1646–1659, 2021.
62. L. Huang, R. Han, T. Ai, P. Yu, H. Kang, Q. Tao, and L. Xia, “Serial quantitative chest CT assessment of COVID-19: A deep learning approach,” Radiology: Cardiothoracic Imaging, vol. 2, no. 2, 2020.
63. B. Kalb, P. Sharma, K. Salman, K. Ogan, J. G. Pattaras, and D. R. Martin, “Acute abdominal pain: Is there a potential role for MRI in the setting of the emergency department in a patient with renal calculi?,” Journal of Magnetic Resonance Imaging, vol. 32, no. 5, pp. 1012–1023, 2010.
64. Imaging in the Management of Ureteral Calculi, AUA Update Series, pp. 373–384, 2013.
65. Z. Akkus, A. Galimzianova, A. Hoogi, D. L. Rubin, and B. J. Erickson, “Deep Learning for Brain MRI segmentation: State of the art and Future Directions,” Journal of Digital Imaging, vol. 30, no. 4, pp. 449–459, 2017.
66. J. Liu, Y. Pan, M. Li, Z. Chen, L. Tang, C. Lu, and J. Wang,“Applications of deep learning to MRI images: A survey,” Big Data Mining and Analytics, vol. 1, no. 1, pp. 1–18, 2018.
67. S. Gul, M. S. Khan, A. Bibi, A. Khandakar, M. A. Ayari, and M. E. H. Chowdhury, “Deep learning techniques for liver and liver tumor segmentation: A Review,” Computers in Biology and Medicine, vol. 147, p. 105620, 2022.
68. H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid Scene Parsing Network,” 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
69. D. R. Cox and E. J. Snell, “A general definition of residuals,” Journal of the Royal Statistical Society: Series B (Methodological), vol. 30, no. 2, pp. 248–265, 1968.
70. S. Jadon, “A survey of loss functions for semantic segmentation,” 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), 2020.
71. S. Kosub, “A note on the triangle inequality for the Jaccard distance,” Pattern Recognition Letters, vol. 120, pp. 36–38, 2019.
72. Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, “3D U-Net: Learning dense volumetric segmentation from sparse annotation,” Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016, pp. 424–432, 2016.
73. X. Xiao, S. Lian, Z. Luo, and S. Li, “Weighted Res-UNet for high-quality retina vessel segmentation,” 2018 9th International Conference on Information Technology in Medicine and Education (ITME), 2018.
74. D. Jha, P. H. Smedsrud, D. Johansen, T. de Lange, H. D. Johansen, P. Halvorsen, and M. A. Riegler, “A comprehensive study on colorectal polyp segmentation with resunet++, conditional random field and test-time augmentation,” IEEE Journal of Biomedical and Health Informatics, vol. 25, no. 6, pp. 2029–2040, 2021.
75. S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz, T. Greer, B. ter Haar Romeny, J. B. Zimmerman, and K. Zuiderveld, “Adaptive Histogram Equalization and its variations,” Computer Vision, Graphics, and Image Processing, vol. 39, no. 3, pp. 355–368, 1987.
76. K. Lucknavalai and J. P. Schulze, “Real-time contrast enhancement for 3D medical images using histogram equalization,” Advances in Visual Computing, pp. 224–235, 2020.
77. M. Hayati, K. Muchtar, Roslidar, N. Maulina, I. Syamsuddin, G. N. Elwirehardja, and B. Pardamean, “Impact of clahe-based image enhancement for diabetic retinopathy classification through Deep Learning,” Procedia Computer Science, vol. 216, pp. 57–66, 2023.
78. P. H. Dinh and N. L. Giang, “A new medical image enhancement algorithm using adaptive parameters,” International Journal of Imaging Systems and Technology, vol. 32, no. 6, pp. 2198–2218, 2022.
79. P. Chlap, H. Min, N. Vandenberg, J. Dowling, L. Holloway, and A. Haworth, “A review of medical image data augmentation techniques for Deep Learning Applications,” Journal of Medical Imaging and Radiation Oncology, vol. 65, no. 5, pp. 545–563, 2021.
80. K. Simonyan, and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
81. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “Imagenet Large Scale Visual Recognition Challenge,” International Journal of Computer Vision, vol. 115, no. 3, pp. 211–252, 2015.
82. L.-C. Chen, Y. Yang, J. Wang, W. Xu, and A. L. Yuille, “Attention to scale: Scale-aware Semantic Image segmentation,” 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
83. L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 4, pp. 834–848, 2018.
84. Z.-H. Huang, Y.-Y. Liu, and K.-W. Huang, “Design and Implementation of a Deep Learning Model for Renal Stone Detection and Segmentation in Kidney Ureter Bladder Images,” IJMS, under review, 2023.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊