跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/05 10:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李承翰
研究生(外文):Chen-Han Lee
論文名稱:人工血管表面改質以增進細胞貼附特性之研究
論文名稱(外文):The study on improving the cell adhesion for artifical vascular graft by surface treatment process .
指導教授:黃忠仁黃忠仁引用關係
指導教授(外文):Jong-Zen Huang
學位類別:碩士
校院名稱:華梵大學
系所名稱:機電工程學系博碩專班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:80
中文關鍵詞:拉伸性鐵氟龍去氟化效應大氣電漿管狀式自動轉體移動平台人類臍帶靜脈內皮細胞
外文關鍵詞:ePTFEdefluorinatedatmospheric pressure plasmaHUVECs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:420
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對平面與管狀ePTFFE(拉伸性鐵氟龍,expanded Polytetrafluoroethylene)分別做不同實驗,片狀ePTFE進行化學改質的比較(sodium/naphthalene etchant與FluoroEtch),並利用膠帶測試對片狀ePTFE試片的破壞程度,是否影響試片表面。針對管狀ePTFE部分則進行化學改質與大氣電漿改質處理之研究,以有別於處理片狀ePTFE的方法來處理管狀ePTFE,我們以管狀式自動轉體移動平台來進行電漿改質,並以測水滴接觸角與SEM、ESCA等方法來進行佐證。其中發現改質前的管狀ePTFE之水滴接觸角為130度,經過化學與電漿改質完後水滴接觸角降為25度,亦即經過處理後由疏水性變為親水性。經由ESCA分析得知管狀ePTFE經過化學處理後,其表面會產生去氟化反應而且大氣電漿可以打斷表面較弱的鍵結而形成官能基。經以上處理後的管狀ePTFE可達到活化與誘導效果,因此增加它與貼附性蛋白/胜肽的接枝效率,也因而促進人類臍帶靜脈內皮細胞(HUVECs)對其表面的貼附性。
In this study , several experiments ePTFE (expanded polytetrafluoroethylene) on flake and tubular were done to chemically modify ePTFE surface properties by sodium / naphthalene etchant and FluoroEtch. For tubular ePTFE alone, a special mechanism called tubular rotational movement platform was used to do the surface treatment. After all the experiments are conducted, three types of measurement contact angle, SEM and ESCA were taken to verify the quality of the surface treatment. We found that the contact angle of the tubular untreated ePTFE is 130 degrees, after chemical modification with plasma it reduces to 25 degrees, which indicates its surface has turned from hydrophobic into hydrophilic . After all of the surface treatments , we found that the bio-compatibility of ePTFE increased and the human umbilical vein endothelial cells (HUVECs) could attach well on the substrate surface .
致謝………………………………………………………………………I
摘要………………………………………………………...…………...III
Abstract…………………………………………..……………………. IV
目錄……………………………………………………………………...V
圖錄………………………………………………………………….. VIII
表錄………………………………………………………………….. XII
一、緒論…………………………………………………………………1
1.1前言……………………………………………………………..…1
1.1.1生醫材料之基本介紹………………………………..………1
1.1.2電漿應用與發展……………………………………..………4
1.2研究動機與目標………………………………………..…………5
1.3研究內容……………………………………………..……………6
二、ePTFE及大氣電漿簡介……………………………………………8
2.1拉伸性鐵氟龍(ePTFE) ……………………………..……………8
2.2 鈉蝕法(Sodium/naphthalene etchant) ……………..……………..8
2.3電漿表面改質技術.........................................................................11
2.3.1電漿簡介……………………………………………..…….11
2.3.2大氣電漿源…………………………………………..……..12
2.3.3大氣電漿基本特性……………………………………...….17
2.3.4電漿表面改質………………………………………...…….22
2.3.5電漿技術改質ePTFE………………………………..…….24
三、實驗架構與分析…………………………………………………..31
3.1實驗設計與架構……………..…………………………………31
3.1.1實驗架構……………………………………………………32
3.2實驗材料準備……..……………………………………………35
3.2.1平面ePTFE試片準備………………………………………35
3.2.2管狀ePTFE試片準備………………………...……………36
3.2.3鈉蝕法(Sodium/naphthalene etchant)化學系統……...……38
3.2.4鈉蝕法(Sodium/naphthalene etchant)溶液之製備………...41
3.2.5完成化學反應後,ePTFE試片之清洗-(標準清洗)……42
3.3 大氣電漿系統…………………………..………………………42
3.3.1常壓電漿設備系統…………………………………………42
3.4實驗設備………………………………………..……………….46
3.4.1接觸角量測儀………………………………………………46
3.4.2掃描式電子顯微鏡…………………………………………48
3.4.3 ESCA化學能量分析.……………………………………..49
四、實驗結果與歸納分析………………………………………………51
4.1 平面ePTFE………………………….…………………………51
4.1.1 sodium/naphthalene etchant and FluoroEtch……………….51
4.1.2膠帶測試……………………………………………………53
4.2管狀ePTFE………………………..……………………………54
4.2.1 管狀化學改質……………………………………………..54
4.2.2 管狀電漿改質……………………………………………..56
4.2.2.1掃描速率與距離對水滴接觸角之影響……………….56
4.2.2.2管狀式自動轉體移動平台……………………………58
4.2.2.3管狀式自動轉體移動平台與X、Y移動平台之關係…60
4.2.2.4 長型管狀ePTFE改質………………………………..61
4.3 ESCA鍵結變化與表面元素含量分析……………..………….63
4.4 SEM表面微結構觀察……………..…………………………...65
4.5內皮細胞(Huvecs)貼覆與增生……..…………………………..66
4.6流體實驗沖刷測試……………..……………………………….67
4.7動物實驗…………………………..……………………………69
五、結論與未來展望…………………………………………………...71
5.1結論…..…………………………………………………………71
5.2未來展望………………..………………………………………73
參考文獻………………………………………………………………..75
簡歷……………………………………………………………………..80
【1】吳敏文等,“電漿源原理與應用之介紹”,物理雙月刊,二十八卷二期,pp.440-452,2006年四月
【2】D . L . Wise , Encyclopedic handbook of biomaterials and bioengineering , Marcel Dekker , 1995 , pp. 865-882 .
【3】王盈錦等,“高分子生醫材料在組織修復上的應用”, 材料會訊,Vol. 7, No.1 , pp . 42-50 (2000) .
【4】田村康一等, 人工臟器,21(3),pp.1222-1226(1992) .
【5】M . R . Yang , and K . S . Chen ,“Wettability and lubrication of poly-tetrafluoroethylene(PTFE) by UV-induced graft copolymerization on plasma-treated surface”, J . Materials Chem . And Physics . 50(1997)11-14 .
【6】鄭淑蕙,劉有台,陳素真,陳克紹,“纖維材料的生物醫學應用”,化工資訊,2000.6,pp.29-41(2000) .
【7】陳克紹,古元安,“低溫電漿表面改質技術在生醫組織工程材料之應用”,材料會訊,Vol.10,No.2,pp.29-40(2003).
【8】D . Bakos Ed . ,“HAp-Collagen-HA 複合化(App. In 骨置換)”, Biomaterials , 21 , pp . 191-195(1999) .
【9】M . Mason . , Biomaterials , 21 , pp . 31-36(2000).
【10】R.d’Agostino Ed . ,“Plasma Deposition , Treatment , and Etching of Polymers”, Academic press , Boston , 1990 .
【11】W .Dong , Y . Gu ,“Surface Modification of Poly(tetrafluoroethylene) Film by Chemical Etching , Plasma , and Ion Beam Treatments”, Journal of Applied Polymer Science , Vol . 77 , 1913-1920 (2000).
【12】K . Ha , S . McCLAIN , S . L . Suib , A . Garton ,“Adhesion to Sodium NaphthaleideTreatedFluoropolymers Part I-Analytical Methodology”, J . Adhesion , 1991 , Vol. 33 , pp . 169-184 .
【13】C . W . Lin , W . C . Hsu , B . J . Hwang ,“Investigation of wet chemical-treatedpoly(tetrafluoro-ethylene) surface and its metallization with SIMS , XPS and atomic force microscopy”, J . Adhesion Sci . Technol . , Vol.14 , No.1 , pp . 1-14(2000) .
【14】A . Grill ,“Cold plasma in Materials Fabrication”, (IEEE press , New York , 1994) .
【15】A . Schutze , J . Y . Jeong , S. E. Babayan , J. Park , G . S . Selwyn , and R . F . Hicks ,“The Atmospheric-Pressure Plasma Jet: A Review and Comparison to Other Plasma Sources”, IEEE TRANSACTIONS ON PLASMA SCIENCE , VOL.26 , NO.6 , DECEMBER 1998 .
【16】J . R . Roth and Y . Ku ,“Surface cleaning of metals in air with a one atmosphere uniform glow discharge plasma”, in Abstracts IEEE Int . Conf. Plasma Sci . , Madison , WI , 1995 , pp . 251 .
【17】Pierre-Luc Girard-Lauriault , F . Mwale , M . Iordanova , C . Demers , P . Desjardins , M . R . Wertheimer . Plasma Processes and Polymers Volume 2 , Issue 3 , Date : March 31 , 2005 , pp . 263-270 .
【18】Y . Gao , Surface & Coatings Technology SCT-12442 ; No of Pages 3, 2006 .
【19】V . Hopfe , D . Rogler , G . Maeder , I . Dani , K . Landes , E . Theophile , M . Dzulko , C . Rohrer, C. Reichhold , Chemical Vapor Deposition Volume 11, Issue 11-12, Date: December, 2005, pp. 510-522 .
【20】X . Zhu , F . A . Khonsari , C . P . Etienne , M . Tatoulian , Plasma Process . Polym . 2005 , 2 , 407-413 .
【21】莊達人,“VLSI 製程技術”,高立出版社, 2006年6月
【22】陳俊雄碩士論文,以大氣電漿改質人工血管表面特性之研究,2009年7月
【23】H . Yasuda , Plasma Polymerization , Academic, New York, 1985 .
【24】J . H . Noh , H . K . Baik , I . Noh , J . C . Park , I . S . Lee , “Surface modification of polytetrafluoroethylene using atmosphericpressure plasma jetfor medical application”, Surface & Coatings Technology 201(2007)5097-5101.
【25】C . Wang , J . R . Chen , “Studies on surface graft polymerization of acrylic acid onto PTFE film by remote argon plasma initiation”, Applied Surface Science 253 (2007) 4599-4606 .
【26】C . Wang , J . R . Chen , R . Li , ”Studies on surface modification of poly(tetrafluoroethylene) film by remote and direct Ar plasma”, Applied Surface Science xxx(2007)xxx-xxx.
【27】何建興碩士論文,氣電漿對TAC之表面處理與分析,2005年6月
【28】Y . W. Park , N . Inagaki ,“Surface modification of poly(vinylidene fluride) film by remote Ar, H2 and O2 plasmas”, polymer 44(2003)1569-1575.
【29】陳建憲碩士論文,對稱式交互氣流微波電漿源之研究,2004年6月
【30】J . S . Chen , Z . B . Zhang ,“Effect of ion implantation on surface energy of ultrahigh molecular weight polyethylene”, Journal of Applied Physics , 93 , 5103(2003) .
【31】I . Noh , K . Chittur , S . L . Goodman , J . A . Hubbell ,“Surface Modification of Poly (tetrafluoroethylene) with Benzophenone and Sodium Hydride by Ultraviolet Irradiation”, John Wiley & Sons , Inc . J. Polym Sci. A: Polym Chem. 35:1499-1514 , 1997 .
【32】S . E . Babayan , J. Y. Jeongy, V. J. Tuy, J. Parkz, G. S. Selwynz, R . F. Hicks ,“Deposition of silicon dioxide films with an atmospheric-pressure plasma jet”, Plasma Source Science and Technology , Vol.7 , pp . 286-288, 1998 .
【33】G . R . Nowling , M. Yajima , S. E. Babayan, M. Moravej, X. Yang , W . Hoffman , R. F. Hicks,“Chamberless plasma deposition of glass coatings on plastic”, Plasma Source Science and Technology, Vol.14, pp. 477-484, 2005 .
【34】A . Kuwabara , Shin-ichi Kuroda, H. Kubota,“Preparation of a CVD thin film by an atmospheric pressure low temperature surface discharge plasma torch”, Plasma Sources Science and Technology, Vol.15, pp. 328-331, 2006 .
【35】Volkmar Hopfe , Ralf Spitzl , Ines Dani , Gerrit Maeder , Liliana Roch , Daniela Rogler , Beate Leupolt , Bolko Schoeneich ,“Remote Microwave PECVD for Continuous , Wide-Area Coating Under Atmospheric Pressure”, Chemical Vapor Deposition , Vol.11 , pp.497-509, 2005 .
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top