跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2026/01/02 20:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳宗諺
研究生(外文):Tsung-Yen Wu
論文名稱:25 Gb/s與50 Gb/s四階脈波振幅調變雷射二極體驅動積體電路設計
論文名稱(外文):Design of 25 Gb/s and 50 Gb/s PAM-4 Laser Diode Driver Integrated Circuits
指導教授:周肇基周肇基引用關係
指導教授(外文):Jou, Jau-Ji
口試委員:楊淳良賴富順施天從
口試委員(外文):Yang, Chun-liangLai, Fu-ShunShih, Tien-Tsorng
口試日期:2019-07-10
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:88
中文關鍵詞:四階脈波振幅調雷射驅動電路
外文關鍵詞:4-level pulse amplitude modulation (PAM-4)Laser diode driver
相關次數:
  • 被引用被引用:0
  • 點閱點閱:317
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要設計高速四階脈波振幅調變(PAM-4)雷射二極體驅動器積體電路,可應用於光纖通訊系統中的發射端電路。
第一顆晶片採用台積電90-nm CMOS製程技術進行設計,電路設計包括等化器與負電容,以及時域訊號延遲處理的預增強電路,來提升電路操作頻寬,最後經由電流引導電路來產生四階脈波。量測可獲得25-Gb/s (12.5-Gbaud)的PAM-4輸出訊號,調變電流為2.8-mA,消耗功率為70.4-mW,晶片面積為0.538 x 0.6059 mm2。
第二顆晶片採用台積電90-nm CMOS製程技術進行設計,採用的等化器電路是由放大器和邊緣峰值產生器並接組成,運用與前一顆晶片不同的補償電路方式。量測結果最高操作速率可達40-Gb/s (20-Gbaud) PAM-4訊號,誤碼率低於10-12,調變電流為3.2-mA,消耗功率為57.2-mW,晶片面積為0.4987 x 0.4987 mm2。
第三顆晶片與第四顆晶片主要是設計DFB雷射或是MZ光調變器的驅動器電路,採用GaAs 0.15-μm pHEMT的製程技術進行電路設計。第三顆晶片為基本的差動電流引導電路;第四顆晶片則再加入預驅動放大器;經過模擬驗證,操作速率可以達到50-Gb/s NRZ或 100-Gb/s PAM-4;此兩顆晶片面積皆為1 x 1 mm2。

In this thesis, high-speed four-level pulse amplitude modulation (PAM-4) laser diode driver circuits were designed and applied to the transmitter in optical fiber communication systems.
The first chip was designed in TSMC 90nm CMOS technology. This circuit includes an equalizer, a negative capacitor, and a delay duty adjuster circuit (DDAC) which is used to achieve the pre-emphasis, to improve the circuit bandwidth. The PAM-4 signal can be generated by the current steering circuit. The chip can be operated at 25-Gb/s (12.5-Gbaud) PAM-4, the modulation current is 2.8-mA, the power consumption is 70.4-mW, and the chip size is 0.538 x 0.6059 mm2.
The second chip was designed in TSMC 90nm CMOS technology. The equalizer circuit is composed of an amplifier and an edge peak generator. According to the measurement results, the chip can be operated at 40-Gb/s (20-Gbaud) PAM-4, the bit error rate can below 10-12, and the modulation current is 3.2-mA. The power consumption of the chip is 57.2-mW and the chip size is 0.4987 x 0.4987 mm2.
The third and fourth chips were designed in GaAs 0.15-μm pHEMT process technology for driving DFB laser diodes or MZ optical modulators. The third chip is a basic current steering circuit, and the fourth chip has a pre-driver. Through the circuit simulations, the chips were verified to be operated at 50-Gb /s NRZ or 100-Gb/s PAM-4. The size of the both chips are 1 x 1 mm2 in size.

摘要 I
ABSTRACT III
致謝 IV
目錄 V
圖目錄 VII
表目錄 X
第一章 緒論 1
1.1前言 1
1.2研究動機 3
1.3文獻探討 5
1.4論文架構 8
第二章 光纖通訊發射端相關知識介紹 9
2.1 光纖通訊架構 9
2.2 光發射端光電元件介紹 10
2.3 調變技術與相關知識 13
2.3.1 訊號編碼型態 13
2.3.2 調變技術介紹 14
2.3.3 眼圖 17
2.3.4 抖動(Jitter) 18
2.4 設計IC流程 19
第三章 25-Gb/s PAM-4垂直腔面射型雷射二極體驅動電路設計 21
3.1 電路架構與分析 22
3.1.1 前置放大器(Pre-amplifier) 23
3.1.2 等化器電路 24
3.1.3 負電容電路 26
3.1.4 延遲週期調整電路(Delay Duty Adjuster Circuit) 27
3.1.5 電流引導電路 29
3.2 電路模擬 30
3.2.1 電路前模擬結果 30
3.2.2 電路後模擬結果 36
3.3 晶片量測結果 40
3.3.1 採鋁線打線量測之結果 42
3.3.2 採金線打線量測之結果 46
3.4 問題與討論 49
第四章 50-Gb/s PAM-4垂直腔面射型雷射二極體驅動電路 51
4.1 電路架構與分析 52
4.1.1 等化器 53
4.2 電路模擬 55
4.2.1 電路前模擬結果 57
4.2.2 電路後模擬結果 58
4.3 晶片量測結果 64
4.4 結果與討論 72
第五章 50-Gb/s NRZ雷射與光調變器驅動電路 73
5.1 GaAs 0.15-μm pHEMT 特性曲線 73
5.2 單級驅動電路 (第三顆晶片) 75
5.2.1 電路架構 75
5.2.2 電路前、後模擬 76
5.3 具等化器之驅動電路 (第四顆晶片) 79
5.3.1 電路架構 79
5.3.2 電路前、後模擬 80
第六章 結論 83
6.1 成果 83
6.2 未來工作 86
參考文獻 87


[1]楊舜量,「5-Gb/s與10Gb/s互補式金氧半光接收前端電路之設計」,碩士論文,國立高雄應用科技大學,2012。
[2]原榮、鄔文杰、陳積德、宋馭民、劉正瑜,「光纖通訊系統原理與應用」,台北:新文京開發出版股份有限公司,民國91年,初版。
[3]http://www.ieee802.org/3/
[4]S. Walklin and J. Conradi, “Multilevel signaling for increasing the reach of 10 Gb/s lightwave systems,” Journal of Lightwave Technology, vol. 17, no. 11, PP. 2235-2248, Nov. 1999.
[5]E. Ip and J.M. Kahn, “Carrier synchronization for 3-and 4-bit-per-symbol optical transmission,” Journal of Lightwave Technology, vol. 23, no. 12, pp. 4110-4124, Dec. 2005.
[6]R.A. Griffin and A.C. Carter, “Optical differential quadrature phase-shift key (oDQPSK) for high capacity optical transmission,” Optical Fiber Communication Conference and Exhibit, Mar. 2002.
[7]K. Sekine, N. Kikuchi, S. Sasaki, S. Hayase, C. Hasegawa, T. Sugawara, “40 Gbit/s, 16-ary (4 bit/symbol) optical modulation/demodulation scheme,” Electronics Letters, vol. 41, no. 7, pp. 430-432, Mar. 2005.
[8]Ishida, Osamu. “40/100GbE technologies and related activities of IEEE standardization,” IEEE, Mar. 2009.
[9]IEEE P802.3bs, 200 Gb/s and 400 Gb/s Ethernet Task Force [online]. Available: http://www.ieee802.org/3/bs/
[10]C. Cole, Finisar, Jeffery J. Maki, Juniper Networks, A. Srivastava, NTT Electronics, P. Stassar, Huawei, “400Gb/s 2km & 10km duplex SMP PAM-4 PMD Baseline Specifications,” 400-Gb/s Ethernet Task Force IEEE 802.3 Interim Meeting, Pittsburgh, PA, 18 – 20 May 2015.
[11]T. Yazaki, N. Chujo, et al. “25-Gbps×4 optical transmitter with adjustable asymmetric pre-emphasis in 65-nm CMOS,” IEEE International Symposium on Circuits and Systems (ISCAS), June. 2014.
[12]G. Belfiore, M. Khafaji, R. Henker, F. Ellinger, “A 50 Gb/s 190 mW Asymmetric 3-Tap FFE VCSEL Driver,” IEEE Journal of Solid-State Circuits, vol. 52, no. 9, pp. 2422-2429, Sept. 2017.
[13]G. R. Talluri, K. K. Rakesh, M. S. Baghini, “A 4-14 Gbps Inductor-Less Adaptive Linear Equalizer Using Hybrid Filter in 65 nm CMOS Technology,” Sixteenth International Symposium on Quality Electronic Design, Mar. 2015.
[14]S.O. Kasap, “Optoelectronics and Photonics: Principles and Practices,” Prentice Hall, 2001.
[15]黃素真,「光纖技術手冊」,全華科技圖書股份有限公司,西元2003年。
[16]T. C. Huang, T. W. Chung, C. H. Chern, M. C. Huang, C. C. Lin, F. L. Hsueh, “8.4 A 28Gb/s 1pJ/b shared-inductor optical receiver with 56% chip-area reduction in 28nm CMOS,” IEEE International Solid-State Circuits Conference Digest of Technical Papers, Feb. 2014.
[17]Z. Zhiyao, K. Sun, G. Wang, T. Zhang, S. Kulis, P. Gui, P. Moreira, “A Compact Low-Power Driver Array for VCSELs in 65-nm CMOS Technology,” IEEE Transactions on Nuclear Science, vol. 64, no. 6, pp. 1599-1604, Jun. 2017.
[18]Z. Dawei, C. Yingmei, T. Ling, Z. Li, “Design of a 10 Gb/s Laser Diode Voltage Driver in 0.18 um CMOS technology,” IEEE MTT-S International Microwave Workshop Series on Millimeter Wave Wireless Technology and Applications, Sept. 2012.
[19]盧建君,「光通訊接收端轉阻放大器之設計與製作」,碩士論文,國立交通大學,2007。
[20]D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, A. Larsson, “A 71-Gb/s NRZ Modulated 850-nm VCSEL-Based Optical Link,” IEEE Photonics Technology Letters, vol. 27, no. 6, pp. 577-580, Mar. 2015.
[21]G. Belfiore, R. Henker, and F. Ellinger, “The effect of strong equalization in high-speed VCSEL-based optical communications up to 48 Gbit/s,” IEEE Bipolar/BiCMOS Circuits and Technology Meeting, Sept. 2016.
[22]G. Belfiore, L. Szilagyi, R. Henker, F. Ellinger, “25 Gbit/s adaptive 3-tap FFE VCSEL driver in 28-nm CMOS for data center communications,” International Conference on Transparent Optical Networks (ICTON), July 2017.
[23]M. Lang, Z. G. Wang, et al. “20-40 Gb/s 0.2-/spl mu/m GaAs HEMT chip set for optical data receiver,” IEEE Journal of Solid-State Circuits, vol. 32, no. 9, pp. 1384 – 1393, Sept. 1997.
[24]J. Pliva, M. Khafaji, et al. “Opto-electrical analog front-end with rapid power-on and 0.82 pJ/bit for 28 Gb/s in 14 nm FinFET CMOS,” IEEE International System-on-Chip Conference (SOCC), Sept. 2017.
[25]H. Zirath, H. Zirath, et al. “Highly integrated 60 GHz transmitter and receiver MMICs in a GaAs pHEMT technology,” IEEE Journal of Solid-State Circuits, vol. 40, no. 11, pp. 2174–2186, Oct. 2005.
[26]G. Belfiore, R. Henker, F. Ellinger, “40 Gbit/s 4-PAM VCSEL Driver Circuit With Power Roll-off Compensation,” International Midwest Symposium on Circuits and Systems, Aug. 2018.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top