|
[1] Bao, Z.; Chen, X., Flexible and Stretchable Devices. Adv. Mater. 2016, 28 (22), 4177-4179. [2] Bowden, N.; Brittain, S.; Evans, A. G.; Hutchinson, J. W.; Whitesides, G. M., Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 1998, 393 (6681), 146-149. [3] Choi, M. C.; Kim, Y.; Ha, C. S., Polymers for flexible displays: From material selection to device applications. Prog. Polym. Sci. 2008, 33 (6), 581-630. [4] Yen, M.; Bitla, Y.; Chu, Y. H., van der Waals heteroepitaxy on muscovite. Mater. Chem. Phys. 2019, 234, 185-195. [5] Koma, A.; Sunouchi, K.; Miyajima, T., Fabrication and characterization of heterostructures with subnanometer thickness. Microelectron. Eng. 1984, 2, 129-136. [6] Koma, A., Summary Abstract: Fabrication of ultrathin heterostructures with van der Waals epitaxy. J. V. Sci. Technol. B 1985, 3 (2), 724. [7] Koma, A.; Yoshimura, K., Ultrasharp interfaces grown with Van der Waals epitaxy. Surf. Sci. 1986, 174 (1-3), 556-560. [8] Koma, A.; Ueno, K.; Saiki, K., Heteroepitaxial growth by Van der Waals interaction in one-, two-and three-dimensional materials. J. Cryst. Growth 1991, 111 (1-4), 1029-1032. [9] Koma, A., Van der Waals epitaxy - a new epitaxial growth method for a highly lattice-mismatched system. Thin Solid Films 1992, 216 (1), 72-76. [10] Koma, A., Van der Waals epitaxy for highly lattice-mismatched systems. J. Cryst. Growth 1999, 201, 236-241. [11] Jaegermann, W.; Klein, A.; Pettenkofer, C., Electronic properties of van der Waals-epitaxy films and interfaces, Electron Spectroscopies Applied to Low-Dimensional Materials, Springer, 2002. [12] Utama, M. I. B.; de la Mata, M.; Magen, C.; Arbiol, J.; Xiong, Q., Twinning-, Polytypism-, and Polarity-Induced Morphological Modulation in Nonplanar Nanostructures with van der Waals Epitaxy. Adv. Funct. Mater. 2013, 23 (13), 1636-1646. [13] Mitchell, B. S., An introduction to materials engineering and science for chemical and materials engineers, John Wiley & Sons, 2004. [14] Butler, S. Z.; Hollen, S. M.; Cao, L.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J.; Ismach, A. F., Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS nano 2013, 7 (4), 2898-2926. [15] Koma, A.; Saiki, K.; Sato, Y., Heteroepitaxy of a two-dimensional material on a three-dimensional material. Appl. Surf. Sci. 1990, 41, 451-456. [16] Mauguin, C., Êtude du mica muscovite au moyen des rayons X. Compt. Rend. 1927, 185, 288-291. [17] Pauling, L., The structure of the micas and related minerals. Proc. Nat. Acad. Sci. 1930, 16 (2), 123. [18] Bitla, Y.; Chu, Y.-H., MICAtronics: A new platform for flexible X-tronics. Flatchem 2017, 3, 26-42. [19] McCoul, D.; Hu, W.; Gao, M.; Mehta, V.; Pei, Q., Recent Advances in Stretchable and Transparent Electronic Materials. Adv. Electron. Mater. 2016, 2 (5). [20] Hussain, A. M.; Hussain, M. M., CMOS-Technology-Enabled Flexible and Stretchable Electronics for Internet of Everything Applications. Adv. Mater. 2016, 28 (22), 4219-49. [21] Wong, W. S.; Salleo, A., Flexible electronics: materials and applications, Springer Science & Business Media, 2009. [22] Steinberg, S.; Ducker, W.; Vigil, G.; Hyukjin, C.; Frank, C.; Tseng, M.; Clarke, D.; Israelachvili, J., Van der Waals epitaxial growth of α-alumina nanocrystals on mica. Science 1993, 260 (5108), 656-659. [23] Kendall, J.; Yeo, D., Magnetic susceptibility and anisotropy of mica. Proc. Phys. Soc. B 1951, 64 (2), 135. [24] He, Y.; Dong, H.; Meng, Q.; Jiang, L.; Shao, W.; He, L.; Hu, W., Mica, a potential two-dimensional-crystal gate insulator for organic field-effect transistors. Adv. Mater. 2011, 23 (46), 5502-7. [25] Nilsen, O.; Foss, S.; Fjellvåg, H.; Kjekshus, A., Effect of substrate on the characteristics of manganese(IV) oxide thin films prepared by atomic layer deposition. Thin Solid Films 2004, 468 (1-2), 65-74. [26] Potin, V.; Bruyere, S.; Gillet, M.; Domechini, B.; Bourgeois, S., Growth, Structure, and Stability of KxWO3 Nanorods on Mica Substrate. J. Phys. Chem. C 2012, 116 (2), 1921-1929. [27] Bitla, Y.; Chen, C.; Lee, H. C.; Do, T. H.; Ma, C. H.; Qui, L. V.; Huang, C. W.; Wu, W. W.; Chang, L.; Chiu, P. W.; Chu, Y. H., Oxide Heteroepitaxy for Flexible Optoelectronics. ACS Appl. Mater. Interfaces 2016, 8 (47), 32401-32407. [28] Li, C.-I.; Lin, J. C.; Liu, H. J.; Chu, M. W.; Chen, H. W.; Ma, C. H.; Tsai, C. Y.; Huang, H. W.; Lin, H. J.; Liu, H. L.; Chiu, P. W.; Chu, Y. H., van der Waal Epitaxy of Flexible and Transparent VO2 Film on Muscovite. Chem. Mater. 2016, 28 (11), 3914-3919. [29] Ma, C. H.; Lin, J. C.; Liu, H. J.; Do, T. H.; Zhu, Y. M.; Ha, T. D.; Zhan, Q.; Juang, J. Y.; He, Q.; Arenholz, E.; Chiu, P. W.; Chu, Y. H., Van der Waals epitaxy of functional MoO2 film on mica for flexible electronics. Appl. Phys. Lett. 2016, 108 (25). [30] Wu, P. C.; Chen, P. F.; Do, T. H.; Hsieh, Y. H.; Ma, C. H.; Ha, T. D.; Wu, K. H.; Wang, Y. J.; Li, H. B.; Chen, Y. C., Heteroepitaxy of Fe3O4/muscovite: A new perspective for flexible spintronics. ACS Appl. Mater. Interfaces 2016, 8 (49), 33794-33801. [31] Amrillah, T.; Bitla, Y.; Shin, K.; Yang, T.; Hsieh, Y. H.; Chiou, Y. Y.; Liu, H. J.; Do, T. H.; Su, D.; Chen, Y. C.; Jen, S. U.; Chen, L. Q.; Kim, K. H.; Juang, J. Y.; Chu, Y. H., Flexible Multiferroic Bulk Heterojunction with Giant Magnetoelectric Coupling via van der Waals Epitaxy. ACS Nano 2017, 11 (6), 6122-6130. [32] Chen, Y.; Fan, L.; Fang, Q.; Xu, W.; Chen, S.; Zan, G.; Ren, H.; Song, L.; Zou, C., Free-standing SWNTs/VO2/Mica hierarchical films for high-performance thermochromic devices. Nano Energy 2017, 31, 144-151. [33] Jiang, j.; Bitla, Y.; Huang, C. W.; Do, T. H.; Liu, H. J.; Hsieh, Y. H.; Ma, C. H.; Jang, C. Y.; Lai, Y. H.; Chiu, P. W.; Wu, W. W.; Chen, Y. C.; Zhou, Y. C.; Chu, Y. H., Flexible ferroelectric element based on van der Waals heteroepitaxy. Sci. Adv. 2017, 3, e1700121. [34] Li, M.; Wang, Y.; Wang, Y.; Wei, X., AZO/Ag/AZO transparent flexible electrodes on mica substrates for high temperature application. Ceram. Int. 2017, 43 (17), 15442-15446. [35] Liu, H. J.; Wang, C. K.; Su, D.; Amrillah, T.; Hsieh, Y. H.; Wu, K. H.; Chen, Y. C.; Juang, J. Y.; Eng, L. M.; Jen, S. U.; Chu, Y. H., Flexible Heteroepitaxy of CoFe2O4/Muscovite Bimorph with Large Magnetostriction. ACS Appl. Mater. Interfaces 2017, 9 (8), 7297-7304. [36] Ke, S.; Xie, J.; Chen, C.; Lin, P.; Zeng, X.; Shu, L.; Fei, L.; Wang, Y.; Ye, M.; Wang, D., van der Waals epitaxy of Al-doped ZnO film on mica as a flexible transparent heater with ultrafast thermal response. Appl. Phys. Lett. 2018, 112 (3). [37] Liu, J.; Feng, Y.; Tang, R.; Zhao, R.; Gao, J.; Shi, D.; Yang, H., Flexible Electronics: Mechanically Tunable Magnetic Properties of Flexible SrRuO3 Epitaxial Thin Films on Mica Substrates. Adv. Electron. Mater. 2018, 4 (4), 1870022. [38] Ma, C. H.; Jiang, J.; Shao, P. W.; Peng, Q. X.; Huang, C. W.; Wu, P. C.; Lee, J. T.; Lai, Y. H.; Tsai, D. P.; Wu, J. M.; Lo, S. C.; Wu, W. W.; Zhou, Y. C.; Chiu, P. W.; Chu, Y. H., Transparent Antiradiative Ferroelectric Heterostructure Based on Flexible Oxide Heteroepitaxy. ACS Appl. Mater. Interfaces 2018, 10 (36), 30574-30580. [39] Quynh, L. T.; Van, C. N.; Tzeng, W.; Huang, C. W.; Lai, Y. H.; Chen, J. W.; Tsai, K. A.; Wu, C. L.; Wu, W. W.; Luo, C. W., Flexible heteroepitaxy photoelectrode for photo-electrochemical water splitting. ACS Appl. Energy Mater. 2018, 1 (8), 3900-3907. [40] Ren, C.; Tan, C.; Gong, L.; Tang, M.; Liao, M.; Tang, Y.; Zhong, X.; Guo, H.; Wang, J., Highly transparent, all-oxide, heteroepitaxy ferroelectric thin film for flexible electronic devices. Appl. Surf. Sci. 2018, 458, 540-545. [41] Shen, L.; Liu, M.; Ma, C.; Lu, L.; Fu, H.; You, C.; Lu, X.; Jia, C.-L., Enhanced bending-tuned magnetic properties in epitaxial cobalt ferrite nanopillar arrays on flexible substrates. Mater. Horizons 2018, 5 (2), 230-239. [42] Wang, D.; Yuan, G.; Hao, G.; Wang, Y., All-inorganic flexible piezoelectric energy harvester enabled by two-dimensional mica. Nano Energy 2018, 43, 351-358. [43] Wu, P. C.; Lin, Y. P.; Juan, Y. H.; Wang, Y. M.; Thi-Hien, D.; Chang, H. Y.; Chu, Y. H., Epitaxial Yttria-Stabilized Zirconia on Muscovite for Flexible Transparent Ionic Conductors. ACS Appl. Nano Mater. 2018, 1 (12), 6890-6896. [44] Le, V. Q.; Do, T. H.; Retamal, J. R. D.; Shao, P. W.; Lai, Y. H.; Wu, W. W.; He, J. H.; Chueh, Y. L.; Chu, Y. H., Van der Waals heteroepitaxial AZO/NiO/AZO/muscovite (ANA/muscovite) transparent flexible memristor. Nano Energy 2019, 56, 322-329. [45] Ha, D. T.; Yen, M.; Yu, H. L.; Kuo, C. Y.; Chen, C. T.; Tanaka, A.; Tsai, L. Z.; Zhao, Y. F.; Duan, C. G.; Lee, S. F., Mechanically tunable exchange coupling of Co/CoO bilayers on flexible muscovite substrate. Nanoscale 2020. [46] Yen, M.; Lai, Y. H.; Zhang, C. L.; Cheng, H. Y.; Hsieh, Y. T.; Chen, J. W.; Chen, Y. C.; Chang, L.; Tsou, N. T.; Li, J., Giant Resistivity Change of Transparent ZnO/muscovite Heteroepitaxy. ACS Appl. Mater. Interfaces 2020. [47] Ginley, D.; Hosono, H.; Paine, D., Handbook of Transparent Conductors, Springer, 2010. [48] Ellmer, K., Past achievements and future challenges in the development of optically transparent electrodes. Nat. Photonics 2012, 6 (12), 809-817. [49] Ohta, H.; Orita, M.; Hirano, M.; Hosono, H., Surface morphology and crystal quality of low resistive indium tin oxide grown on yittria-stabilized zirconia. J. Appl. Phys. 2002, 91 (6), 3547-3550. [50] Hormoz, S.; Ramanathan, S., Limits on vanadium oxide Mott metal–insulator transition field-effect transistors. Solid State Electron. 2010, 54 (6), 654-659. [51] Nakano, M.; Shibuya, K.; Okuyama, D.; Hatano, T.; Ono, S.; Kawasaki, M.; Iwasa, Y.; Tokura, Y., Collective bulk carrier delocalization driven by electrostatic surface charge accumulation. Nature 2012, 487 (7408), 459-62. [52] Tsai, M. F.; Jiang, J.; Shao, P. W.; Lai, Y. H.; Chen, J. W.; Ho, S. Z.; Chen, Y. C.; Tsai, D. P.; Chu, Y. H., Oxide Heteroepitaxy-Based Flexible Ferroelectric Transistor. ACS Appl. Mater. Interfaces 2019, 11 (29), 25882-25890. [53] Castellanos-Gomez, A.; Poot, M.; Amor-Amorós, A.; Steele, G. A.; van der Zant, H. S.; Agraït, N.; Rubio-Bollinger, G., Mechanical properties of freely suspended atomically thin dielectric layers of mica. Nano Res. 2012, 5 (8), 550-557. [54] Wu, P. C.; Chu, Y. H., Development of oxide heteroepitaxy for soft technology. J. Mater. Chem. C 2018, 6 (23), 6102-6117. [55] Bitla, Y.; Chu, Y. H., Development of magnetoelectric nanocomposite for soft technology. J. Phys. D 2018, 51 (23), 234006. [56] Chu, Y. H.,Van der Waals oxide heteroepitaxy, npj Quant. Mater. 2017, 2, 67. [57] Wang, Q.; Li, J.; Lei, Y.; Wen, Y.; Wang, Z.; Zhan, X.; Wang, F.; Wang, F.; Huang, Y.; Xu, K., Oriented growth of Pb1− xSnxTe nanowire arrays for integration of flexible infrared detectors. Adv. Mater. 2016, 28 (18), 3596-3601. [58] Zhou, Y.; Nie, Y.; Liu, Y.; Yan, K.; Hong, J.; Jin, C.; Zhou, Y.; Yin, J.; Liu, Z.; Peng, H., Epitaxy and photoresponse of two-dimensional GaSe crystals on flexible transparent mica sheets. ACS nano 2014, 8 (2), 1485-1490. [59] Janotti, A.; Van de Walle, C. G., Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 2009, 72 (12), 126501. [60] Lee, L.; Hwang, J.; Jung, J. W.; Kim, J.; Lee, H. I.; Heo, S.; Yoon, M.; Choi, S.; Van Long, N.; Park, J., ZnO composite nanolayer with mobility edge quantization for multi-value logic transistors. Nat. Commun. 2019, 10 (1), 1-9. [61] Zhang, Y.; Mei, Z.; Cui, S.; Liang, H.; Liu, Y.; Du, X., Flexible Transparent Field‐Effect Diodes Fabricated at Low‐Temperature with All‐Oxide Materials. Adv. Electron. Mater. 2016, 2 (5), 1500486. [62] Dagotto, E.; Hotta, T.; Moreo, A., Colossal magnetoresistant materials: the key role of phase separation. Phys. Rep. 2001, 344 (1-3), 1-153. [63] Tokura, Y.; Tomioka, Y., Colossal magnetoresistive manganites. J. Magn. Magn. Mater. 1999, 200 (1-3), 1-23. [64] Martin, C.; Maignan, A.; Hervieu, M.; Raveau, B., Magnetic phase diagrams of L 1− x A x MnO3 manganites (L= P r, S m; A= C a, S r). Phys. Rev. B 1999, 60 (17), 12191. [65] Tomioka, Y.; Asamitsu, A.; Kuwahara, H.; Moritomo, Y.; Tokura, Y., Magnetic-field-induced metal-insulator phenomena in Pr1− xCaxMnO3 with controlled charge-ordering instability. Phys. Rev. B 1996, 53 (4), R1689. [66] Zhang, J.; Wang, C.; Bowen, C., Piezoelectric effects and electromechanical theories at the nanoscale. Nanoscale 2014, 6 (22), 13314-27. [67] Uchino, K., The development of piezoelectric materials and the new perspective, Advanced Piezoelectric Materials, 2010. [68] Dahiya, R. S.; Valle, M., Robotic Tactile Sensing, Springer, 2013. [69] Barlian, A. A.; Park, W. T.; Mallon, J. R., Jr.; Rastegar, A. J.; Pruitt, B. L., Review: Semiconductor Piezoresistance for Microsystems. Proc. IEEE Inst. Electr. Electron. Eng. 2009, 97 (3), 513-552. [70] Bao, M.-H., Piezoresistive sensing. In Micro Mechanical Transducers - Pressure Sensors, Accelerometers and Gyroscopes, 2000; pp 199-239. [71] Hishiyama, Y.; Kaburagi, Y.; Inagaki, M., Magnetoresistance, Materials Science and Engineering of Carbon, 2016. [72] Tokura, Y., Critical features of colossal magnetoresistive manganites. Rep. Prog. Phys. 2006, 69 (3), 797-851. [73] Baibich, M. N.; Broto, J. M.; Fert, A.; Van Dau, F. N.; Petroff, F.; Etienne, P.; Creuzet, G.; Friederich, A.; Chazelas, J., Giant magnetoresistance of (001) Fe/(001) Cr magnetic superlattices. Phys. Rev. Lett. 1988, 61 (21), 2472. [74] Das, P.; Colombo, M.; Prosperi, D., Recent advances in magnetic fluid hyperthermia for cancer therapy. Colloids. Surf. B 2019, 174, 42-55. [75] Coey, J. M., Magnetism and magnetic materials, Cambridge university press, 2010. [76] Huang, Y. L.; Zheng, L.; Chen, P.; Cheng, X.; Hsu, S. L.; Yang, T.; Wu, X.; Ponet, L.; Ramesh, R.; Chen, L. Q.; Artyukhin, S.; Chu, Y. H.; Lai, K., Unexpected Giant Microwave Conductivity in a Nominally Silent BiFeO3 Domain Wall. Adv. Mater. 2020, 32 (9), e1905132. [77] Martin, L. W.; Chu, Y. H.; Ramesh, R., Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films. Mater. Sci. Eng. R Rep. 2010, 68 (4-6), 89-133. [78] Han, J. G., Recent progress in thin film processing by magnetron sputtering with plasma diagnostics. J. Phys. D 2009, 42 (4). [79] Gulbiński, W., Deposition of Thin Films by Sputtering, Chemical Physics of Thin Film Deposition Processes for Micro-and Nano-Technologies, Springer: 2002. [80] https://www.adnano-tek.com/magnetron-sputtering-deposition-msd.html. [81] Kelly, P. J.; Arnell, R. D., Magnetron sputtering: a review of recent developments and applications. Vacuum 2000, 56 (3), 159-172. [82] Vossen, J. L., Control of Film Properties by rf-Sputtering Techniques. J. Vac. Sci. Technol. 1971, 8 (5), S12-S30. [83] Misture, S., Snyder, R., X-ray Diffraction, 2001. [84] Dinnebier, R. E.; Friese, K., Modern XRD methods in mineralogy, Max-Planck-Institute for Solid State Research, Stuttgart 2003. [85] Whittig, L.; Allardice, W., X‐ray diffraction techniques, Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods, 1986, 5, 331-362. [86] Flegler, S. L.; Flegler, S. L., Scanning & Transmission Electron Microscopy, Oxford University Press, 1997. [87] http://nanofase.eu/show/element_1454. [88] Kundu, M.; Pramanik, P.; Maity, A.; Joshi, D.; Wani, S.; Krishnan, P.; Mukherjee, A.; Shubha, K., Engineered Nanomaterials: Classification and Strategies for Physicochemical Characterization and Advanced Analytical Techniques for the Measurement of Nanomaterials in Plant Samples, Advances in Phytonanotechnology, Elsevier, 2019. [89] Inkson, B. J., Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization, Materials Characterization Using Nondestructive Evaluation (NDE) Methods, Woodhead Publishing, 2016. [90] Tararam, R.; Garcia, P. S.; Deda, D. K.; Varela, J. A.; de Lima Leite, F., Atomic Force Microscopy: A Powerful Tool for Electrical Characterization, 2017, pp 37-64. [91] Voigtländer, B., Scanning probe microscopy: Atomic force microscopy and scanning tunneling microscopy, Springer, 2015. [92] Sikora, A., Quantitative Normal Force Measurements by Means of Atomic Force Microscopy Towards the Accurate and Easy Spring Constant Determination. Nanoscience and Nanometrology 2016, 2 (1). [93] Konno, H., X-ray Photoelectron Spectroscopy, Butterworth-Heinemann, 2016. [94] https://jacobs.physik.unisaarland.de/home/index.php?page=steinbeiss/home_cms_steinbeissdet3-1&navi=service [95] Jones, R. R.; Hooper, D. C.; Zhang, L.; Wolverson, D.; Valev, V. K., Raman Techniques: Fundamentals and Frontiers. Nanoscale Res. Lett. 2019, 14 (1), 231. [96] Long, D., Quantum mechanical theory of Rayleigh and Raman scattering, John Wiley & Sons, Ltd, Chichester, UK, 2002, 18. [97] Schnohr, C. S.; Ridgway, M. C., Introduction to X-Ray Absorption Spectroscopy. In X-Ray Absorption Spectroscopy of Semiconductors, 2015; pp 1-26. [98] Nelson, R. C.; Miller, J. T., An introduction to X-ray absorption spectroscopy and its in situ application to organometallic compounds and homogeneous catalysts. Catal. Sci. Technol. 2012, 2 (3), 461-470. [99] QuantumDesign, Vibrating Sample Magnetometer (VSM) Option User’s Manual [100] Neuzil, P.; Wong, C. C.; Reboud, J., Electrically controlled giant piezoresistance in silicon nanowires. Nano Lett. 2010, 10 (4), 1248-1252. [101] Shao, R.; Zheng, K.; Zhang, Y.; Li, Y.; Zhang, Z.; Han, X., Piezoresistance behaviors of ultra-strained SiC nanowires. Appl. Phys. Lett. 2012, 101 (23), 233109. [102] Bessonov, A.; Kirikova, M.; Haque, S.; Gartseev, I.; Bailey, M. J., Highly reproducible printable graphite strain gauges for flexible devices. Sens. Actuators A Phys. 2014, 206, 75-80. [103] Jeong, Y. R.; Park, H.; Jin, S. W.; Hong, S. Y.; Lee, S. S.; Ha, J. S., Highly stretchable and sensitive strain sensors using fragmentized graphene foam. Adv. Funct. Mater. 2015, 25 (27), 4228-4236. [104] Eswaraiah, V.; Balasubramaniam, K.; Ramaprabhu, S., One-pot synthesis of conducting graphene–polymer composites and their strain sensing application. Nanoscale 2012, 4 (4), 1258-1262. [105] Stampfer, C.; Jungen, A.; Linderman, R.; Obergfell, D.; Roth, S.; Hierold, C., Nano-electromechanical displacement sensing based on single-walled carbon nanotubes. Nano Lett. 2006, 6 (7), 1449-1453. [106] Yuen, A. C.; Bakir, A. A.; Rajdi, N. N. Z. M.; Lam, C. L.; Saleh, S. M.; Wicaksono, D. H., Proprioceptive sensing system for therapy assessment using cotton fabric-based biomedical microelectromechanical system. IEEE Sens. J. 2014, 14 (8), 2872-2880. [107] Latessa, G.; Brunetti, F.; Reale, A.; Saggio, G.; Di Carlo, A., Piezoresistive behaviour of flexible PEDOT: PSS based sensors. Sens. Actuators B Chem. 2009, 139 (2), 304-309. [108] Kirchmeyer, S.; Reuter, K., Scientific importance, properties and growing applications of poly (3, 4-ethylenedioxythiophene). J. Mater. Chem. 2005, 15 (21), 2077-2088. [109] Zhu, R.; Yang, R., Separation of the piezotronic and piezoresistive effects in a zinc oxide nanowire. Nanotechnology 2014, 25 (34), 345702. [110] Xue, F.; Zhang, L.; Tang, W.; Zhang, C.; Du, W.; Wang, Z. L., Piezotronic effect on ZnO nanowire film based temperature sensor. ACS Appl. Mater. Interfaces 2014, 6 (8), 5955-5961. [111] Zhang, Y.; Liu, Y.; Wang, Z. L., Fundamental theory of piezotronics. Adv. Mater. 2011, 23 (27), 3004-3013. [112] Zhou, J.; Gu, Y.; Fei, P.; Mai, W.; Gao, Y.; Yang, R.; Bao, G.; Wang, Z. L., Flexible piezotronic strain sensor. Nano Lett. 2008, 8 (9), 3035-3040. [113] Yang, Y.; Guo, W.; Qi, J.; Zhang, Y., Flexible piezoresistive strain sensor based on single Sb-doped ZnO nanobelts. Appl. Phys. Lett. 2010, 97 (22). [114] Barlian, A. A.; Park, W. T.; Mallon, J. R.; Rastegar, A. J.; Pruitt, B. L., Semiconductor piezoresistance for microsystems. Proc. IEEE Inst. Electr. Electron. Eng. 2009, 97 (3), 513-552. [115] Zhang, C.; Chen, W.; Li, J.; Yang, J., Two-dimensional analysis of magnetoelectric effects in multiferroic laminated plates. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2009, 56 (5), 1046-1053. [116] Wang, C. L.; Tsai, S. J.; Chen, J. W.; Shiu, H. W.; Chang, L. Y.; Lin, K. H.; Hsu, H. C.; Chen, Y. C.; Chen, C. H.; Wu, C. L., Imaging and characterization of piezoelectric potential in a single bent ZnO microwire. Appl. Phys. Lett. 2014, 105 (12). [117] Yang, Y.; Guo, W.; Qi, J.; Zhang, Y., Flexible piezoresistive strain sensor based on single Sb-doped ZnO nanobelts. Appl. Phys. Lett. 2010, 97 (22), 223107. [118] Wang, C. L.; Tsai, S. J.; Chen, J. W.; Shiu, H. W.; Chang, L. Y.; Lin, K. H.; Hsu, H. C.; Chen, Y. C.; Chen, C. H.; Wu, C. L., Imaging and characterization of piezoelectric potential in a single bent ZnO microwire. Appl. Phys. Lett. 2014, 105 (12), 123115. [119] Shao, R. W.; Zheng, K.; Wei, B.; Zhang, Y. F.; Li, Y. J.; Han, X. D.; Zhang, Z.; Zou, J., Bandgap engineering and manipulating electronic and optical properties of ZnO nanowires by uniaxial strain. Nanoscale 2014, 6 (9), 4936-4941. [120] Gao, Z.; Zhou, J.; Gu, Y.; Fei, P.; Hao, Y.; Bao, G.; Wang, Z. L., Effects of piezoelectric potential on the transport characteristics of metal-ZnO nanowire-metal field effect transistor. J. Appl. Phys. 2009, 105 (11), 113707. [121] Zhou, J.; Fei, P.; Gu, Y.; Mai, W.; Gao, Y.; Yang, R.; Bao, G.; Wang, Z. L., Piezoelectric-potential-controlled polarity-reversible Schottky diodes and switches of ZnO wires. Nano Lett. 2008, 8 (11), 3973-3977. [122] Gruber, T.; Prinz, G.; Kirchner, C.; Kling, R.; Reuss, F.; Limmer, W.; Waag, A., Influences of biaxial strains on the vibrational and exciton energies in ZnO. J. Appl. Phys. 2004, 96 (1), 289-293. [123] Morris, B. A., The science and technology of flexible packaging: multilayer films from resin and process to end use, William Andrew, 2016. [124] Li, J.; Orrego, S.; Pan, J.; He, P.; Kang, S. H., Ultrasensitive, flexible, and low-cost nanoporous piezoresistive composites for tactile pressure sensing. Nanoscale 2019, 11 (6), 2779-2786. [125] Kaps, S.; Bhowmick, S.; Grottrup, J.; Hrkac, V.; Stauffer, D.; Guo, H.; Warren, O. L.; Adam, J.; Kienle, L.; Minor, A. M., Piezoresistive response of quasi-one-dimensional ZnO nanowires using an in situ electromechanical device. ACS Omega 2017, 2 (6), 2985-2993. [126] Hamers, R. J., Flexible electronic futures. Nature 2001, 412 (6846), 489-490. [127] McCauley, J. W.; Newnham, R.; Gibbs, G., Crystal structure analysis of synthetic fluorophlogopite. Am. Mineral. 1973, 58, 249-254. [128] Ko, D.; Tsai, M.; Chen, J.; Shao, P.; Tan, Y.; Wang, J.; Ho, S.; Lai, Y.; Chueh, Y.; Chen, Y., Mechanically controllable nonlinear dielectrics. Sci. Adv. 2020, 6 (10), eaaz3180. [129] Bluschke, M.; Frano, A.; Schierle, E.; Minola, M.; Hepting, M.; Christiani, G.; Logvenov, G.; Weschke, E.; Benckiser, E.; Keimer, B., Transfer of Magnetic Order and Anisotropy through Epitaxial Integration of 3d and 4f Spin Systems. Phys. Rev. Lett. 2017, 118 (20), 207203. [130] Ramirez, A., Colossal magnetoresistance. J. Phys. Condens. Matter. 1997, 9 (39), 8171. [131] Elovaara, T.; Huhtinen, H.; Majumdar, S.; Paturi, P., Irreversible metamagnetic transition and magnetic memory in small-bandwidth manganite Pr1− xCaxMnO3 (x= 0.0–0.5). J. Phys. Condens. Matter. 2012, 24 (21), 216002. [132] Hardy, V.; Wahl, A.; Martin, C.; Simon, C., Low-temperature specific heat in Pr0.63Ca0.37MnO3: phase separation and metamagnetic transition. Phys. Rev. B 2001, 63 (22), 224403. [133] Kolat, V.; Izgi, T.; Kaya, A.; Bayri, N.; Gencer, H.; Atalay, S., Metamagnetic transition and magnetocaloric effect in charge-ordered Pr0.68Ca0.32− xSrxMnO3 (x= 0, 0.1, 0.18, 0.26 and 0.32) compounds. J. Magn. Magn. Mater. 2010, 322 (4), 427-433. [134] Jirák, Z.; Damay, F.; Hervieu, M.; Martin, C.; Raveau, B.; André, G.; Bourée, F., Magnetism and charge ordering in Pr0.5CaxSr0.5− xMnO3 (x= 0.09 and 0. 5). Phys. Rev. B 2000, 61 (2), 1181. [135] Kajimoto, R.; Yoshizawa, H.; Tomioka, Y.; Tokura, Y., Commensurate-incommensurate transition in the melting process of orbital ordering in Pr 0.5 Ca 0.5 MnO 3: A neutron diffraction study. Phys. Rev. B 2001, 63 (21), 212407. [136] Prellier, W.; Haghiri-Gosnet, A. M.; Mercey, B.; Lecoeur, P.; Hervieu, M.; Simon, C.; Raveau, B., Spectacular decrease of the melting magnetic field in the charge-ordered state of Pr0.5Ca0.5MnO3 films under tensile strain. Appl. Phys. Lett. 2000, 77 (7). [137] Yang, Z.; Hendrikx, R.; Bentum, P. v.; Aarts, J., Disorder-induced melting of the charge order in thin films of Pr0.5Ca0.5MnO3. EPL 2002, 58 (6), 864. [138] Yada, H.; Ijiri, Y.; Uemura, H.; Tomioka, Y.; Okamoto, H., Enhancement of Photoinduced Charge-Order Melting via Anisotropy Control by Double-Pulse Excitation in Perovskite Manganites: Pr0.6Ca0.4MnO3. Phys. Rev. Lett. 2016, 116 (7), 076402. [139] Tokunaga, M.; Miura, N.; Tomioka, Y.; Tokura, Y., High-magnetic-field study of the phase transitions of R1− xCaxMnO3 (R= Pr, Nd). Phys. Rev. B 1998, 57 (9), 5259. [140] Zhang, Y. Q.; Zhu, Y. L.; Zhang, Z. D.; Aarts, J., Defect-induced charge-order melting in thin films of Pr0.5Ca0.5MnO3. J. Appl. Phys. 2007, 101 (6). [141] Antonakos, A.; Palles, D.; Liarokapis, E.; Filippi, M.; Prellier, W., Evaluation of the strains in charge-ordered Pr1− xCaxMnO3 thin films using Raman spectroscopy. J. Appl. Phys. 2008, 104 (6), 063508. [142] Jiang, J.; Henry, L. L.; Gnanasekar, K.; Chen, C.; Meletis, E. I., Self-assembly of highly epitaxial (La, Sr) MnO3 nanorods on (001) LaAlO3. Nano Lett. 2004, 4 , 741-745. [143] MacManus-Driscoll, J. L.; Zerrer, P.; Wang, H.; Yang, H.; Yoon, J.; Fouchet, A.; Yu, R.; Blamire, M. G.; Jia, Q., Strain control and spontaneous phase ordering in vertical nanocomposite heteroepitaxial thin films. Nat. Mater. 2008, 7 (4), 314-20. [144] Chen, A.; Bi, Z.; Tsai, C. F.; Lee, J.; Su, Q.; Zhang, X.; Jia, Q.; MacManus-Driscoll, J. L.; Wang, H., Tunable Low-Field Magnetoresistance in (La0.7Sr0.3MnO3)0.5:(ZnO)0.5 Self-Assembled Vertically Aligned Nanocomposite Thin Films. Adv. Funct. Mater. 2011, 21 (13), 2423-2429. [145] Yan, L.; Yang, Y.; Wang, Z.; Xing, Z.; Li, J.; Viehland, D., Review of magnetoelectric perovskite–spinel self-assembled nano-composite thin films. J. Mater. Sci. 2009, 44 (19), 5080-5094. [146] Chakraverty, S.; Ohtomo, A.; Okude, M.; Ueno, K.; Kawasaki, M., Epitaxial Structure of (001)- and (111)-Oriented Perovskite Ferrate Films Grown by Pulsed-Laser Deposition. Cryst. Growth Des. 2010, 10 (4), 1725-1729. [147] Huang, J.; Wang, H.; Sun, X.; Zhang, X.; Wang, H., Multifunctional La0.67Sr0.33MnO3 (LSMO) thin films integrated on mica substrates toward flexible spintronics and electronics. ACS Appl. Mater. Interfaces 2018, 10 (49), 42698-42705. [148] Fan, J.; Xie, Y.; Qian, F.; Ji, Y.; Hu, D.; Tang, R.; Liu, W.; Zhang, L.; Tong, W.; Ma, C.; Yang, H., Isotropic magnetoresistance and enhancement of ferromagnetism through repetitious bending moments in flexible perovskite manganite thin film. J. Alloys Compd. 2019, 806, 753-760. [149] Liang, Z.; Ma, C.; Shen, L.; Lu, L.; Lu, X.; Lou, X.; Liu, M.; Jia, C. L., Flexible lead-free oxide film capacitors with ultrahigh energy storage performances in extremely wide operating temperature. Nano Energy 2019, 57, 519-527. [150] De Groot, F., X-ray absorption and dichroism of transition metals and their compounds. J. Electron. Spectros. Relat. Phenomena 1994, 67 (4), 529-622. [151] Tanaka, A.; Jo, T., Resonant 3d, 3p and 3s photoemission in transition metal oxides predicted at 2p threshold. J. Phys. Soc. Japan 1994, 63 (7), 2788-2807. [152] Thole, B.; Van der Laan, G.; Fuggle, J.; Sawatzky, G.; Karnatak, R.; Esteva, J.-M., 3d x-ray-absorption lines and the 3d94fn+ 1 multiplets of the lanthanides. Phys. Rev. B 1985, 32 (8), 5107. [153] Nemrava, S.; Vinnik, D. A.; Hu, Z.; Valldor, M.; Kuo, C. Y.; Zherebtsov, D. A.; Gudkova, S. A.; Chen, C. T.; Tjeng, L. H.; Niewa, R., Three Oxidation States of Manganese in the Barium Hexaferrite BaFe12-xMnxO19. Inorg. Chem. 2017, 56 (7), 3861-3866. [154] Wadati, H.; Geck, J.; Schierle, E.; Sutarto, R.; He, F.; Hawthorn, D.; Nakamura, M.; Kawasaki, M.; Tokura, Y.; Sawatzky, G., Revealing orbital and magnetic phase transitions in Pr0. 5Ca0. 5MnO3 epitaxial thin films by resonant soft x-ray scattering. New J. Phys. 2014, 16 (3), 033006. [155] Radaelli, G.; Gutiérrez, D.; Qian, M.; Fina, I.; Sánchez, F.; Baldrati, L.; Heidler, J.; Piamonteze, C.; Bertacco, R.; Fontcuberta, J., Strain-Controlled Responsiveness of Slave Half-Doped Manganite La0.5Sr0.5MnO3Layers Inserted in BaTiO3 Ferroelectric Tunnel Junctions. Adv. Electron. Mater. 2016, 2 (12). [156] Kozakov, A. T.; Kochur, A. G.; Trotsenko, V. G.; Nikolskii, A. V.; El Marssi, M.; Gorshunov, B. P.; Torgashev, V. I., Valence state of cations in manganites Pr1-xCaxMnO3 (0.3 ≤ x ≤ 0.5) from X-ray diffraction and X-ray photoelectron spectroscopy. J. Alloys Compd. 2018, 740, 132-142. [157] Mierwaldt, D.; Mildner, S.; Arrigo, R.; Knop-Gericke, A.; Franke, E.; Blumenstein, A.; Hoffmann, J.; Jooss, C., In Situ XANES/XPS Investigation of Doped Manganese Perovskite Catalysts. Catalysts 2014, 4 (2), 129-145. [158] Yang, Z. Q.; Zhang, Y. Q.; Aarts, J.; Wu, M. Y.; Zandbergen, H. W., Enhancing the charge ordering temperature in thin films of Pr0.5Ca0.5MnO3 by strain. Appl. Phys. Lett. 2006, 88 (7). [159] Herpers, A.; O’Shea, K. J.; MacLaren, D. A.; Noyong, M.; Rösgen, B.; Simon, U.; Dittmann, R., Competing strain relaxation mechanisms in epitaxially grown Pr0.48Ca0.52MnO3 on SrTiO3. APL Mater. 2014, 2 (10). [160] Elovaara, T.; Ahlqvist, T.; Majumdar, S.; Huhtinen, H.; Paturi, P., Melting of the charge-ordered state under substantially lower magnetic field in structurally improved Pr1−xCaxMnO3 thin films. J. Magn. Magn. Mater. 2015, 381, 194-202. [161] Staruch, M.; Stan, L.; Ronning, F.; Thompson, J.; Jia, Q.; Yoon, J.; Wang, H.; Jain, M., Magnetotransport properties of epitaxial Pr0.5Ca0.5MnO3 films grown by a solution technique. J. Magn. Magn. Mater. 2010, 322 (18), 2708-2711. [162] Xia, H.; Lu, L.; Ceder, G., Li diffusion in LiCoO2 thin films prepared by pulsed laser deposition. J. Power Sources 2006, 159 (2), 1422-1427. [163] Tsuruhama, T.; Hitosugi, T.; Oki, H.; Hirose, Y.; Hasegawa, T., Preparation of Layered-Rhombohedral LiCoO2 Epitaxial Thin Films Using Pulsed Laser Deposition. Appl. Phys. Express 2009, 2. [164] Huang, R.; Hitosugi, T.; Fisher, C. A. J.; Ikuhara, Y. H.; Moriwake, H.; Oki, H.; Ikuhara, Y., Phase transitions in LiCoO2 thin films prepared by pulsed laser deposition. Mater. Chem. Phys. 2012, 133 (2-3), 1101-1107. [165] Tan, H.; Takeuchi, S.; Bharathi, K. K.; Takeuchi, I.; Bendersky, L. A., Microscopy Study of Structural Evolution in Epitaxial LiCoO2 Positive Electrode Films during Electrochemical Cycling. ACS Appl. Mater. Interfaces 2016, 8 (10), 6727-35. [166] Ichimiya, A., Cohen, P. I., Reflection high-energy electron diffraction, Cambridge University Press, 2004. [167] Yang, J. C.; Liou, Y. D.; Tzeng, W. Y.; Liu, H. J.; Chang, Y. W.; Xiang, P. H.; Zhang, Z.; Duan, C. G.; Luo, C. W.; Chen, Y. C.; Chu, Y. H., Ultrafast Giant Photostriction of Epitaxial Strontium Iridate Film with Superior Endurance. Nano Lett. 2018, 18 (12), 7742-7748.
|