跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 02:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:顏敏
研究生(外文):Yen, Min
論文名稱:以彎曲控制電子傳輸特性於可撓氧化物異質磊晶系統
論文名稱(外文):Mechanically Bending Control of Electrical Properties in Flexible Oxide Heteroepitaxy
指導教授:朱英豪
指導教授(外文):Chu, Ying-Hao
口試日期:2020-06-29
學位類別:博士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:130
中文關鍵詞:氧化物雲母異質磊晶可撓
外文關鍵詞:oxidemicaheteroepitaxyflexible
相關次數:
  • 被引用被引用:0
  • 點閱點閱:298
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
在物聯網與工業4.0時代中,可撓式材料因為其強大應用潛力而引起廣泛地研究與開發,同時,隨著近年來穿戴式電子設備的需求快速增長,因此各種可能提升可撓式電子元件功能表現的替代方案也被積極探索與開發。另一方面,在過去二十年來,氧化物磊晶薄膜也因為被視為可取代矽基半導體的潛力材料之一,而持續被深入研究。因此,可撓式氧化物磊晶材料被提出,用以實現兼有可撓性與氧化物材料之高功能性。然而,因為缺乏適合的可撓式基板以及現今可撓晶圓的繁雜製程,可撓式氧化物磊晶材料的開發上已遇瓶頸,為突破此瓶頸,此論文中我們將利用雲母作為可撓式基板,開發兩種可撓式氧化物磊晶系統,並在此兩子題目中,展示彎曲調控電子傳輸特性與探討背後物理機制。
第一個子題中,我們將以「氧化鋅成長於白雲母上之透明異質磊晶系統」開發新穎透明彎曲感測器,並凸顯其優異的穩定性與靈敏度。此外,我們也透過各種量測分析去討論其巨大的電阻率改變特性與機制,包含:結構、電子傳輸、光學、應變與材料模擬,並得出:彎曲、應變、壓電位差、電荷累積與電阻率改變,這一連串結論。藉由此題目,我們為彎曲感測器開闢出嶄新的研究方向,並展現彎曲感測器在智慧感測元件中的潛力。第二個子題中,我們將聚焦在具有奈米柱狀結構於表面的「鐠鈣錳氧磊晶薄膜」於氟晶雲母上。透過結合特定奈米結構與氟晶雲母的可撓性,此系統在不同彎曲狀態下表現出優異的龐磁阻調控特性(~ 1000 %),顯示其在未來可撓式磁阻元件中的應用價值。在這子題中,我們主要藉由結構鑑定、吸收光譜與磁電傳輸特性量測,詳細探討此系統中的電子結構及磁性相態的轉變與其誘發之磁阻調控特性。綜合以上的研究成果,兩個子題皆以可撓式氧化物磊晶材料系統演繹出彎曲控制電子傳輸特性,並且展示其在新一代可撓電子元件中的應用價值。
Flexible electronic materials attract people’s attentions and have been extensively developed for its potential applications in the era of Internet of Things (IoT) and Industry 4.0. As the rapidly arising requirement is coming from flexible devices, scientists are looking for alternative solutions to comprehensively enhance their performance. In the meanwhile, heteroepitaxial oxide thin film has been explored in the past two decades because of its abundant functionalities and great potential to replace silicon-based semiconductor materials. Thus, flexible oxide heteroepitaxy is proposed to achieve great flexibility and retain high performance of oxides. However, the lack of suitable flexible substrates and the complicated process of fabrication hinder its development. To overcome these bottlenecks, in this thesis, we introduce muscovite (mica) as a flexible substrate and develop two mica-based flexible oxide heteroepitaxial systems. In addition, outstanding manipulations of their electrical properties via mechanical bending are exhibited and the physical mechanisms are deeply investigated.
In the first topic, Giant Resistivity Change of Transparent ZnO/muscovite Heteroepitaxy, a transparent flex sensor based on the heteroepitaxy of ZnO/muscovite is developed with the superior stability and sensitivity. In addition, the mechanism of the giant resistive change is studied with the scope of structure, transport, optics, strain and simulation. This topic demonstrates an extraordinary concept in the field of flex sensor for the design and development of next-generation smart sensor devices. In the second topic, Mechanical Modulation of Colossal Magnetoresistance in Flexible Epitaxial Perovskite Manganite, a finely designed Pr0.5Ca0.5MnO3 thin film with nanocolumn structure is developed on a F-mica substrate. Via the combination, this system presents the outstandingly mechanical modulation of CMR ratio (~ 1000 %) showing the potential in future flexible magnetoresistive devices. Besides, the tests of bending radius dependent resistance were carried out in a normal environment and demonstrated the tunability of near 30 %, which can be regarded as the potential in mechanical sensor devices. The detailed transitions of electronic states and magnetic phases are included for discussions. Generally speaking, both topics not only explores a field of mechanically tunable electrical properties by such designed heteroepitaxially flexible structures, but demonstrates their potential for future flexible electronic applications.
摘 要 i
ABSTRACT iii
ACKNOWLEDGEMENT v
CONTENTS vi
LIST OF FIGURES ix
Chapter 1 INTRODUCTION 1
1.1 A New Platform of Soft Technology Based on Muscovite 1
1.1.1 2D Materials and vdW Epitaxy 2
1.1.2 Muscovite 4
1.1.3 Functional Oxides Materials on Muscovite 6
1.1.4 MICAtronics – The Development of Electronics Based on Mica 10
1.1.5 The Future of MICAtronics 13
1.2 The Basic Properties of Zinc Oxide 16
1.3 The Basic Properties of Ca doped PrMnO3 18
1.4 Primarily Fundamental Features 20
1.4.1 Piezoelectric effect 20
1.4.2 Piezoresistance 23
1.4.3 Magnetoresistance 25
1.4.4 Magnetism 27
Chapter 2 EXPERIMENTAL METHODS 30
2.1 Sample Fabrication 30
2.1.1 Pulsed Laser Deposition 30
2.1.2 Sputter Deposition 31
2.2 Structural Characterization 33
2.2.1 X-ray Diffraction 33
2.2.2 Transmission Electron Microscopy 36
2.2.3 Scanning Electron Microscopy 38
2.3 Morphology 40
2.3.1 Atomic Force Microscopy 40
2.4 Spectroscopy 44
2.4.1 X-ray Photoelectron Spectroscopy 44
2.4.2 Raman Spectroscopy 45
2.4.3 X-ray Absorption Spectroscopy 48
2.5 Physical Properties 50
2.5.1 Transport – Physical Property Measurement System 50
2.5.2 Magnetic Properties – Vibrating Sample Magnetometer 52
2.6 Bending Measurement 53
Chapter 3 GIANT RESISTIVITY CHANGE OF TRANSPARENT ZnO/MUSCOVITE HETEROEPITAXY 55
3.1 Abstract 55
3.2 Motivation 55
3.3 Experimental Section 58
3.4 Prediction of ZnO/muscovite 59
3.5 Results and Discussion 62
3.5.1 Structural Characterization 62
3.5.2 Giant Resistivity Change 65
3.5.3 Hypothesis of Mechanism and Confirmation 67
3.5.4 Application of Strain 71
3.5.5 Establishment of Bending Model 73
3.5.6 Spatial Resolution of Resistivity Change 76
3.6 Demonstration of Transparent Mica Flex Sensor 77
3.7 Conclusions 80
Chapter 4 MECHANICAL MODULATION OF COLOSSAL MAGNETORESISTANCE IN FLEXIBLE EPITAXIAL PEROVSKITE MANGANITE 82
4.1 Abstract 82
4.2 Motivation 83
4.3 Experimental Section 85
4.4 Results and Discussion 86
4.4.1 Structural Characterization 86
4.4.2 Certification of Chemical Components 90
4.4.3 Magneto-transport 93
4.4.4 Mechanical Modulation of Colossal Magnetoresistance 95
4.4.5 Magnetism 100
4.5 Conclusions 102
Chapter 5 SUMMARY 104
APPENDIX. ESTABLISHMENT OF DOUBLE 2D STRUCTURE - THE GROWTH OF LiCoO2 ON MICA 106
A 1. Introduction 106
A 2. Experimental Methods 107
A 3. Results and Discussion 108
A 3 .1. Structural Characterization 108
A 3.1.1. X-ray Diffraction Analysis 109
A 3.1.2. Transmission Electron Microscopy 110
A 3.1.3. Raman Spectroscopy 112
A 3 .2. RHEED and Morphology 113
A 3 .3. Certification of Chemical Components 116
A 3 .4. Photostriction Measurements 116
A 4. Conclusions 118
REFERENCES 120
[1] Bao, Z.; Chen, X., Flexible and Stretchable Devices. Adv. Mater. 2016, 28 (22), 4177-4179.
[2] Bowden, N.; Brittain, S.; Evans, A. G.; Hutchinson, J. W.; Whitesides, G. M., Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 1998, 393 (6681), 146-149.
[3] Choi, M. C.; Kim, Y.; Ha, C. S., Polymers for flexible displays: From material selection to device applications. Prog. Polym. Sci. 2008, 33 (6), 581-630.
[4] Yen, M.; Bitla, Y.; Chu, Y. H., van der Waals heteroepitaxy on muscovite. Mater. Chem. Phys. 2019, 234, 185-195.
[5] Koma, A.; Sunouchi, K.; Miyajima, T., Fabrication and characterization of heterostructures with subnanometer thickness. Microelectron. Eng. 1984, 2, 129-136.
[6] Koma, A., Summary Abstract: Fabrication of ultrathin heterostructures with van der Waals epitaxy. J. V. Sci. Technol. B 1985, 3 (2), 724.
[7] Koma, A.; Yoshimura, K., Ultrasharp interfaces grown with Van der Waals epitaxy. Surf. Sci. 1986, 174 (1-3), 556-560.
[8] Koma, A.; Ueno, K.; Saiki, K., Heteroepitaxial growth by Van der Waals interaction in one-, two-and three-dimensional materials. J. Cryst. Growth 1991, 111 (1-4), 1029-1032.
[9] Koma, A., Van der Waals epitaxy - a new epitaxial growth method for a highly lattice-mismatched system. Thin Solid Films 1992, 216 (1), 72-76.
[10] Koma, A., Van der Waals epitaxy for highly lattice-mismatched systems. J. Cryst. Growth 1999, 201, 236-241.
[11] Jaegermann, W.; Klein, A.; Pettenkofer, C., Electronic properties of van der Waals-epitaxy films and interfaces, Electron Spectroscopies Applied to Low-Dimensional Materials, Springer, 2002.
[12] Utama, M. I. B.; de la Mata, M.; Magen, C.; Arbiol, J.; Xiong, Q., Twinning-, Polytypism-, and Polarity-Induced Morphological Modulation in Nonplanar Nanostructures with van der Waals Epitaxy. Adv. Funct. Mater. 2013, 23 (13), 1636-1646.
[13] Mitchell, B. S., An introduction to materials engineering and science for chemical and materials engineers, John Wiley & Sons, 2004.
[14] Butler, S. Z.; Hollen, S. M.; Cao, L.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J.; Ismach, A. F., Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS nano 2013, 7 (4), 2898-2926.
[15] Koma, A.; Saiki, K.; Sato, Y., Heteroepitaxy of a two-dimensional material on a three-dimensional material. Appl. Surf. Sci. 1990, 41, 451-456.
[16] Mauguin, C., Êtude du mica muscovite au moyen des rayons X. Compt. Rend. 1927, 185, 288-291.
[17] Pauling, L., The structure of the micas and related minerals. Proc. Nat. Acad. Sci. 1930, 16 (2), 123.
[18] Bitla, Y.; Chu, Y.-H., MICAtronics: A new platform for flexible X-tronics. Flatchem 2017, 3, 26-42.
[19] McCoul, D.; Hu, W.; Gao, M.; Mehta, V.; Pei, Q., Recent Advances in Stretchable and Transparent Electronic Materials. Adv. Electron. Mater. 2016, 2 (5).
[20] Hussain, A. M.; Hussain, M. M., CMOS-Technology-Enabled Flexible and Stretchable Electronics for Internet of Everything Applications. Adv. Mater. 2016, 28 (22), 4219-49.
[21] Wong, W. S.; Salleo, A., Flexible electronics: materials and applications, Springer Science & Business Media, 2009.
[22] Steinberg, S.; Ducker, W.; Vigil, G.; Hyukjin, C.; Frank, C.; Tseng, M.; Clarke, D.; Israelachvili, J., Van der Waals epitaxial growth of α-alumina nanocrystals on mica. Science 1993, 260 (5108), 656-659.
[23] Kendall, J.; Yeo, D., Magnetic susceptibility and anisotropy of mica. Proc. Phys. Soc. B 1951, 64 (2), 135.
[24] He, Y.; Dong, H.; Meng, Q.; Jiang, L.; Shao, W.; He, L.; Hu, W., Mica, a potential two-dimensional-crystal gate insulator for organic field-effect transistors. Adv. Mater. 2011, 23 (46), 5502-7.
[25] Nilsen, O.; Foss, S.; Fjellvåg, H.; Kjekshus, A., Effect of substrate on the characteristics of manganese(IV) oxide thin films prepared by atomic layer deposition. Thin Solid Films 2004, 468 (1-2), 65-74.
[26] Potin, V.; Bruyere, S.; Gillet, M.; Domechini, B.; Bourgeois, S., Growth, Structure, and Stability of KxWO3 Nanorods on Mica Substrate. J. Phys. Chem. C 2012, 116 (2), 1921-1929.
[27] Bitla, Y.; Chen, C.; Lee, H. C.; Do, T. H.; Ma, C. H.; Qui, L. V.; Huang, C. W.; Wu, W. W.; Chang, L.; Chiu, P. W.; Chu, Y. H., Oxide Heteroepitaxy for Flexible Optoelectronics. ACS Appl. Mater. Interfaces 2016, 8 (47), 32401-32407.
[28] Li, C.-I.; Lin, J. C.; Liu, H. J.; Chu, M. W.; Chen, H. W.; Ma, C. H.; Tsai, C. Y.; Huang, H. W.; Lin, H. J.; Liu, H. L.; Chiu, P. W.; Chu, Y. H., van der Waal Epitaxy of Flexible and Transparent VO2 Film on Muscovite. Chem. Mater. 2016, 28 (11), 3914-3919.
[29] Ma, C. H.; Lin, J. C.; Liu, H. J.; Do, T. H.; Zhu, Y. M.; Ha, T. D.; Zhan, Q.; Juang, J. Y.; He, Q.; Arenholz, E.; Chiu, P. W.; Chu, Y. H., Van der Waals epitaxy of functional MoO2 film on mica for flexible electronics. Appl. Phys. Lett. 2016, 108 (25).
[30] Wu, P. C.; Chen, P. F.; Do, T. H.; Hsieh, Y. H.; Ma, C. H.; Ha, T. D.; Wu, K. H.; Wang, Y. J.; Li, H. B.; Chen, Y. C., Heteroepitaxy of Fe3O4/muscovite: A new perspective for flexible spintronics. ACS Appl. Mater. Interfaces 2016, 8 (49), 33794-33801.
[31] Amrillah, T.; Bitla, Y.; Shin, K.; Yang, T.; Hsieh, Y. H.; Chiou, Y. Y.; Liu, H. J.; Do, T. H.; Su, D.; Chen, Y. C.; Jen, S. U.; Chen, L. Q.; Kim, K. H.; Juang, J. Y.; Chu, Y. H., Flexible Multiferroic Bulk Heterojunction with Giant Magnetoelectric Coupling via van der Waals Epitaxy. ACS Nano 2017, 11 (6), 6122-6130.
[32] Chen, Y.; Fan, L.; Fang, Q.; Xu, W.; Chen, S.; Zan, G.; Ren, H.; Song, L.; Zou, C., Free-standing SWNTs/VO2/Mica hierarchical films for high-performance thermochromic devices. Nano Energy 2017, 31, 144-151.
[33] Jiang, j.; Bitla, Y.; Huang, C. W.; Do, T. H.; Liu, H. J.; Hsieh, Y. H.; Ma, C. H.; Jang, C. Y.; Lai, Y. H.; Chiu, P. W.; Wu, W. W.; Chen, Y. C.; Zhou, Y. C.; Chu, Y. H., Flexible ferroelectric element based on van der Waals heteroepitaxy. Sci. Adv. 2017, 3, e1700121.
[34] Li, M.; Wang, Y.; Wang, Y.; Wei, X., AZO/Ag/AZO transparent flexible electrodes on mica substrates for high temperature application. Ceram. Int. 2017, 43 (17), 15442-15446.
[35] Liu, H. J.; Wang, C. K.; Su, D.; Amrillah, T.; Hsieh, Y. H.; Wu, K. H.; Chen, Y. C.; Juang, J. Y.; Eng, L. M.; Jen, S. U.; Chu, Y. H., Flexible Heteroepitaxy of CoFe2O4/Muscovite Bimorph with Large Magnetostriction. ACS Appl. Mater. Interfaces 2017, 9 (8), 7297-7304.
[36] Ke, S.; Xie, J.; Chen, C.; Lin, P.; Zeng, X.; Shu, L.; Fei, L.; Wang, Y.; Ye, M.; Wang, D., van der Waals epitaxy of Al-doped ZnO film on mica as a flexible transparent heater with ultrafast thermal response. Appl. Phys. Lett. 2018, 112 (3).
[37] Liu, J.; Feng, Y.; Tang, R.; Zhao, R.; Gao, J.; Shi, D.; Yang, H., Flexible Electronics: Mechanically Tunable Magnetic Properties of Flexible SrRuO3 Epitaxial Thin Films on Mica Substrates. Adv. Electron. Mater. 2018, 4 (4), 1870022.
[38] Ma, C. H.; Jiang, J.; Shao, P. W.; Peng, Q. X.; Huang, C. W.; Wu, P. C.; Lee, J. T.; Lai, Y. H.; Tsai, D. P.; Wu, J. M.; Lo, S. C.; Wu, W. W.; Zhou, Y. C.; Chiu, P. W.; Chu, Y. H., Transparent Antiradiative Ferroelectric Heterostructure Based on Flexible Oxide Heteroepitaxy. ACS Appl. Mater. Interfaces 2018, 10 (36), 30574-30580.
[39] Quynh, L. T.; Van, C. N.; Tzeng, W.; Huang, C. W.; Lai, Y. H.; Chen, J. W.; Tsai, K. A.; Wu, C. L.; Wu, W. W.; Luo, C. W., Flexible heteroepitaxy photoelectrode for photo-electrochemical water splitting. ACS Appl. Energy Mater. 2018, 1 (8), 3900-3907.
[40] Ren, C.; Tan, C.; Gong, L.; Tang, M.; Liao, M.; Tang, Y.; Zhong, X.; Guo, H.; Wang, J., Highly transparent, all-oxide, heteroepitaxy ferroelectric thin film for flexible electronic devices. Appl. Surf. Sci. 2018, 458, 540-545.
[41] Shen, L.; Liu, M.; Ma, C.; Lu, L.; Fu, H.; You, C.; Lu, X.; Jia, C.-L., Enhanced bending-tuned magnetic properties in epitaxial cobalt ferrite nanopillar arrays on flexible substrates. Mater. Horizons 2018, 5 (2), 230-239.
[42] Wang, D.; Yuan, G.; Hao, G.; Wang, Y., All-inorganic flexible piezoelectric energy harvester enabled by two-dimensional mica. Nano Energy 2018, 43, 351-358.
[43] Wu, P. C.; Lin, Y. P.; Juan, Y. H.; Wang, Y. M.; Thi-Hien, D.; Chang, H. Y.; Chu, Y. H., Epitaxial Yttria-Stabilized Zirconia on Muscovite for Flexible Transparent Ionic Conductors. ACS Appl. Nano Mater. 2018, 1 (12), 6890-6896.
[44] Le, V. Q.; Do, T. H.; Retamal, J. R. D.; Shao, P. W.; Lai, Y. H.; Wu, W. W.; He, J. H.; Chueh, Y. L.; Chu, Y. H., Van der Waals heteroepitaxial AZO/NiO/AZO/muscovite (ANA/muscovite) transparent flexible memristor. Nano Energy 2019, 56, 322-329.
[45] Ha, D. T.; Yen, M.; Yu, H. L.; Kuo, C. Y.; Chen, C. T.; Tanaka, A.; Tsai, L. Z.; Zhao, Y. F.; Duan, C. G.; Lee, S. F., Mechanically tunable exchange coupling of Co/CoO bilayers on flexible muscovite substrate. Nanoscale 2020.
[46] Yen, M.; Lai, Y. H.; Zhang, C. L.; Cheng, H. Y.; Hsieh, Y. T.; Chen, J. W.; Chen, Y. C.; Chang, L.; Tsou, N. T.; Li, J., Giant Resistivity Change of Transparent ZnO/muscovite Heteroepitaxy. ACS Appl. Mater. Interfaces 2020.
[47] Ginley, D.; Hosono, H.; Paine, D., Handbook of Transparent Conductors, Springer, 2010.
[48] Ellmer, K., Past achievements and future challenges in the development of optically transparent electrodes. Nat. Photonics 2012, 6 (12), 809-817.
[49] Ohta, H.; Orita, M.; Hirano, M.; Hosono, H., Surface morphology and crystal quality of low resistive indium tin oxide grown on yittria-stabilized zirconia. J. Appl. Phys. 2002, 91 (6), 3547-3550.
[50] Hormoz, S.; Ramanathan, S., Limits on vanadium oxide Mott metal–insulator transition field-effect transistors. Solid State Electron. 2010, 54 (6), 654-659.
[51] Nakano, M.; Shibuya, K.; Okuyama, D.; Hatano, T.; Ono, S.; Kawasaki, M.; Iwasa, Y.; Tokura, Y., Collective bulk carrier delocalization driven by electrostatic surface charge accumulation. Nature 2012, 487 (7408), 459-62.
[52] Tsai, M. F.; Jiang, J.; Shao, P. W.; Lai, Y. H.; Chen, J. W.; Ho, S. Z.; Chen, Y. C.; Tsai, D. P.; Chu, Y. H., Oxide Heteroepitaxy-Based Flexible Ferroelectric Transistor. ACS Appl. Mater. Interfaces 2019, 11 (29), 25882-25890.
[53] Castellanos-Gomez, A.; Poot, M.; Amor-Amorós, A.; Steele, G. A.; van der Zant, H. S.; Agraït, N.; Rubio-Bollinger, G., Mechanical properties of freely suspended atomically thin dielectric layers of mica. Nano Res. 2012, 5 (8), 550-557.
[54] Wu, P. C.; Chu, Y. H., Development of oxide heteroepitaxy for soft technology. J. Mater. Chem. C 2018, 6 (23), 6102-6117.
[55] Bitla, Y.; Chu, Y. H., Development of magnetoelectric nanocomposite for soft technology. J. Phys. D 2018, 51 (23), 234006.
[56] Chu, Y. H.,Van der Waals oxide heteroepitaxy, npj Quant. Mater. 2017, 2, 67.
[57] Wang, Q.; Li, J.; Lei, Y.; Wen, Y.; Wang, Z.; Zhan, X.; Wang, F.; Wang, F.; Huang, Y.; Xu, K., Oriented growth of Pb1− xSnxTe nanowire arrays for integration of flexible infrared detectors. Adv. Mater. 2016, 28 (18), 3596-3601.
[58] Zhou, Y.; Nie, Y.; Liu, Y.; Yan, K.; Hong, J.; Jin, C.; Zhou, Y.; Yin, J.; Liu, Z.; Peng, H., Epitaxy and photoresponse of two-dimensional GaSe crystals on flexible transparent mica sheets. ACS nano 2014, 8 (2), 1485-1490.
[59] Janotti, A.; Van de Walle, C. G., Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 2009, 72 (12), 126501.
[60] Lee, L.; Hwang, J.; Jung, J. W.; Kim, J.; Lee, H. I.; Heo, S.; Yoon, M.; Choi, S.; Van Long, N.; Park, J., ZnO composite nanolayer with mobility edge quantization for multi-value logic transistors. Nat. Commun. 2019, 10 (1), 1-9.
[61] Zhang, Y.; Mei, Z.; Cui, S.; Liang, H.; Liu, Y.; Du, X., Flexible Transparent Field‐Effect Diodes Fabricated at Low‐Temperature with All‐Oxide Materials. Adv. Electron. Mater. 2016, 2 (5), 1500486.
[62] Dagotto, E.; Hotta, T.; Moreo, A., Colossal magnetoresistant materials: the key role of phase separation. Phys. Rep. 2001, 344 (1-3), 1-153.
[63] Tokura, Y.; Tomioka, Y., Colossal magnetoresistive manganites. J. Magn. Magn. Mater. 1999, 200 (1-3), 1-23.
[64] Martin, C.; Maignan, A.; Hervieu, M.; Raveau, B., Magnetic phase diagrams of L 1− x A x MnO3 manganites (L= P r, S m; A= C a, S r). Phys. Rev. B 1999, 60 (17), 12191.
[65] Tomioka, Y.; Asamitsu, A.; Kuwahara, H.; Moritomo, Y.; Tokura, Y., Magnetic-field-induced metal-insulator phenomena in Pr1− xCaxMnO3 with controlled charge-ordering instability. Phys. Rev. B 1996, 53 (4), R1689.
[66] Zhang, J.; Wang, C.; Bowen, C., Piezoelectric effects and electromechanical theories at the nanoscale. Nanoscale 2014, 6 (22), 13314-27.
[67] Uchino, K., The development of piezoelectric materials and the new perspective, Advanced Piezoelectric Materials, 2010.
[68] Dahiya, R. S.; Valle, M., Robotic Tactile Sensing, Springer, 2013.
[69] Barlian, A. A.; Park, W. T.; Mallon, J. R., Jr.; Rastegar, A. J.; Pruitt, B. L., Review: Semiconductor Piezoresistance for Microsystems. Proc. IEEE Inst. Electr. Electron. Eng. 2009, 97 (3), 513-552.
[70] Bao, M.-H., Piezoresistive sensing. In Micro Mechanical Transducers - Pressure Sensors, Accelerometers and Gyroscopes, 2000; pp 199-239.
[71] Hishiyama, Y.; Kaburagi, Y.; Inagaki, M., Magnetoresistance, Materials Science and Engineering of Carbon, 2016.
[72] Tokura, Y., Critical features of colossal magnetoresistive manganites. Rep. Prog. Phys. 2006, 69 (3), 797-851.
[73] Baibich, M. N.; Broto, J. M.; Fert, A.; Van Dau, F. N.; Petroff, F.; Etienne, P.; Creuzet, G.; Friederich, A.; Chazelas, J., Giant magnetoresistance of (001) Fe/(001) Cr magnetic superlattices. Phys. Rev. Lett. 1988, 61 (21), 2472.
[74] Das, P.; Colombo, M.; Prosperi, D., Recent advances in magnetic fluid hyperthermia for cancer therapy. Colloids. Surf. B 2019, 174, 42-55.
[75] Coey, J. M., Magnetism and magnetic materials, Cambridge university press, 2010.
[76] Huang, Y. L.; Zheng, L.; Chen, P.; Cheng, X.; Hsu, S. L.; Yang, T.; Wu, X.; Ponet, L.; Ramesh, R.; Chen, L. Q.; Artyukhin, S.; Chu, Y. H.; Lai, K., Unexpected Giant Microwave Conductivity in a Nominally Silent BiFeO3 Domain Wall. Adv. Mater. 2020, 32 (9), e1905132.
[77] Martin, L. W.; Chu, Y. H.; Ramesh, R., Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films. Mater. Sci. Eng. R Rep. 2010, 68 (4-6), 89-133.
[78] Han, J. G., Recent progress in thin film processing by magnetron sputtering with plasma diagnostics. J. Phys. D 2009, 42 (4).
[79] Gulbiński, W., Deposition of Thin Films by Sputtering, Chemical Physics of Thin Film Deposition Processes for Micro-and Nano-Technologies, Springer: 2002.
[80] https://www.adnano-tek.com/magnetron-sputtering-deposition-msd.html.
[81] Kelly, P. J.; Arnell, R. D., Magnetron sputtering: a review of recent developments and applications. Vacuum 2000, 56 (3), 159-172.
[82] Vossen, J. L., Control of Film Properties by rf-Sputtering Techniques. J. Vac. Sci. Technol. 1971, 8 (5), S12-S30.
[83] Misture, S., Snyder, R., X-ray Diffraction, 2001.
[84] Dinnebier, R. E.; Friese, K., Modern XRD methods in mineralogy, Max-Planck-Institute for Solid State Research, Stuttgart 2003.
[85] Whittig, L.; Allardice, W., X‐ray diffraction techniques, Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods, 1986, 5, 331-362.
[86] Flegler, S. L.; Flegler, S. L., Scanning & Transmission Electron Microscopy, Oxford University Press, 1997.
[87] http://nanofase.eu/show/element_1454.
[88] Kundu, M.; Pramanik, P.; Maity, A.; Joshi, D.; Wani, S.; Krishnan, P.; Mukherjee, A.; Shubha, K., Engineered Nanomaterials: Classification and Strategies for Physicochemical Characterization and Advanced Analytical Techniques for the Measurement of Nanomaterials in Plant Samples, Advances in Phytonanotechnology, Elsevier, 2019.
[89] Inkson, B. J., Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization, Materials Characterization Using Nondestructive Evaluation (NDE) Methods, Woodhead Publishing, 2016.
[90] Tararam, R.; Garcia, P. S.; Deda, D. K.; Varela, J. A.; de Lima Leite, F., Atomic Force Microscopy: A Powerful Tool for Electrical Characterization, 2017, pp 37-64.
[91] Voigtländer, B., Scanning probe microscopy: Atomic force microscopy and scanning tunneling microscopy, Springer, 2015.
[92] Sikora, A., Quantitative Normal Force Measurements by Means of Atomic Force Microscopy Towards the Accurate and Easy Spring Constant Determination. Nanoscience and Nanometrology 2016, 2 (1).
[93] Konno, H., X-ray Photoelectron Spectroscopy, Butterworth-Heinemann, 2016.
[94] https://jacobs.physik.unisaarland.de/home/index.php?page=steinbeiss/home_cms_steinbeissdet3-1&navi=service
[95] Jones, R. R.; Hooper, D. C.; Zhang, L.; Wolverson, D.; Valev, V. K., Raman Techniques: Fundamentals and Frontiers. Nanoscale Res. Lett. 2019, 14 (1), 231.
[96] Long, D., Quantum mechanical theory of Rayleigh and Raman scattering, John Wiley & Sons, Ltd, Chichester, UK, 2002, 18.
[97] Schnohr, C. S.; Ridgway, M. C., Introduction to X-Ray Absorption Spectroscopy. In X-Ray Absorption Spectroscopy of Semiconductors, 2015; pp 1-26.
[98] Nelson, R. C.; Miller, J. T., An introduction to X-ray absorption spectroscopy and its in situ application to organometallic compounds and homogeneous catalysts. Catal. Sci. Technol. 2012, 2 (3), 461-470.
[99] QuantumDesign, Vibrating Sample Magnetometer (VSM) Option User’s Manual
[100] Neuzil, P.; Wong, C. C.; Reboud, J., Electrically controlled giant piezoresistance in silicon nanowires. Nano Lett. 2010, 10 (4), 1248-1252.
[101] Shao, R.; Zheng, K.; Zhang, Y.; Li, Y.; Zhang, Z.; Han, X., Piezoresistance behaviors of ultra-strained SiC nanowires. Appl. Phys. Lett. 2012, 101 (23), 233109.
[102] Bessonov, A.; Kirikova, M.; Haque, S.; Gartseev, I.; Bailey, M. J., Highly reproducible printable graphite strain gauges for flexible devices. Sens. Actuators A Phys. 2014, 206, 75-80.
[103] Jeong, Y. R.; Park, H.; Jin, S. W.; Hong, S. Y.; Lee, S. S.; Ha, J. S., Highly stretchable and sensitive strain sensors using fragmentized graphene foam. Adv. Funct. Mater. 2015, 25 (27), 4228-4236.
[104] Eswaraiah, V.; Balasubramaniam, K.; Ramaprabhu, S., One-pot synthesis of conducting graphene–polymer composites and their strain sensing application. Nanoscale 2012, 4 (4), 1258-1262.
[105] Stampfer, C.; Jungen, A.; Linderman, R.; Obergfell, D.; Roth, S.; Hierold, C., Nano-electromechanical displacement sensing based on single-walled carbon nanotubes. Nano Lett. 2006, 6 (7), 1449-1453.
[106] Yuen, A. C.; Bakir, A. A.; Rajdi, N. N. Z. M.; Lam, C. L.; Saleh, S. M.; Wicaksono, D. H., Proprioceptive sensing system for therapy assessment using cotton fabric-based biomedical microelectromechanical system. IEEE Sens. J. 2014, 14 (8), 2872-2880.
[107] Latessa, G.; Brunetti, F.; Reale, A.; Saggio, G.; Di Carlo, A., Piezoresistive behaviour of flexible PEDOT: PSS based sensors. Sens. Actuators B Chem. 2009, 139 (2), 304-309.
[108] Kirchmeyer, S.; Reuter, K., Scientific importance, properties and growing applications of poly (3, 4-ethylenedioxythiophene). J. Mater. Chem. 2005, 15 (21), 2077-2088.
[109] Zhu, R.; Yang, R., Separation of the piezotronic and piezoresistive effects in a zinc oxide nanowire. Nanotechnology 2014, 25 (34), 345702.
[110] Xue, F.; Zhang, L.; Tang, W.; Zhang, C.; Du, W.; Wang, Z. L., Piezotronic effect on ZnO nanowire film based temperature sensor. ACS Appl. Mater. Interfaces 2014, 6 (8), 5955-5961.
[111] Zhang, Y.; Liu, Y.; Wang, Z. L., Fundamental theory of piezotronics. Adv. Mater. 2011, 23 (27), 3004-3013.
[112] Zhou, J.; Gu, Y.; Fei, P.; Mai, W.; Gao, Y.; Yang, R.; Bao, G.; Wang, Z. L., Flexible piezotronic strain sensor. Nano Lett. 2008, 8 (9), 3035-3040.
[113] Yang, Y.; Guo, W.; Qi, J.; Zhang, Y., Flexible piezoresistive strain sensor based on single Sb-doped ZnO nanobelts. Appl. Phys. Lett. 2010, 97 (22).
[114] Barlian, A. A.; Park, W. T.; Mallon, J. R.; Rastegar, A. J.; Pruitt, B. L., Semiconductor piezoresistance for microsystems. Proc. IEEE Inst. Electr. Electron. Eng. 2009, 97 (3), 513-552.
[115] Zhang, C.; Chen, W.; Li, J.; Yang, J., Two-dimensional analysis of magnetoelectric effects in multiferroic laminated plates. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2009, 56 (5), 1046-1053.
[116] Wang, C. L.; Tsai, S. J.; Chen, J. W.; Shiu, H. W.; Chang, L. Y.; Lin, K. H.; Hsu, H. C.; Chen, Y. C.; Chen, C. H.; Wu, C. L., Imaging and characterization of piezoelectric potential in a single bent ZnO microwire. Appl. Phys. Lett. 2014, 105 (12).
[117] Yang, Y.; Guo, W.; Qi, J.; Zhang, Y., Flexible piezoresistive strain sensor based on single Sb-doped ZnO nanobelts. Appl. Phys. Lett. 2010, 97 (22), 223107.
[118] Wang, C. L.; Tsai, S. J.; Chen, J. W.; Shiu, H. W.; Chang, L. Y.; Lin, K. H.; Hsu, H. C.; Chen, Y. C.; Chen, C. H.; Wu, C. L., Imaging and characterization of piezoelectric potential in a single bent ZnO microwire. Appl. Phys. Lett. 2014, 105 (12), 123115.
[119] Shao, R. W.; Zheng, K.; Wei, B.; Zhang, Y. F.; Li, Y. J.; Han, X. D.; Zhang, Z.; Zou, J., Bandgap engineering and manipulating electronic and optical properties of ZnO nanowires by uniaxial strain. Nanoscale 2014, 6 (9), 4936-4941.
[120] Gao, Z.; Zhou, J.; Gu, Y.; Fei, P.; Hao, Y.; Bao, G.; Wang, Z. L., Effects of piezoelectric potential on the transport characteristics of metal-ZnO nanowire-metal field effect transistor. J. Appl. Phys. 2009, 105 (11), 113707.
[121] Zhou, J.; Fei, P.; Gu, Y.; Mai, W.; Gao, Y.; Yang, R.; Bao, G.; Wang, Z. L., Piezoelectric-potential-controlled polarity-reversible Schottky diodes and switches of ZnO wires. Nano Lett. 2008, 8 (11), 3973-3977.
[122] Gruber, T.; Prinz, G.; Kirchner, C.; Kling, R.; Reuss, F.; Limmer, W.; Waag, A., Influences of biaxial strains on the vibrational and exciton energies in ZnO. J. Appl. Phys. 2004, 96 (1), 289-293.
[123] Morris, B. A., The science and technology of flexible packaging: multilayer films from resin and process to end use, William Andrew, 2016.
[124] Li, J.; Orrego, S.; Pan, J.; He, P.; Kang, S. H., Ultrasensitive, flexible, and low-cost nanoporous piezoresistive composites for tactile pressure sensing. Nanoscale 2019, 11 (6), 2779-2786.
[125] Kaps, S.; Bhowmick, S.; Grottrup, J.; Hrkac, V.; Stauffer, D.; Guo, H.; Warren, O. L.; Adam, J.; Kienle, L.; Minor, A. M., Piezoresistive response of quasi-one-dimensional ZnO nanowires using an in situ electromechanical device. ACS Omega 2017, 2 (6), 2985-2993.
[126] Hamers, R. J., Flexible electronic futures. Nature 2001, 412 (6846), 489-490.
[127] McCauley, J. W.; Newnham, R.; Gibbs, G., Crystal structure analysis of synthetic fluorophlogopite. Am. Mineral. 1973, 58, 249-254.
[128] Ko, D.; Tsai, M.; Chen, J.; Shao, P.; Tan, Y.; Wang, J.; Ho, S.; Lai, Y.; Chueh, Y.; Chen, Y., Mechanically controllable nonlinear dielectrics. Sci. Adv. 2020, 6 (10), eaaz3180.
[129] Bluschke, M.; Frano, A.; Schierle, E.; Minola, M.; Hepting, M.; Christiani, G.; Logvenov, G.; Weschke, E.; Benckiser, E.; Keimer, B., Transfer of Magnetic Order and Anisotropy through Epitaxial Integration of 3d and 4f Spin Systems. Phys. Rev. Lett. 2017, 118 (20), 207203.
[130] Ramirez, A., Colossal magnetoresistance. J. Phys. Condens. Matter. 1997, 9 (39), 8171.
[131] Elovaara, T.; Huhtinen, H.; Majumdar, S.; Paturi, P., Irreversible metamagnetic transition and magnetic memory in small-bandwidth manganite Pr1− xCaxMnO3 (x= 0.0–0.5). J. Phys. Condens. Matter. 2012, 24 (21), 216002.
[132] Hardy, V.; Wahl, A.; Martin, C.; Simon, C., Low-temperature specific heat in Pr0.63Ca0.37MnO3: phase separation and metamagnetic transition. Phys. Rev. B 2001, 63 (22), 224403.
[133] Kolat, V.; Izgi, T.; Kaya, A.; Bayri, N.; Gencer, H.; Atalay, S., Metamagnetic transition and magnetocaloric effect in charge-ordered Pr0.68Ca0.32− xSrxMnO3 (x= 0, 0.1, 0.18, 0.26 and 0.32) compounds. J. Magn. Magn. Mater. 2010, 322 (4), 427-433.
[134] Jirák, Z.; Damay, F.; Hervieu, M.; Martin, C.; Raveau, B.; André, G.; Bourée, F., Magnetism and charge ordering in Pr0.5CaxSr0.5− xMnO3 (x= 0.09 and 0. 5). Phys. Rev. B 2000, 61 (2), 1181.
[135] Kajimoto, R.; Yoshizawa, H.; Tomioka, Y.; Tokura, Y., Commensurate-incommensurate transition in the melting process of orbital ordering in Pr 0.5 Ca 0.5 MnO 3: A neutron diffraction study. Phys. Rev. B 2001, 63 (21), 212407.
[136] Prellier, W.; Haghiri-Gosnet, A. M.; Mercey, B.; Lecoeur, P.; Hervieu, M.; Simon, C.; Raveau, B., Spectacular decrease of the melting magnetic field in the charge-ordered state of Pr0.5Ca0.5MnO3 films under tensile strain. Appl. Phys. Lett. 2000, 77 (7).
[137] Yang, Z.; Hendrikx, R.; Bentum, P. v.; Aarts, J., Disorder-induced melting of the charge order in thin films of Pr0.5Ca0.5MnO3. EPL 2002, 58 (6), 864.
[138] Yada, H.; Ijiri, Y.; Uemura, H.; Tomioka, Y.; Okamoto, H., Enhancement of Photoinduced Charge-Order Melting via Anisotropy Control by Double-Pulse Excitation in Perovskite Manganites: Pr0.6Ca0.4MnO3. Phys. Rev. Lett. 2016, 116 (7), 076402.
[139] Tokunaga, M.; Miura, N.; Tomioka, Y.; Tokura, Y., High-magnetic-field study of the phase transitions of R1− xCaxMnO3 (R= Pr, Nd). Phys. Rev. B 1998, 57 (9), 5259.
[140] Zhang, Y. Q.; Zhu, Y. L.; Zhang, Z. D.; Aarts, J., Defect-induced charge-order melting in thin films of Pr0.5Ca0.5MnO3. J. Appl. Phys. 2007, 101 (6).
[141] Antonakos, A.; Palles, D.; Liarokapis, E.; Filippi, M.; Prellier, W., Evaluation of the strains in charge-ordered Pr1− xCaxMnO3 thin films using Raman spectroscopy. J. Appl. Phys. 2008, 104 (6), 063508.
[142] Jiang, J.; Henry, L. L.; Gnanasekar, K.; Chen, C.; Meletis, E. I., Self-assembly of highly epitaxial (La, Sr) MnO3 nanorods on (001) LaAlO3. Nano Lett. 2004, 4 , 741-745.
[143] MacManus-Driscoll, J. L.; Zerrer, P.; Wang, H.; Yang, H.; Yoon, J.; Fouchet, A.; Yu, R.; Blamire, M. G.; Jia, Q., Strain control and spontaneous phase ordering in vertical nanocomposite heteroepitaxial thin films. Nat. Mater. 2008, 7 (4), 314-20.
[144] Chen, A.; Bi, Z.; Tsai, C. F.; Lee, J.; Su, Q.; Zhang, X.; Jia, Q.; MacManus-Driscoll, J. L.; Wang, H., Tunable Low-Field Magnetoresistance in (La0.7Sr0.3MnO3)0.5:(ZnO)0.5 Self-Assembled Vertically Aligned Nanocomposite Thin Films. Adv. Funct. Mater. 2011, 21 (13), 2423-2429.
[145] Yan, L.; Yang, Y.; Wang, Z.; Xing, Z.; Li, J.; Viehland, D., Review of magnetoelectric perovskite–spinel self-assembled nano-composite thin films. J. Mater. Sci. 2009, 44 (19), 5080-5094.
[146] Chakraverty, S.; Ohtomo, A.; Okude, M.; Ueno, K.; Kawasaki, M., Epitaxial Structure of (001)- and (111)-Oriented Perovskite Ferrate Films Grown by Pulsed-Laser Deposition. Cryst. Growth Des. 2010, 10 (4), 1725-1729.
[147] Huang, J.; Wang, H.; Sun, X.; Zhang, X.; Wang, H., Multifunctional La0.67Sr0.33MnO3 (LSMO) thin films integrated on mica substrates toward flexible spintronics and electronics. ACS Appl. Mater. Interfaces 2018, 10 (49), 42698-42705.
[148] Fan, J.; Xie, Y.; Qian, F.; Ji, Y.; Hu, D.; Tang, R.; Liu, W.; Zhang, L.; Tong, W.; Ma, C.; Yang, H., Isotropic magnetoresistance and enhancement of ferromagnetism through repetitious bending moments in flexible perovskite manganite thin film. J. Alloys Compd. 2019, 806, 753-760.
[149] Liang, Z.; Ma, C.; Shen, L.; Lu, L.; Lu, X.; Lou, X.; Liu, M.; Jia, C. L., Flexible lead-free oxide film capacitors with ultrahigh energy storage performances in extremely wide operating temperature. Nano Energy 2019, 57, 519-527.
[150] De Groot, F., X-ray absorption and dichroism of transition metals and their compounds. J. Electron. Spectros. Relat. Phenomena 1994, 67 (4), 529-622.
[151] Tanaka, A.; Jo, T., Resonant 3d, 3p and 3s photoemission in transition metal oxides predicted at 2p threshold. J. Phys. Soc. Japan 1994, 63 (7), 2788-2807.
[152] Thole, B.; Van der Laan, G.; Fuggle, J.; Sawatzky, G.; Karnatak, R.; Esteva, J.-M., 3d x-ray-absorption lines and the 3d94fn+ 1 multiplets of the lanthanides. Phys. Rev. B 1985, 32 (8), 5107.
[153] Nemrava, S.; Vinnik, D. A.; Hu, Z.; Valldor, M.; Kuo, C. Y.; Zherebtsov, D. A.; Gudkova, S. A.; Chen, C. T.; Tjeng, L. H.; Niewa, R., Three Oxidation States of Manganese in the Barium Hexaferrite BaFe12-xMnxO19. Inorg. Chem. 2017, 56 (7), 3861-3866.
[154] Wadati, H.; Geck, J.; Schierle, E.; Sutarto, R.; He, F.; Hawthorn, D.; Nakamura, M.; Kawasaki, M.; Tokura, Y.; Sawatzky, G., Revealing orbital and magnetic phase transitions in Pr0. 5Ca0. 5MnO3 epitaxial thin films by resonant soft x-ray scattering. New J. Phys. 2014, 16 (3), 033006.
[155] Radaelli, G.; Gutiérrez, D.; Qian, M.; Fina, I.; Sánchez, F.; Baldrati, L.; Heidler, J.; Piamonteze, C.; Bertacco, R.; Fontcuberta, J., Strain-Controlled Responsiveness of Slave Half-Doped Manganite La0.5Sr0.5MnO3Layers Inserted in BaTiO3 Ferroelectric Tunnel Junctions. Adv. Electron. Mater. 2016, 2 (12).
[156] Kozakov, A. T.; Kochur, A. G.; Trotsenko, V. G.; Nikolskii, A. V.; El Marssi, M.; Gorshunov, B. P.; Torgashev, V. I., Valence state of cations in manganites Pr1-xCaxMnO3 (0.3 ≤ x ≤ 0.5) from X-ray diffraction and X-ray photoelectron spectroscopy. J. Alloys Compd. 2018, 740, 132-142.
[157] Mierwaldt, D.; Mildner, S.; Arrigo, R.; Knop-Gericke, A.; Franke, E.; Blumenstein, A.; Hoffmann, J.; Jooss, C., In Situ XANES/XPS Investigation of Doped Manganese Perovskite Catalysts. Catalysts 2014, 4 (2), 129-145.
[158] Yang, Z. Q.; Zhang, Y. Q.; Aarts, J.; Wu, M. Y.; Zandbergen, H. W., Enhancing the charge ordering temperature in thin films of Pr0.5Ca0.5MnO3 by strain. Appl. Phys. Lett. 2006, 88 (7).
[159] Herpers, A.; O’Shea, K. J.; MacLaren, D. A.; Noyong, M.; Rösgen, B.; Simon, U.; Dittmann, R., Competing strain relaxation mechanisms in epitaxially grown Pr0.48Ca0.52MnO3 on SrTiO3. APL Mater. 2014, 2 (10).
[160] Elovaara, T.; Ahlqvist, T.; Majumdar, S.; Huhtinen, H.; Paturi, P., Melting of the charge-ordered state under substantially lower magnetic field in structurally improved Pr1−xCaxMnO3 thin films. J. Magn. Magn. Mater. 2015, 381, 194-202.
[161] Staruch, M.; Stan, L.; Ronning, F.; Thompson, J.; Jia, Q.; Yoon, J.; Wang, H.; Jain, M., Magnetotransport properties of epitaxial Pr0.5Ca0.5MnO3 films grown by a solution technique. J. Magn. Magn. Mater. 2010, 322 (18), 2708-2711.
[162] Xia, H.; Lu, L.; Ceder, G., Li diffusion in LiCoO2 thin films prepared by pulsed laser deposition. J. Power Sources 2006, 159 (2), 1422-1427.
[163] Tsuruhama, T.; Hitosugi, T.; Oki, H.; Hirose, Y.; Hasegawa, T., Preparation of Layered-Rhombohedral LiCoO2 Epitaxial Thin Films Using Pulsed Laser Deposition. Appl. Phys. Express 2009, 2.
[164] Huang, R.; Hitosugi, T.; Fisher, C. A. J.; Ikuhara, Y. H.; Moriwake, H.; Oki, H.; Ikuhara, Y., Phase transitions in LiCoO2 thin films prepared by pulsed laser deposition. Mater. Chem. Phys. 2012, 133 (2-3), 1101-1107.
[165] Tan, H.; Takeuchi, S.; Bharathi, K. K.; Takeuchi, I.; Bendersky, L. A., Microscopy Study of Structural Evolution in Epitaxial LiCoO2 Positive Electrode Films during Electrochemical Cycling. ACS Appl. Mater. Interfaces 2016, 8 (10), 6727-35.
[166] Ichimiya, A., Cohen, P. I., Reflection high-energy electron diffraction, Cambridge University Press, 2004.
[167] Yang, J. C.; Liou, Y. D.; Tzeng, W. Y.; Liu, H. J.; Chang, Y. W.; Xiang, P. H.; Zhang, Z.; Duan, C. G.; Luo, C. W.; Chen, Y. C.; Chu, Y. H., Ultrafast Giant Photostriction of Epitaxial Strontium Iridate Film with Superior Endurance. Nano Lett. 2018, 18 (12), 7742-7748.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top