跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2026/01/02 20:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:羅元祥
研究生(外文):Lo, Yuan-Hsiang
論文名稱:噴流衝擊於具溝槽表面之熱傳研究
論文名稱(外文):Jet Impingement Heat Transfer On Target Surface with Grooves
指導教授:劉耀先
指導教授(外文):Liu, Yao-Hsien
口試委員:劉耀先傅武雄王啟川鄭藏勝曾慶祺
口試委員(外文):Liu, Yao-HsienFu, Wu-ShungWang, Chi-ChuanCheng, Tsarng-ShengTseng, Ching-Chi
口試日期:2017-05-26
學位類別:博士
校院名稱:國立交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:161
中文關鍵詞:噴流衝擊暫態熱傳暫態液晶顯影技術熱傳紐賽數溝槽
外文關鍵詞:Jet impingementTransient heat transferTransient liquid crystal technologyNusselt NumberGrooves
相關次數:
  • 被引用被引用:0
  • 點閱點閱:325
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
本研究應用暫態液晶熱像法(Transient liquid crystal thermography)在衝擊冷卻通道內具溝槽表面的熱傳量測。實驗操作流量雷諾數為2500、5100、7700。衝擊目標面分為平滑與矩形溝槽,溝槽方向分為0°、45˚、90°,溝槽底面分為平直與錐形(Tapered)溝槽。溝槽涵盖範圍為全溝槽與半溝槽兩類。衝擊氣流分別為對正(Inline)衝擊於溝槽以及交錯(Staggered)衝擊兩種。衝擊孔口板厚度為5 mm,而圓孔直徑5 mm以4×12矩形陣列,孔口間距為2倍孔洞直徑。噴流孔到受衝擊目標面間距為3倍孔洞直徑。噴流孔口間距與噴流孔口到目標衝擊面間距(H/d)為4 and 3。結果指出橫向對正較縱向對正溝槽擁有更好的熱傳分佈。縱向溝槽的橫向流效應較橫向溝槽小,且噴流確實擊於溝槽處。以縱向對正溝槽為研究的主軸,探討三種出口類型:下游出口、雙向出口、上游出口。雷諾數越高,上游氣流向下推擠,衝擊噴流向出口方向偏移,使噴射流無法正交衝擊於目標處,因此上游熱對流高於下游。以45˚溝槽分佈於全測試片的研究,不同於橫向對正溝槽下游處,因橫向流使噴流偏離出溝槽外,引起的氣流向45˚溝槽流動影響通道內流場的對稱,熱傳平均分佈的效益較低。
而半溝槽分為上游溝槽與下游溝槽兩種,以上游溝槽的整體平均紐塞數高於下游溝槽。其原因為上游的溝槽受到噴流衝擊的流速最大,而越處於下游處的噴射流場因橫流而使噴流偏移,因此上游為溝槽能提高熱傳效應。若下游為溝槽的測試片,因氣流推擠效應,噴射氣流偏離正交溝槽位置與流速削弱。以上游溝槽的類型高於下游溝槽。以全光滑測試片為基準,上游半溝槽縱向對正類型的熱傳效果最高,平均紐塞數在出口方向1雷諾數5100下較全光滑表面約高出19.52%。
錐形溝槽(Tapered grooves)分為由深至淺的正錐形(Forward tapered groooves)與由淺至深的逆錐形(Backward tapered grooves)之縱向溝槽。因在縱向溝槽的橫向流效應較小,氣體於溝槽內,配合正錐形漸淺溝槽深度形成上坡流場,減緩了溝槽內流出速度,增強熱對流與衝擊效應之熱傳。正錐形與縱向水平全溝槽比較方向1出口,其熱傳增強最大範圍為73.7%而最低增強幅度也有38%。亦同出口方向在雷諾數5100下比光滑目標面增強約高30.42%。逆錐形熱傳高於縱向水平全溝槽,而最大強化幅度上升約60.78%,最小為增幅則為28.27%。比起全光滑表面在方向1出口雷諾數5100下約高出19.97%的平均紐塞數。在方向1出口中,錐形溝槽類型以正錐形熱傳衝擊對流效應比逆錐形溝槽高約8.7%平均紐賽數。具錐形溝槽的熱傳效益,優於縱向全溝槽與45˚溝槽。出口類型衝擊熱傳效益,以雙出口類型其次為下游出口而上游出口熱傳效益最低。

關鍵字: 噴流衝擊、暫態熱傳、暫態液晶顯影技術、熱傳紐賽數、溝槽
ABSTRACT
Transient liquid crystal technology is used for measuring the heat transfer Transient liquid crystal technology was used for measuring the heat transfer coefficient in the impingement cooling channel. The target surface was roughened through the creation of rectangular grooves aligned with the jet holes (Inline pattern) or between the jet holes (Staggered pattern). The grooves were designed either parallel (Longitudinal grooves) or orthogonal (Transverse grooves) to the exit flow directions. Jet-to-jet spacing and jet-to-surface spacing (H/d) were 4 and 3, respectively. In this experimental test, the effect of crossflow was investigated for three exit flow directions, each with a jet Reynolds number ranging from 2500 to 7700.
Detailed heat transfer distributions from arrays of impinging jets on a half-smooth, half-rough target surface were investigated. Heat transfer was enhanced near the edge of grooves, whereas the heat transfer was degraded inside grooves. For the half-smooth, half-rough surface, the sudden change in surface geometry broke the flow development and caused intensified flow mixing in the impingement flow channel. Compared with fully roughened surfaces, the half-rough surface was more effective for heat transfer, and an enhancement of more than 50% was achieved for the longitudinal grooves. Compared with smooth surface, Downstream grooves was higher for heat transfer, and an enhanceemnt of more than 19.53% achieved for the smooth in the Reynolds number of 5100 for orientation 1. For the 45˚ Angled grooves, effect of crossflow pushed impinging jets away from the target surface and the heat transfer was reduced downstream when the flow exited from downstream. The jet flow impinged on the groove surfaces and the flow was distributed along the Angled grooves. Thus, the moving fluid stream caused asymmetric Nusselt number distribution on the target surface and produced low average Nusselt numbers.
To reduce the influence from the crossflow, the tapered longitudinal grooves were designed such that the groove depth varied along the exit flow direction. For the tapered grooves with decreasing groove depth, a heat transfer enhancement of at least 38% and largest 73.7% was attained compared to non-tapered longitudinal grooves for the flow exiting from downstream. The Nusselt number was enhanced for the small depth grooved region since it intensified impinging jet effect in grooves. Compared with the full roughened surface, For the tapered grooves with increasing groove depth is enhancer for average Nusselt number, and an increase of more than maximum 60.8% and then minimum 28.7% was gotten for non-tapered longitudinal grooves. Furthermore contrast with smooth, Backeard Tapered grooves is higher to accomplish 19.97% for heat transfer. Forward tapered grooves is more beneficent heat transfer than backward tapered grooves, the Nusselt number is higher than 8.7%.
The highest impingement heat transfer was found near the regions with minor crossflow effect. The flow exiting from both ends achieved the highest heat transfer because of smallest crossflow effect. For the flow exiting from upstream, the lowest Nusselt numbers were obtained. The tapered grooves with the decreasing groove depth along the streamwise direction achieved the highest impingement heat transfer among all the test cases.

Keywords: Jet impingement, Transient heat transfer, Transient liquid crystal technology, Nusselt Number, Grooves
目錄      
中文摘要 ……………………………………………………… i
英文摘要 ……………………………………………………… ii
致謝 ……………………………………………………… iv
目錄 ……………………………………………………… v
表目錄 ……………………………………………………… vii
圖目錄 ……………………………………………………… viii
符號說明 ……………………………………………………… xi
一、 緒論………………………………………………… 1
1-1 前言………………………………………………… 1
1-2 文獻探討…………………………………………… 2
1-2-1 衝擊噴流衝擊冷卻………………………………… 2
1-2-2 噴流孔口與目標面之間、距與幾何外型參數…… 4
1-2-3 暫態量測研究方法的比較………………………… 8
1-2-4 液晶顯影技術於衝擊噴流………………………… 9
1-2-5 液晶顯影技術文獻………………………………… 11
二、 理論原理…………………………………………… 15
2-1 噴流衝擊流場原理………………………………… 15
2-2 衝擊測試表面的厚度設定………………………… 16
2-3 熱傳研究理論……………………………………… 17
2-3-1 光源色溫的探討…………………………………… 19
2-4 液晶校正曲線……………………………………… 20
2-4-1 校正程序與相關物件……………………………… 22
2-4-2 影像色相轉換處理………………………………… 23
三、 研究目的…………………………………………… 25
3-1 噴射冷卻效率與目標面積幾何外型探討………… 25
3-2 溫度液晶的優點…………………………………… 26
3-3 目標面溝槽外型與排列…………………………… 26
四、 實驗設備方法與步驟……………………………… 28
4-1 液晶熱成像研究條件與設備……………………… 28
4-2 影像擷取系統分析與要求………………………… 29
4-3 環境量測設備……………………………………… 29
4-3-1 氣體流量與壓力量測設備………………………… 29
4-3-2 感溫量測與加熱器設備…………………………… 31
4-4 實驗模型…………………………………………… 32
4-4-1 目標表面粗糙度類型之相關尺寸………………… 34
4-5 實驗流程…………………………………………… 35
五、 實驗不準確度之分析……………………………… 38
六、 結果與討論………………………………………… 41
6-1 流場分析…………………………………………… 41
6-1-1 各衝擊測試片流場壓力降………………………… 47
6-1-2 各衝擊測試粗糙面之噴流質量流率分佈………… 59
6-2 衝擊熱傳分佈……………………………………… 62
6-2-1 光滑目標面的驗證….……………………………… 62
6-2-2 全粗糙橫向對正溝槽……………………………… 62
6-2-3 橫向對正全粗糙溝槽……………………………… 63
6-2-4 縱向對正全粗糙溝槽……………………………… 64
6-2-5 全粗槽縱向交錯溝槽……………………………… 65
6-2-6 45˚度角溝槽………………………………………… 75
6-2-7 錐形溝槽……………………………………………. 79
七、 結論……….………………………………………… 88
參考文獻 ………………………………………………………. 90
文獻
[1] M. J. Donachie., “Titanium: A Technical Guide,” Metals Park, OH: ASME International, USA, 1988.
[2] R. J.Goldstein, ‘‘Film Cooling,’’ Advances in Heat Transfer, Academic Press, San Diego, Vol. 7, pp. 321–379, 1971
[3] N. Zuckerman, and N. Lior, “Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling,” Advances in the Heat Transfer, Vol. 39, pp. 565-631, 2006.
[4] S. Gao, and, P. R. Voke. “Large-Eddy Simulation of Turbulent Heat Transport in Enclosed Impinging Jets,” International Journal of Heat and Fluid Flow, Vol. 16, pp.349–356, 1995.
[5] D. W. Colucci, R. Viskanta, “Effect of Nozzle Geometry on Local Convective Heat Transfer to a Confined Impinging Air Jet,” Experimental Thermal and Fluid Science, Vol. 13, pp. 71-80, 1996.
[6] J. Lee, S-J Lee, “The Effect of Nozzle Configuration on Stagnation Region Heat Transfer Enhancement of Axisymmetric Jet Impingement,” International Journal of Heat and Mass Transfer, Vol. 43, pp. 3497-3509, 2000.
[7] J. W. Baughn., “Liquid Crystal Methods for Studying Turbulent Heat Transfer,” International journal of Heat and Fluid Flow, Vol. 16, pp. 365-375, 1995.
[8] J. W. Baughn, A. E. Hechenova, and X. Yan. “An Experimental Study of Entrainment Effects on Heat Transfer from a Fiat Surface to a Heated Circular Impinging Jet,” Proc. 3rd ASME-JSME Joint Thermal Engineering Conference, Reno. Vol. 3, pp. 143-149, 1991.
[9] X. Yan, J. W. Baughn, and M. Mesbah. “The Effect of Reynolds Number on the Heat Transfer Distribution from a Flat Plate to an Impinging Jet”, ASME Journal of Heat Transfer, Vol. 226, pp. 1-7, 1992.
[10] J. W. Baughn, and S. S. Shimizu., “Heat Transfer Measurements from a Surface with Transfer,” Vol. 111, pp. 1096-1098, 1989.
[11] C.J. Hoogendoorn., “The Effect of Turbulence on Heat Transfer at a Stagnation Point,” International Journal of Heat and Mass Transfer, Vol. 20, No. 12, pp. 1333-1338, 1977.
[12] T. S. O’Donovan and D. B. Murray, “Jet Impingement Heat Transfer – Part I: Mean and Root-Mean-Square Heat Transfer and Velocity Distributions,” International Journal of Heat and Mass Transfer, Vol. 50, pp. 3291–3301, 2007.
[13] S. Ccliskan, S. Baskaya, T. Calisir, “Experimental and Numerical Investigation of Geometry Effects on Multiple Impinging Air Jets,” International Journal of Heat and Mass Transfer, Vol. 75, pp. 685–703, 2014.
[14] R. J. Goldstein, and A. I. Behbahani, “Impingement of a Circular Jet with and without Crossflow,” International Journal of Heat and Mass Transfer, Vol. 25, pp. 1377-1382, 1982.
[15] L. W. Florschuetz, D. E. Metzger, and C. C. Su, “Heat Transfer Characteristics for Jet Array Impingement with Initial Crossflow,” ASME Journal of Heat Transfer, Vol. 106, pp. 43-41, 1984.
[16] U. Uysal, P. W. Li, and M. K. Chyu, and F. J. Cunha, “Heat Transfer on Internal Surfaces of a Duct Subjected to Impingement of a Jet Array with Varying Jet Hole-size and Spacing,” ASME Journal of Turbomachinery, Vol. 128, pp.158-165, 2006.
[17] W.M. Yan, H.C. Liu, C.Y. Soong, and W.J. Yang, “Experimental Study of Impinging Heat Transfer Along Rib-Roughened Walls by Using Transient Liquid Crystal Technique,” International Journal of Heat and Mass Trans, Vol. 48, pp. 2420-2428, 2005.
[18] S.V. Ekkad, Y. Huang, and J.C. Han, “Impingement Heat Transfer on a Target Plate with Film Cooling Holes,” AIAA Journal of Thermo-physics and Heat Transfer, Vol.1, No. 4, pp.522-528, 1999.
[19] B. Facchini, L. Innocenti, M. Surace, “Design Criteria for Ribbed Channels—Experimental Investigation and Theoretical Analysis,” International Journal of Heat and Mass Transfer, Vol. 40, pp. 3130–3141, 2006.
[20] M. Amro, B. Weigand, R. Poser, M. Schnieder, “An Experimental Investigation of the Heat Transfer in a Ribbed Triangular Cooling Channel,” International Journal of Thermal Sciences, Vol. 46, pp. 491–500, 2007.
[21] K. B. Lim, N. W. Sung, S. H. Lee, “An Experimental Study on the Characteristics of Heat Transfer the Turbulent Round Impingement Jet According to the Inclined Angled of Convex Surface using the Liquid Crystal Transient Method,” Experimental Thermal and Fluid Science, Vol. 31, No 7, pp. 711-719, 2007.
[22] A. H. Beitelmal and M. A. Saad, “Effects of Surface Roughness in the Average Heat Transfer of an Impingement Air Jet,” International Comm. HeatMass Transfer, Vol. 27, No. 1, pp. 1-12, 2000.
[23] B. Sagot, G. Antonini, F. Buron, “Enhancement of Jet-to-Wall Heat Transfer Using Axisymmetric Grooves Impinging Plates,” International Journal of Thermal Sciences, Vol. 49, pp. 1026-1030, 2010
[24] D. Dunmur and T. Sluckin, “Soap, Science, and Fat-screen TVs : a History of Liquid Crystals ,” Oxford University press, pp17-20, 2011.
[25] S Chandrasekhar, “Liquid Crystals-Second Edition,” Liquid Crystal Today, Vol 3, No. 3, pp. 7, 1993.
[26] P.G de Gennes and J Prost, “The Physics of Liquid Crystals, Second Edition,” International Series of Monographs on Physics, Vol. 4, No. 3, pp. 7, 1994.
[27] J. A. Rego, J. A. A. Harvey, A. L. MacKinnon and E. Gatdula, “Asymmetric Synthesis of a Highly Soluble ‘Trimeric’ Analogue of the Chiral Nematic Liquid Crystal Twist agent Merck S1011,” Liquid Crystals, Taylor and Francis, Vol. 37, No. 1, pp. 37-43, 2009.
[28] LCR Hallcrest., “Handbook of Thermochromic Liquid Crystal Technology,” Illinois, 1991.
[29] V.I. Kopp, B. Fan and H. K. M. Vithana, A. Z. Genack, “Low-Threshold Lasing at the Edge of a Photonic Stop Band in Cholesteric Liquid Crystals,”OPTICS LETTERS, Vol. 23, No. 21, pp. 1707-1709, 1998.
[30] J. J. Hwang, B. Y. Chang, “Effect of Outflow Orientation on Heat Transfer and Pressure Drop in a Triangular Duct With an Array of Tangential Jets,” ASME Journal of Heat Transfer, Vol. 122, pp. 669-678, 2000.
[31] A. Valencia, M.Fiebig, and N.K. Mitra, “Influence of Heat Conduction on Determination of Heat Transfer Coefficient by Liquid Crystal Thermography,” Experimental Heat Transfer, Vol. 8, No. 4, pp. 271-279, 1995.
[32] G. Wagner, M. Kotulla, P. Ott, B. Weigand J. von Wolfersdorf, “The Transient Liquid Crystal Technique: Influence of Surface Curvature and Finite Wall Thickness,” ASME Journal of Turbomachinery, Vol. 127, pp. 175-182, 2005.
[33] D. L. Schultz, and T. V. Jones. “Heat Transfer Measurements in Short Duration Hypersonic Facilities,” NATO Advisory Group Aeronautical Rd Agardograph, Vol. 165, 1973.
[34] G. Vogel, and A. Boelecs. “A Novel Digital Image Processing System for the Transient Liquid Crystal Technique applied for Heat Transfer and Film Cooling Measurements,” Annals of the New York Academy of Sciences, Vol. 934, pp. 297 -304, 2001.
[35] M. Lin, T. Wang., “A Transient Liquid Crystal Method using a 3-D Inverse Transient Conduction Scheme,” International Journal of Heat and Mass Transfer, Vol. 45, pp. 3491-3501, 2002.
[36] S.V. Ekkad, and J.C. Han, ,“A Transient Liquid Crystal Thermography Technique for Gas Turbine Heat Transfer Measurements,” Measurement Science and Technology, Vol. 11, pp. 957-968, 2000.
[37] S. A. Hippensteele and P. E. Poinsatte, ”Transient Liquid Crystal Technique used to Produce High-Resolution Convective Heat-Transfer-Coefficient Maps,” National Heat Transfer Conference,” Atlanta, Georgia, August 8-11, (NASA Technical Memorandum 106083), pp. 1-9, 1993.
[38] J. P. Holman. , “Heat Transfer”, McGraw-Hill Fifth edition, No. 701568, pp. 115-116, 1981.
[39] S. J. Paul, Conduction Heat Transfer, Addison-Weslsy Publishing Company, 1955.
[40] D. W. Hahn and M. N. Özişik., “Ch7. Use of Duhamel's Theorem, in Heat Conduction, Third Edition,” John Wiley and Sons, Inc., Hoboken, NJ, USA, 2012.
[41] Szczepan Lubecki, “Duhamel’s Theorem for Time-Dependent Thermal Boundary Conditions,” Encyclopedia of Thermal Stresses, pp. 1033-1040, 2014.
[42] A. R. Smith., Color Gamut Transform Pairs, Computer Graphics Lab, New York Institute of Technology, Old Westbury, NY 11568, 1978.
[43] M. Rokni. “A New-Reynolds Version of an Explicit Algebraic Stress Model for Turbulent Convective Heat Transfer in Ducts”, Numerical Heat Transfer, Part B, Vol. 37, No. 3, pp. 331-363, 2000.
[44] R. Jia, M. Rokni and B. Sunde, “Impingement Cooling in a Rib-Roughened Channel with Cross-Flow”, International Journal of Numerical Methods for Heat and Fluid Flow, Vol. 11, No. 7, pp. 642-662, 2001.
[45] S. J. Kline, F. A. McClintock, “Describing Uncertainties in Single-Sample Experiments”, Mechanical Engineering, Vol. 75, No. 1, 1953.
[46] R.J. Moffat, “Contributions to the Theory of Single-Sample Uncertainty Analysis”, Journal of Fluid Engineering, Vol. 104, pp. 250–260, 1982.
[47] T. Wang and T.W. Simon, “Development of a Special Purpose Test Surface guided by Uncertainty Analysis”, AIAA Journal of Thermophysics and Heat Transfer, Vol. 3, No.1, January 1989.
[48] M. Lin, “Flow and Heat Transfer of Confined Impingement Jets”, MS Thesis, Department of Mechanical Engineering, Clemson University, USA, 1999.
[49] Y. H. Liu, S. J. Song, and Y. H. Lo, “Jet Impingement Heat Transfer on Target Surfaces with Longitudinal and Transverse Grooves,” International Journal of Heat and Mass Transfer, Vol. 58, No. 1-2, pp. 292-299, 2013.
[50] Y. Huang, S.V. Ekkad, and J.C. Han, “Detailed Heat Transfer Distributions Under an Array of Orthogonal Impinging Jets,” AIAA Journal of Thermophysics and Heat Transfer, Vol. 12, No. 1, pp. 73 – 79, 1998.
[51] J. X. Ge, and W. S. Fu, “A Study of a Pulse-Jet Cleaning System,” National Chiao Tung University Electronic Theses and Dissertations System, PP.138, 1997.
[52] D. M. Kercher, , and W. Tabakoff, ‘‘Heat Transfer by a Square Array of Round Air Jets Impinging Perpendicular to a Flat Surface Including the Effect of Spent Air,’’ Journal of Engineering and Power, Vol. 92, No. 1, pp. 73 – 82, 1970.
[53] L. W. Florschuetz, D. E. Metzger, and C. R. Truman., “Jet Array Impingement With Crossflow - Correlation of Stream-wise Resolved Flow and Heat Transfer Distributions”, Prepared for Lewis Research Center under Grant NSG-3075, Scientific and Technical, Information Branch, NASA Contractor Report 3373, 1981.
[54] B. R. Hollworth, G. Lehmann, and J. Rosiczkowski, “Arrays of Impinging Jets With Spent Fluid Removal Through Vent Holes on the Target Surface, Part 2: Local Heat Transfer,” Journal of Engineering for Power, Vol. 105, pp. 393-402. 1983.
[55] Y. H. Liu, Y. H. Lo, X. X. Li, and Huh, M., “Heat Transfer and Friction in a Square Channel with Ribs and Grooves,” AIAA Journal of Thermophysics and Heat Transfer, Vol. 30, No. 1, pp. 144-151, 2016.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top