跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/09 11:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐新怡
研究生(外文):Hsin-Yi Hsu
論文名稱:不同棘突間植入物在脊椎活動度與椎間盤壓力之生物力學研究
論文名稱(外文):Biomechanical studies of different interspinous process devices on the spinal flexibility and intradiscal pressure
指導教授:陳文斌陳文斌引用關係莊仕勇
口試委員:戴金龍王兆麟
口試日期:2010-06-26
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:73
中文關鍵詞:腰椎棘突間植入物有限元素分析
外文關鍵詞:lumbar spineinterspinous process devicefinite element analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:887
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,由於非融合手術蓬勃發展,棘突間植入物常被用來治療腰椎狹窄症,其主要功能為回復神經孔尺寸以及提供腰椎後彎穩定度。但是其相關禁忌症尚未明確,且針對各類型之棘突間植入物對腰椎生物力學的影響,尚未被充分研究。因此,本研究將結合體外實驗與有限元素分析,探討不同設計之棘突間植入物之生物力學機轉與響應。
體外實驗,將豬腰椎(L1-L6)試片分作三組(正常組、移除小面關節之缺陷組以及植入棘突間植入物組),並給予10Nm模擬後彎負載。探討之棘突間植入物包括:Coflex、X-STOP、Wallis以及DIAM,並評估椎節活動度以及椎間盤壓力。有限元素分析部分,利用電腦斷層掃描影像建構人體完整腰椎之有限元素模型(L1-S1),並施予腰椎7.5Nm之彎曲負載以及自重,模擬前屈、後彎、側彎以及扭轉等動作,隨後進行缺陷組以及植入棘突間植入物組之模擬,並評估各植體稱開神經孔之效果、椎節活動度、椎間盤應力以及可能造成棘突骨折的風險。
體外實驗結果顯示,後彎負載下移除小面關節組使手術節活動度增加35%,而植入各植體後均表現相似之效果,皆能夠提升椎節之穩定度,並提供降低椎間盤壓力之能力。分析結果發現,各植體於後彎負載下,皆能夠回復病徵節之神經孔與椎孔尺寸,而穩定手術椎節活動度之能力,最低與最高為Coflex(67%)與Wallis(82%),同時降低椎間盤應力之能力最低與最高為Coflex(69%)與Wallis(80%)。另外,於前屈及扭轉負載下,具有束帶的植體-Wallis以及DIAM,則另提供椎節些微之穩定度。除此之外,植入各植體於後彎負載下所造成鄰近棘突之負載,尚無造成術後棘突骨折之風險。
實驗與有限元素分析結果顯示,各植體對腰椎生物力學之影響有共同之趨勢:於後彎負載下,提供椎節良好穩定度以及分散椎間盤壓力。


For the past few years, interspinous process decompression (IPD) devices are common as a treatment for lumbar spinal stenosis (LSS) due to a non-fusion surgery has become more and more popular. The efficacies of implanting IPD device are to restore foraminal dimension and provide stability in extension. However, the relative contraindications of IPD devices remain unclear, and the biomechanical effect of lumbar spine with various types of IPD devices has not been thoroughly investigated. Therefore, the aim of this study is to investigate the biomechanical mechanism and the response of different IPD implant designs by using finite element analysis combined with in vitro experiment.
For the experimental study, the porcine lumbar spine specimens (L1-L6) were divided into three conditions (intact, total facetectomy and implantation) and tested with 10Nm extension moments. Four different interspinous implants (Coflex, X-STOP, Wallis and DIAM) were included in the implantation group, and the Range of motion (ROM) and intradiscal pressure were evaluated. In the finite element analysis (FEA), a three-dimensional geometrical and mechanical accurate finite element model of human lumbosacral spine (L1-S1) was developed from 3D geometrical data of visible human project, and pure moments of 7.5 Nm were applied with preload in flexion, extension, lateral bending and torsion following total facetectomy and implantation. Foramina dimension, ROM, intradiscal stress and the risks of spinous process failure were assessed in the present study.
For the experimental results, the defect caused an increase in ROM by 35% about in extension at the implanted level. Implantation had similar effects with all implants that compensated the instability caused by the defect. Similarly the intradiscal pressure after implantation was much smaller than that of the defect specimen during extension. For the FEA, IPD devices restored the foraminal dimension at implanted level, and a motion decrease of 67% for Coflex up to 82% for Wallis and intradiscal stress decrease of 69% for Coflex up to 80% for Wallis compared to the defect were calculated during extension. For flexion and torsion, the models caused a moderate decrease of ROM for Wallis and DIAM with two ligatures compared to the defect state. Furthermore, there was no risk of spinous process fracture by implanting all four IPD devices during extension.
Good agreements between the FEA and the experiments are shown that all tested insterspinous implants had similar effects on the biomechanical response: they strongly stabilized and reduced the instradiscal pressure in extension.


摘 要 i
ABSTRACT iii
誌謝 v
目錄 vi
表目錄 viii
圖目錄 x
第一章緒論 1
1.1前言 1
1.2研究背景 3
1.2.1腰椎狹窄症 3
1.2.2棘突間植入物 3
1.3文獻回顧 7
1.3.1臨床表現相關文獻 7
1.3.2體外實驗相關研究 8
1.3.3有限元素法相關研究 13
1.4研究目的 14
第二章材料與方法 16
2.1體外實驗 17
2.1.1試片處理 17
2.1.2群組規劃 18
2.1.3硬體設備 19
2.1.3.1MTS動態材料試驗機 19
2.1.3.2動作分析系統(Vicon) 21
2.1.3.3壓力感測器 22
2.1.4數據分析 25
2.2有限元素分析 26
2.2.1腰椎有限元素模型之建立 27
2.2.2材料參數設定 28
2.2.3群組規劃 30
2.2.4棘突間植入物模型 31
2.2.5邊界條件設定 32
2.2.6評估之參數 34
2.2.6.1椎孔與神經孔之尺寸 34
2.2.6.2椎節活動度計算方式 36
2.2.6.3棘突承受之負載 36
2.2.7有限元素模型之收斂測試 37
第三章結果 39
3.1豬腰椎體外實驗 39
3.1.1活動度 39
3.1.2椎間盤壓力 40
3.2有限元素分析 42
3.2.1完整腰椎模型驗證 42
3.2.2椎孔與神經孔尺寸 42
3.2.3椎節活動度 44
3.2.4椎間盤應力 49
3.2.5棘突承受之負載 52
第四章討論 53
4.1.體外實驗與有限元素分析之比較 54
4.1.1後彎負載下之椎節活動度 54
4.1.1.1移除小面關節之影響 54
4.1.1.2棘突間植入物之影響 55
4.1.2椎間盤壓力/應力 57
4.2有限元素分析 58
4.2.1神經孔與椎孔之尺寸影響 58
4.2.2椎節活動度 59
4.2.2.1移除小面關節之影響 59
4.2.2.2棘突間植入物之影響 59
4.2.2.3棘突間植入物對鄰近椎節活動度之影響 60
4.2.3棘突承受之負載 61
第五章結論 63
參考文獻 64
附錄 68
附錄A:MTS 810操作手冊 68
附錄B:資料擷取系統操作手冊 69
附錄C:力矩計算方式 70
附錄D:彈簧拉伸特性 72

[1]H. Kosaka, K. Sairyo, A. Biyani, D. Leaman, R. Yeasting, K. Higashino, T. Sakai, S. Katoh, T. Sano, V. K. Goel and N. Yasui, "Pathomechanism of loss of elasticity and hypertrophy of lumbar ligamentum flavum in elderly patients with lumbar spinal canal stenosis," Spine (Phila Pa 1976), vol. 32, 2007, pp. 2805-2811.
[2]R. J. Minns and W. K. Walsh, "Preliminary design and experimental studies of a novel soft implant for correcting sagittal plane instability in the lumbar spine," Spine (Phila Pa 1976), vol. 22, 1997, pp. 1819-1827.
[3]T. Amundsen, H. Weber, H. J. Nordal, B. Magnaes, M. Abdelnoor and F. Lilleas, "Lumbar spinal stenosis: conservative or surgical management?: A prospective 10-year study," Spine (Phila Pa 1976), vol. 25, 2000, pp. 1424-1436.
[4]A. C. Simotas, F. J. Dorey, K. K. Hansraj and F. Jr. Cammisa, "Nonoperative treatment for lumbar spinal stenosis. Clinical and outcome results and a 3-year survivorship analysis," Spine (Phila Pa 1976), vol. 25, 2000, pp. 197-204.
[5]J. A. Turner, M. Ersek, L. Herron and R. Deyo, "Surgery for lumbar spinal stenosis. Attempted meta-analysis of the literature," Spine (Phila Pa 1976), vol. 17, 1992, pp. 1-8.
[6]S. D. Christie, J. K. Song and R. G. Fessler, "Dynamic interspinous process technology," Spine (Phila Pa 1976), vol. 30, 2005, pp. S73-78.
[7]J. F. Zucherman, K. Y. Hsu, C. A. Hartjen, T. F. Mehalic, D. A. Implicito, M. J. Martin, D. R. Johnson, 2nd, G. A. Skidmore, P. P. Vessa, J. W. Dwyer, S. T. Puccio, J. C. Cauthen and R. M. Ozuna, "A multicenter, prospective, randomized trial evaluating the X STOP interspinous process decompression system for the treatment of neurogenic intermittent claudication: two-year follow-up results," Spine vol. 30, 2005, pp. 1351-1358.
[8]J. Senegas, "Mechanical supplementation by non-rigid fixation in degenerative intervertebral lumbar segments: the Wallis system," Eur Spine J, vol. 11 Suppl 2, 2002, pp. S164-169.
[9]G. Guizzardi, P. Petrini and A. P. Fabrizi, "The use of DIAM (interspinous stress-breaker device) in the DDD: Italian multicenter clinical experience," presented at the Spinal Arthroplasty Society, New York, 2005.
[10]R. W. Porter, "Spinal stenosis and neurogenic claudication," Spine (Phila Pa 1976), vol. 21, 1996, pp. 2046-2052.
[11]R. Sobottke, K. Schluter-Brust, T. Kaulhausen, M. Rollinghoff, B. Joswig, H. Stutzer, P. Eysel, P. Simons and J. Kuchta, "Interspinous implants (X Stop, Wallis, Diam) for the treatment of LSS: is there a correlation between radiological parameters and clinical outcome?," Eur Spine J, vol. 18, 2009, pp. 1494-1503.
[12]O. J. Verhoof, J. L. Bron, F. H. Wapstra and B. J. van Royen, "High failure rate of the interspinous distraction device (X-Stop) for the treatment of lumbar spinal stenosis caused by degenerative spondylolisthesis," Eur Spine J, vol. 17, 2008, pp. 188-192.
[13]Y. Floman, M. A. Millgram, Y. Smorgick, N. Rand and E. Ashkenazi, "Failure of the Wallis interspinous implant to lower the incidence of recurrent lumbar disc herniations in patients undergoing primary disc excision," J Spinal Disord Tech, vol. 20, 2007, pp. 337-341.
[14]H. J. Wilke, L. Claes, H. Schmitt and S. Wolf, "A universal spine tester for in vitro experiments with muscle force simulation," Eur Spine J, vol. 3, 1994, pp. 91-97.
[15]M. Panjabi, G. Malcolmson, E. Teng, Y. Tominaga, G. Henderson and H. Serhan, "Hybrid testing of lumbar CHARITE discs versus fusions," Spine (Phila Pa 1976), vol. 32, 2007, pp. 959-967.
[16]H. J. Wilke, J. Drumm, K. Häussler, C. Mack, W. I. Steudel and A. Kettler, "Biomechanical effect of different lumbar interspinous implants on flexibility and intradiscal pressure.," Eur Spine J vol. 17, 2008, pp. 1049-1056.
[17]F. M. Phillips, L. I. Voronov, I. N. Gaitanis, G. Carandang, R. M. Havey and A. G. Patwardhan, "Biomechanics of posterior dynamic stabilizing device (DIAM) after facetectomy and discectomy," Spine J, vol. 6, 2006, pp. 714-722.
[18]T. L. Schulte, C. Hurschler, M. Haversath, U. Liljenqvist, V. Bullmann, T. J. Filler, N. Osada, E. M. Fallenberg and L. Hackenberg, "The effect of dynamic, semi-rigid implants on the range of motion of lumbar motion segments after decompression," Eur Spine J, vol. 17, 2008, pp. 1057-1065.
[19]A. Kettler, J. Drumm, F. Heuer, K. Haeussler, C. Mack, L. Claes and H. J. Wilke, "Can a modified interspinous spacer prevent instability in axial rotation and lateral bending? A biomechanical in vitro study resulting in a new idea," Clin Biomech (Bristol, Avon), vol. 23, 2008, pp. 242-247.
[20]K. E. Swanson, D. P. Lindsey, K. Y. Hsu, J. F. Zucherman and S. A. Yerby, "The effects of an interspinous implant on intervertebral disc pressures," Spine (Phila Pa 1976), vol. 28, 2003, pp. 26-32.
[21]D. P. Lindsey, K. E. Swanson, P. Fuchs, K. Y. Hsu, J. F. Zucherman and S. A. Yerby, "The effects of an interspinous implant on the kinematics of the instrumented and adjacent levels in the lumbar spine," Spine (Phila Pa 1976), vol. 28, 2003, pp. 2192-2197.
[22]C. M. Wiseman, D. P. Lindsey, A. D. Fredrick and S. A. Yerby, "The effect of an interspinous process implant on facet loading during extension," Spine (Phila Pa 1976), vol. 30, 2005, pp. 903-907.
[23]J. C. Richards, S. Majumdar, D. P. Lindsey, G. S. Beaupre and S. A. Yerby, "The treatment mechanism of an interspinous process implant for lumbar neurogenic intermittent claudication," Spine (Phila Pa 1976), vol. 30, 2005, pp. 744-749.
[24]V. Lafage, N. Gangnet, J. Senegas, F. Lavaste and W. Skalli, "New interspinous implant evaluation using an in vitro biomechanical study combined with a finite-element analysis," Spine (Phila Pa 1976), vol. 32, 2007, pp. 1706-1713.
[25]P. Vena, G. Franzoso, D. Gastaldi, R. Contro and V. Dallolio, "A finite element model of the L4-L5 spinal motion segment: biomechanical compatibility of an interspinous device," Comput Methods Biomech Biomed Engin, vol. 8, 2005, pp. 7-16.
[26]C. M. Bellini, F. Galbusera, M. T. Raimondi, G. V. Mineo and M. Brayda-Bruno, "Biomechanics of the lumbar spine after dynamic stabilization," J Spinal Disord Tech, vol. 20, 2007, pp. 423-429.
[27]H. J. Wilke, K. Wenger and L. Claes, "Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants," Eur Spine J, vol. 7, 1998, pp. 148-154.
[28]R. Eberlein, G. A. Holzapfel and C. A. J. Schulze-Bauer, "An Anisotropic Model for Annulus Tissue and Enhanced Finite Element Analyses of Intact Lumbar Disc Bodies," Computer Methods in Biomechanics and Biomedical Engineering, vol. 4, 2001, pp. 209-229.
[29]A. Shirazi-Adl, A. M. Ahmed and S. C. Shrivastava, "Mechanical response of a lumbar motion segment in axial torque alone and combined with compression," Spine (Phila Pa 1976), vol. 11, 1986, pp. 914-927.
[30]A. Rohlmann, T. Zander, H. Schmidt, H. J. Wilke and G. Bergmann, "Analysis of the influence of disc degeneration on the mechanical behaviour of a lumbar motion segment using the finite element method," J Biomech, vol. 39, 2006, pp. 2484-2490.
[31]H. Schmidt, A. Kettler, F. Heuer, U. Simon, L. Claes and H. J. Wilke, "Intradiscal pressure, shear strain, and fiber strain in the intervertebral disc under combined loading," Spine (Phila Pa 1976), vol. 32, 2007, pp. 748-755.
[32]A. Rohlmann, T. Zander, M. Rao and G. Bergmann, "Applying a follower load delivers realistic results for simulating standing," J Biomech, vol. 42, 2009, pp. 1520-1526.
[33]J. Noailly, D. Lacroix and J. A. Planell, "Finite element study of a novel intervertebral disc substitute," Spine (Phila Pa 1976), vol. 30, 2005, pp. 2257-2264.
[34]A. G. Patwardhan, R. M. Havey, K. P. Meade, B. Lee and B. Dunlap, "A follower load increases the load-carrying capacity of the lumbar spine in compression," Spine (Phila Pa 1976), vol. 24, 1999, pp. 1003-1009.
[35]A. Rohlmann, S. Neller, L. Claes, G. Bergmann and H. J. Wilke, "Influence of a follower load on intradiscal pressure and intersegmental rotation of the lumbar spine," Spine (Phila Pa 1976), vol. 26, 2001, pp. E557-561.
[36]A. Kettler, L. Liakos, B. Haegele and H. J. Wilke, "Are the spines of calf, pig and sheep suitable models for pre-clinical implant tests?," Eur Spine J, vol. 16, 2007, pp. 2186-2192.
[37]J. L. Wang, Y. C. Tsai and Y. H. Wang, "The leakage pathway and effect of needle gauge on degree of disc injury post anular puncture: a comparative study using aged human and adolescent porcine discs," Spine (Phila Pa 1976), vol. 32, 2007, pp. 1809-1815.
[38]M. Sharma, N. A. Langrana and J. Rodriguez, "Role of ligaments and facets in lumbar spinal stability," Spine (Phila Pa 1976), vol. 20, 1995, pp. 887-900.
[39]D. H. Chow, K. D. Luk, J. H. Evans and J. C. Leong, "Effects of short anterior lumbar interbody fusion on biomechanics of neighboring unfused segments," Spine (Phila Pa 1976), vol. 21, 1996, pp. 549-555.
[40]M. M. Panjabi, "Hybrid multidirectional test method to evaluate spinal adjacent-level effects," Clin Biomech (Bristol, Avon), vol. 22, 2007, pp. 257-265.
[41]D. E. Shepherd, J. C. Leahy, K. J. Mathias, S. J. Wilkinson and D. W. Hukins, "Spinous process strength," Spine (Phila Pa 1976), vol. 25, 2000, pp. 319-323.
[42]C. Adam, M. Pearcy and P. McCombe, "Stress analysis of interbody fusion--finite element modelling of intervertebral implant and vertebral body," Clin Biomech (Bristol, Avon), vol. 18, 2003, pp. 265-272.




連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top