|
[1] Statistical Review of World Energy. http://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html [2] 康重庆,夏青,刘梅.电力系统负荷预测 [M]. 北京:中国电力出版社, 2007:94-97. [3] 康重庆,夏清,张伯明. 电力系统负荷预测研究综述与发展方向的探讨[J]. 电力系统自动化. Vol 28. No 17, 2004: 1-11. [4] PSE S.A. - Polish Transmission System Operator. http://www.pse.pl/index.php?dzid=78 [5] M. T. Hagan. The Time Series Approach to Short Term Load Forecasting. IEEE Transactions on Power Systems.Volume: 2, Issue: 3, 1987: 785 -791. [6] A.D. Papalexopoulos. A regression-based approach to short-term system load forecasting. IEEE Transactions on Power Systems. Volume: 5, Issue: 4, 1990 :1535 – 1547. [7] N. Amral, C. S. Ozveren, D. King. Short term load forecasting using Multiple Linear Regression Universities Power Engineering Conference, 2007. p:1192-1198. [8] 李栓, 刘莉, 刘阳. 趋势外推法在电力负荷预测中的应用. 沈阳工程学院学报:自然科学版[J]. 2005年 第2期 64-65页. [9] 潘迪夫,刘辉,李燕飞. 基于时间序列分析和卡尔曼滤波算法的风电场风速预测优化模型. 电网技术[J]. 2008年 第7期 82-86页. [10] 唐杰明,刘俊勇,杨可,刘友波. 基于灰色模型和最小二乘支持向量机的电力短期负荷组合预测. 电网技术[J]. 2009年 第3期 63-68页 [11] D. Kowm, M. Kim , C. Hong , S. Cho. Artificial Neural Network based Short Term Load Forecasting. International Journal of Smart Home. Vol.8 No.3, 2014.pp: 145-150. [12] S. C. Pandian, K. Duraiswamy, C. Christober Asir Rajan et al. Fuzzy approach for short term load forecasting. Electric Power Systems Research. Volume 76, Issues 6-7, 2006, pp: 541–548. [13] D. X. Niu, Y. L. Wang, D. D. Wu. Power load forecasting using support vector machine and ant colony optimization[J].Expert Systems with Applications. 2010,37(3) pp: 2531-2539. [14] Song Li, Peng Wang, Lalit Goel. Short-term load forecasting by wavelet transform and evolutionary extreme learning machine. Electric Power Systems Research. Volume 122, May 2015, Pages 96–103. [15] A. Selakov, D. Cvijetinović, L. Milović et al. Hybrid PSO–SVM method for short-term load forecasting during periods with significant temperature variations in city of Burbank. Applied Soft Computing. Volume 16, March 2014, Pages 80–88. [16] 张涛.基于小波神经网络的电力系统负荷预测[D].哈尔滨理工大学, 2009. [17] 钟兆欣.基于神经网络的电力系统短期负荷预测研究[D]. 哈尔滨工程大学, 2009. [18] 马涛.基于模糊控制RBF神经网络短期负荷预测的研究[D]. 西安科技大学, 2009. [19] Seunghyoung Ryu , Jaekoo Noh and Hongseok Kim. Deep Neural Network Based Demand Side Short Term Load Forecasting. Energies 2017, 10(1), 3. pp:1-20. [20] V. Mansouri, M. E. Akbari. Efficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks. Journal of Artificial Intelligence in Electrical Engineering, Vol. 3, No. 9, June 2014. pp: 46-54. [21] A. Dedinec, S. Filiposka, A. Dedinec et al. Deep belief network based electricity load forecasting: An analysis of Macedonian case. Energy. Volume 115, Part 3, 15 November 2016, Pages 1688–1700. [22] E. Badar. Comparison of conventional and model load forecasting techniques based on artificial intelligence and expert system, International Journal of Computer Science Issues, 8(5) (2011) 1694-1714. [23] F. Mateo, J.J. Carrasco, M. Milla´n-Giraldo, Machine learning techniques for short-term electric power demand prediction, Proceeding of the Computational Intelligence and Machine Learning, Bruges, 2013, pp. 143-148. [24] A. Dedinec, S. Filiposka, A. Dedinec L. Kocarev, Deep belief network based electricity load forecasting: An analysis of Macedonian case, Energy, (2016) 1-13. [25] 温权,张勇传,程时杰等.负荷预报的混沌时间序列分析方法[J]. 电网技术.Vol.25 No 10. 2001, p:13-16. [26] 雷绍兰,孙才新,周湶等.一种多变量时间序列的短期负荷预测方法研究. 电子技术学报[J]. Vol. 20 No. 4, 2005.p:62-67. [27] Nataraja.C, M.B.Gorawar, Shilpa.G.N et al. Short Term Load Forecasting Using Time Series Analysis: A Case Study for Karnataka, India, International Journal of Engineering Science and Innovative Technology (IJESIT) 1(2) (2012) 45-53. [28] S. Bahrami, R.A. Hooshmand, M. Parastegari. Short term electric load forecasting by wavelet transform and grey model improved by PSO (particle swarm optimization) algorithm, Energy, 72 (2014) 434-442. [29] J.W. Taylor. Short-term load forecasting with exponentially weighted methods, IEEE Transactions on Power Systems, 27 (2012) 458-464. [30] G. Dudek, Artificial immune system for short-term electric load forecasting, Proceeding of the CAISC 2008, 2008, pp. 1007-1017. [31] G. Dudek. Artificial Immune Clustering Algorithm to Forecasting Seasonal Time Series. Proceeding of the ICCCI 2011, 2011, pp.468-477. [32] G. Dudek, Artificial immune system with local feature selection for short-term load forecasting, IEEE Transactions on Evolutionary Computation, (2016) pp: 1-15. [33] A. Shrivastava, A. Bhandakkar, Short-term load forecasting using artificial neural network techniques, Journal of Engineering Research and Applications, 3(5) (2013) 1524-1527. [34] D.X. Niu, H.F. Shi, D.D. Wu. Short-term load forecasting using bayesian neural networks learned by Hybrid Monte Carlo algorithm. Applied Soft Computing 12(6) (2012) 1822-1827. [35] M. Shelke, P.D. Thakare, Short term load forecasting by using data mining techniques, International Journal of Science and Research 3(9) (2014) 1363-1367. [36] P. Zhang, X. Wu, X. Wang, Short-term load forecasting based on big data technologies, Csee Journal of Power and Energy Ssystems 1(3) (2015) 59-67. [37] K.R. Cheepati, T.N. Prasad, Performance comparison of short term load forecasting techniques, International Journal of Grid and Distributed Computing 9(4) (2016) 287-302. [38] M. Ghayekhloo, M.B. Menhaj, M. Ghofrani, A hybrid short-term load forecasting with a new data preprocessing framework, Electric Power Systems Research 119 (2015)138-148. [39] Z. Hu, Y. Bao, T. Xiong, Hybrid filter-wrapper feature selection for short-term load forecasting, Engineering Applications of Artificial Intelligence 40 (2015) 17-27. [40] S. Kouhi, F. Keynia, S.N. Ravadanegh, A new short-term load forecast method based on neuro-evolutionary algorithm and chaotic feature selection. Electrical Power and Energy Systems 62 (2014) 862-867. [41] H. NIE, G. LIU, X. LIU. Hybrid of ARIMA and SVMs for short-term load forecasting, Energy Procedia 16 (2012) 1455-1460. [42] M. Ghofrani, M. Ghayekhloo, A. Arabali A. Ghayekhloo, A hybrid short-term load forecasting with a new input selection framework, Energy 81 (2015) 777-786. [43] D.K. Chaturvedi, A.P. Sinha, O.P. Malik, Short-term load forecast using fuzzy logic and wavelet transform integrated generalized neural network, Electrical Power and Energy Systems 67 (2015) 230-237. [44] J.X. Che, J.Z. Wang, Short-term load forecasting using a kernel-based support vector regression combination model, Applied Energy 132 (2014) 602-609. [45] Z, Hu, Y, Bao, T, Xiong, Comprehensive learning particle swarm optimization-based mimetic algorithm for model selection in short-term load forecasting using support vector regression, Applied Soft Computing 25 (2014) 15-25. [46] H,H. Çevik, M. Çunkaş, A fuzzy logic based short term load forecast for the holidays, International Journal of Machine Learning and Computing, 6(1) (2016) 57-61. [47] Z. Hu, Y. Bao, T. Xiong, Hybrid filter-wrapper feature selection for short-term load forecasting, Engineering Applications of Artificial Intelligence 40 (2015) 17-27. [48] K.R. Cheepati, T.N. Prasad, Performance comparison of short term load forecasting techniques, International Journal of Grid and Distributed Computing 9(4) (2016) 287-302. [49] M.O. Oliveira, D.P. Marzec, G. Bordin, Climate change effect on very short-term electric load forecasting, Proceeding of the 2011 IEEE Trondheim Power Tech, 2011, pp. 1-7 [50] M.C. Medeiros, L.J. Soares, Robust statistical methods for electricity load forecasting, Proceeding of the RTE-VT workshop, Paris, 2006, pp. 29-30. [51] T. Hong, J. Wilson, J. Xie, Long term probabilistic load forecasting and normalization with hourly information, IEEE Transactions on Smart Grid 5(1) (2014) 456-462. [52] J. Vermaak, E.C. Botha, Recurrent neural networks for short-term load forecasting, IEEE Transaction on Power System (13) (1998) 126-132. [53] G.M. Khan, F. Zafari, S.A. Mahmud, Very short term load forecasting using Cartesian genetic programming evolved recurrent neural networks (CGPRNN), Proceeding of the 12th International Conference on Machine Learning and Applications, 2013, pp. 152-155. [54] A. Dedinec, S. Filiposka, A. Dedinec L. Kocarev, Deep belief network based electricity load forecasting: An analysis of Macedonian case, Energy, (2016) 1-13. [55] S. Hosein, P. Hosein, Improving power generation efficiency using deep neural networks, Proceeding of the 2016 ICML Workshop on #Data4Good: Machine Learning in Social Good Applications, NY, USA, 2016, pp. 1-5. [56] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, Yoshua Bengio. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. arXiv:1412.3555v1 [cs.NE] 11 Dec 2014. [57] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Computation 9(8) (1997) 1735-1780. [58] Z. C. Lipton, J. Berkowitz, C Elkan, A critical review of recurrent neural networks for sequence learning, arXiv preprint arXiv:1506.00019, 2015. [59] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio. On the properties of neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259, 2014. [60] Y.N. Dauphin, H. de Vries, J. Chung, Y. Bengio, RMSProp and equilibrated adaptive learning rates for non-convex optimization. arXiv:1502.04390v1, 2015.
|