跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/27 05:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:涂庭瑋
研究生(外文):TU, TING-WEI
論文名稱:以固態發酵製備猴頭菇糙米及其抗氧化性質
論文名稱(外文):Preparation of Hericium erinaceum - fermented brown rice using solid-state fermentation and their antioxidant properties
指導教授:梁志弘梁志弘引用關係
指導教授(外文):Chih-Hung Liang
口試委員:蔣慎思梁志欽
口試委員(外文):Shen-Shih ChiangZeng-Chin Liang
口試日期:2016-12-27
學位類別:碩士
校院名稱:東海大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:中文
論文頁數:149
中文關鍵詞:猴頭菇固態發酵呈味性質抗氧化性質
外文關鍵詞:Hericium erinaceumsolid-state fermentationtaste qualityantioxidant properties
相關次數:
  • 被引用被引用:15
  • 點閱點閱:1363
  • 評分評分:
  • 下載下載:215
  • 收藏至我的研究室書目清單書目收藏:1
猴頭菇(Hericium erinaceum),是中國傳統的菇蕈類,其生理活性成分包括多醣、猴頭素(erinacines)、猴頭酮(hericenones)、三萜類、腺苷及固醇類(sterols);其中猴頭素主要來自猴頭菇菌絲體,而猴頭酮則來自子實體。猴頭菇具有抗腫瘤、增強免疫力及刺激神經細胞生長等功能。近年來多使用液態發酵培養猴頭菇,而固態發酵則較少人研究,固態發酵優點包括成本低、設備簡單且可在低水活性下進行培養,故本研究目的為探討猴頭菇糙米最適固態培養條件,並對糙米、猴頭菇糙米、猴頭菇菌絲體及子實體之一般成分、呈味特性、生理活性物質、抗氧化性質及成分進行探討。
在不同固態發酵條件下培養猴頭菇糙米,發現猴頭菇糙米最適生長天數為12天,而碳源部分以麥芽糖效果較好,與控制組相比具有顯著差異,氮源及無機鹽類則是以大豆粉及硫酸鎂或碳酸鈉較好,但與控制組並無顯著差異;此外,溫度、水分添加量及接菌量分別為30℃、60%及3 mL時,可得較高之生物質含量,利用上述之培養條件來製備猴頭菇糙米。
在一般成分方面,猴頭菇糙米之水分為5.78%、碳水化合物81.87%、粗灰分1.44%、粗脂肪2.18%及粗蛋白8.73%。在呈味成分方面,猴頭菇糙米之總可溶性糖含量為56.05 mg/mL,以蕈糖含量最多;總游離胺基酸含量為24.20 mg/mL,其中以麩胺酸及精胺酸為主要胺基酸,另MSG-like含量為3.84 mg/g;總核苷酸含量為1.44 mg/g,而風味核苷酸含量為0.22 mg/g;此外,猴頭菇糙米等價鮮味值為12.08 g/100g。由上述結果可知,糙米經過猴頭菇固態發酵後可增加其呈味性質。
在生理活性物質方面,猴頭菇糙米、猴頭菇菌絲體及子實體之腺苷含量分別為0.18、0.40及1.06 mg/g,糙米則未測出;麥角硫因含量則依序為猴頭菇子實體 (0.31 mg/g)>菌絲體 (0.22 mg/g )>猴頭菇糙米 (0.07 mg/g)>糙米 (0 mg/g);多醣體含量則是猴頭菇子實體 (17.95 mg/g)最高,其次依序為猴頭菇糙米 (11.70 mg/g) >菌絲體 (9.42 mg/g)>糙米 (9.04 mg/g);總三萜類含量部分,猴頭菇糙米含量為4.13 mg/g,低於猴頭菇菌絲體 (5.93 mg/g)及子實體 (20.55 mg/g)。由生理活性結果顯示,猴頭菇糙米生理性物質含量皆高於糙米,但略低於菌絲體及子實體。
在抗氧化性質方面,糙米、猴頭菇糙米、猴頭菇菌絲體及子實體熱水萃取物於濃度為20 mg/mL時,清除DPPH自由基能力分別為53.85、81.45、88.31及99.41%;還原力分別為0.39、0.58、0.58及0.58;螯合亞鐵離子分別為77.86、89.52、94.24及97.22%。另在乙醇萃取物方面,清除DPPH自由基能力分別為72.01、94.04、96.78及99.25%;還原力分別為0.53、0.63、0.73及0.71;螯合亞鐵離子分別為85.87、91.77、94.61及100.60%。在抗氧化成分方面,四個樣品熱水及乙醇萃取物之抗氧化成分以總酚為主。
綜上所述,糙米經猴頭菇固態發酵後,可提高其呈味特性、生理活性物質、抗氧化能力及抗氧化成分;本研究之結果可作為開發具保健功效猴頭菇相關產品之參考應用。

Hericium erinaceum was a traditional mushroom of Asia and it also was a precious Chinese medicine. It contained many physiologically active materials, including polysaccharides, erinacines, hericenones, triterpenoid, adenosine and sterols. The medicinal effects of Hericium erinaceum such as anti-tumor, immunomodulation and stimulation of the growth of nerve factors had been found.
In this study, brown rice was used to produce Hericium erinaceum fermented brown rice. The objective of this study was to investigate the general composition, taste components, physiologically active components, antioxidant properties of brown rice, Hericium erinaceum mycelia (HEM), fruiting body (HEFB) and Hericium erinaceum fermented brown rice (HEBR).
Results showed that the most optimal conditions for solid-state fermentation of Hericium erinaceum was to use brown rice as medium, incubated for 12 days, moisture content at 60% , temperature at 30℃ and used maltose as carbon source.
In terms of the general composition of Hericium erinaceum fermented brown rice is 81.87% carbonhydrate, 5.78% moisture, 8.73% crude protein, 2.18% crude fat, and 1.44% crude ash. With regard to contents of taste components as expressed equivalent umami concentration, Hericium erinaceum fruiting body (865.62 g/100g) was the highest among mycelia (69.86 g/100g), Hericium erinaceum fermented brown rice (12.08 g/100g) and brown rice (0.09 g/100g). With regard to physiologically active components of adenosine, ergothioneine and triterpenoid of HEFB (1.06, 0.31 and 20.55, respectively) the y were higher than those of HEM (0.40, 0.22 and 5.93, respectively) and HEBR (0.18, 0.07 and 4.13, respectively).
The EC50 scavenging abilities on DPPH radicals of hot water extracts were in the descending order: brown rice (8.17 mg/mL) >HEBR (6.33 mg/mL)>HEM (3.06 mg/mL)>HEFB (2.12 mg/mL). The EC50 of the reducing powers of hot water extracts were in the descending order: brown rice (72.30 mg/mL) >HEBR (3.26 mg/mL)≒ HEFB (3.21 mg/mL) >HEM (0.77 mg/mL). The EC50 of chelating abilities on ferrous ions of hot water extracts were in the descending order: HEBR (8.89 mg/mL)>HEM (5.41 mg/mL)>brown rice (3.24 mg/mL)>HEFB (0.67 mg/mL).
The EC50 scavenging abilities on DPPH radicals of ethanolic extracts were in the descending order: brown rice (6.61 mg/mL) >HEBR (2.71 mg/mL)>HEM (2.08 mg/mL)>HEFB (0.82 mg/mL). The EC50 of the reducing powers of ethanolic extracts were in the descending order: brown rice (15.34 mg/mL) >HEFB (3.04 mg/mL)>HEBR (2.86 mg/mL)>HEM (0.73 mg/mL). The EC50 of chelating abilities on ferrous ions of ethanolic extracts were in the descending order: brown rice (3.34 mg/mL)>HEBR (2.33 mg/mL)>HEFB (0.34 mg/mL)>HEM (0.28 mg/mL). No matter it is the extracts of hot water or of ethanolic, the total phenols were the highest components of all samples in the analyzed antioxidant components.
In conclusion, Hericium erinaceum fermented brown rice prepared from the solid state fermentation of brown rice had better performance on nutrition, taste quality, physiologically active components and antioxidant properties.

摘要 I
Abstract III
表次 VIII
圖次 X
前言 1
第一章 文獻回顧 3
一、猴頭菌屬 3
(一)猴頭菌屬簡介 3
(二)猴頭菌屬之種類 3
二、猴頭菇之簡介 4
(一)猴頭菇簡介 4
(二)猴頭菇之自然分布 4
(三)猴頭菇機能性成分 5
(四)猴頭菇之生理活性 11
三、糙米 14
(一)糙米簡介 14
(二)-氨基丁酸 (-Aminobutyric acid; GABA) 14
四、固態發酵 15
(一)固態發酵定義 15
(二)固態發酵之特點 15
(三)固態發酵與液態發酵之比較 18
(四)測量固態發酵生物量之方法 19
(五)菇類固態發酵之相關文獻 22
五、食藥用菇之呈味性質 23
(一)游離胺基酸 23
(二)核苷酸 24
(三)可溶性糖 29
六、自由基與活性氧 31
(一)自由基與活性氧分子簡介 31
(二)自由基與活性氧之來源 33
(三)脂質過氧化物 36
七、抗氧化系統 39
(一)抗氧化劑的抗氧化原理 39
(二)抗氧化劑的分類 41
第二章 材料方法 48
一、實驗材料 48
二、實驗方法 48
(一)菌株培養及接種源製備 48
(二)固態發酵 49
(三)一般成分分析 51
(四)呈味物質分析 53
(五)生理活性物質分析 56
(六)猴頭菇糙米發酵產品抗氧化及成分評估 59
(七)統計分析 63
第四章 結果討論 64
一、培養條件之探討 64
(一)猴頭菇糙米固態發酵之最適化培養條件 64
1.猴頭菇糙米固態發酵之生長曲線 64
2.最適培養溫度 64
3.最適接菌量探討 72
4.最適水分添加量探討 72
5.最適氮源之探討 75
6.最適碳源之探討 75
7.最適無機鹽類之探討 78
二、一般成分分析 78
(一)水分 78
(二)碳水化合物 78
(三)粗灰分 78
(四)粗脂質 81
(五)粗蛋白 81
三、呈味物質分析 81
(一)可溶性糖之測定 81
(二)游離胺基酸之組成 83
(三)核苷酸之組成 86
四、生理活性物質分析 91
(一)腺苷 91
(二)麥角硫因 93
(三)多醣體 93
(四)總三萜類 94
五、抗氧化性質分析 95
(一)熱水及乙醇萃取物之萃取率 95
(二)熱水萃取物之抗氧化性質 95
(三)乙醇萃取物之抗氧化性質 105
(四) 熱水及乙醇萃取物抗氧化性質之EC50 113
(五)熱水及乙醇萃取物之TEAC 119
(六)抗氧化成分分析 120
第五章 結論 127
第六章 參考文獻 129

水野卓、川合正允。賴慶亮譯。1997。菇類的化學、生化學。國立編譯館。台北。台灣。
王小紅、錢驛、張衛明、趙伯濤。2009。食用菌呈味物質研究進展。中國野生植物資源。28(1):5-8。
王伯徹、陳啟楨、華傑。1998a。食藥用菇類的培養與應用。食品工業發展研究所:。115。
王伯徹。1990。食用菇及藥用菇系列報導(九)-猴頭菌。食品工業。 22(12):42−47。
王明星、高陽、徐多多、高其品。2015。猴頭菌多醣的理化性質及抗胃潰瘍。食品科技-提取物與應用。40(6)。
王進崑、柯文慶、洪端良、陳重文、盧榮錦及賴滋漢。2002。食品、營養儀器分析。富林出版社。台中,台灣。
王進琦、李聰明、賴敏男。1998b。猴頭菇以液體浸漬培養產製水溶性多醣類之探討。食品科學。25(6): 714-726。
王福海、黃成華。2013。活性氧自由基的研究進展。廣州化工。41(16): 10-12。
王璐璐。2010。單線態氧的生理作用及其檢測技術。科教前沿。17: 560。
江潔、王賽男、季旭穎。2015。食用菌子實體和菌絲體多糖抗氧化性的比較研究。大連民族學院學報。17(1):19-23。
何晉浙、徐瑤陽、孫培龍。2016。不同來源猴頭菌營養成分及其多糖化學組成和抗氧化活性比較。食品與發酵工業。42(1):134-140。
吳彩平。2006。以固態發酵製備樟芝米及其品質與抗氧化性質。國立中興大學食品暨應用生物科技學系碩士論文。台中,台灣。
李祥玲、胡勁松、陳作紅。2001。HPLC測定人工蛹蟲草及其培養基中蟲草素和腺苷含量。湖南師範大學自然科學學報。33(2):107-111。
李軼群、周念波。2010。麥角硫因的生物學功能及其應用。食品工程。 3:26-28。
李潔莉、陸玲、陳坤、邱建勇。2002。猴頭菌及其藥物製品腺苷等藥效成分分析。中國食用菌。21(3):32-34。
沈桂宇。2015。固態發酵技術設備及在飼料工業中的應用研究進展。 飼料工業。36(8):58-60。
谷鎮。2012。食用菌呈香呈味物質分析和製備工藝研究。上海師範大學。中國,上海。
周友誠。2001。台灣蕈類(猴頭菇、鱗傘菇、假芝、茯神)及藥用植物(苦苓舅、山苦賈)成分之研究。國立清華大學化學系博士論文。新竹,台灣。
孟慶華、於曉霞、張海鳳。2012。天然黃酮類化合物清除自由基機理及其應用進展。雲南民族大學學報自然科學版。21(2):79-83。
林天送。1994。自由基與健康。科學月刊。25: 515-521。
林炎金、江枝和、陳大新、楊佩玉。1994。姬松茸菇的營養成分研究初探。食用菌學報。5:113
林若涵。2009。辣木對脂質代謝、抗氧化及抗致突變性之研究。輔仁大學營養科學系碩士論文。台北,台灣。
林海鳴、許瓊明、孫曉飛、劉艷麗、楊世林。2008。猴頭菌抗胃潰瘍作用的研究。中草藥。39(12):1861-1863。
柏華、劉佳、劉福柱。2013。自由基的研究進展。江西飼料。3:1-4。
紀彥甫。2014。以固態發酵製備蟬花米及其品質與抗氧化性質。東海大學食品科學系碩士論文。台中,台灣。
香川芳子(監修)。2004。五訂食品成分表。女子營養大學出版部。東京。日本。
唐鵬、李學英、王大忠。2014。中國食用菌。33 (3) : 48-51。
夏文娟、曾曉英、袁海龍、尹定華、楊大堅。2001。不同產地冬蟲夏草腺苷含量之測定。中國中藥雜誌。26(8):540-542。
席桂同。2014。高效液相色譜法測定靈芝提取物中尿苷和腺苷含量。中藥研究。9(7):934-937。
徐佳莉。2008。以固態發酵製備桑黃薏仁與桑黃米產品及其呈味性質與生理活性。國立中興大學食品暨應用生物科技學系碩士論文。台中,台灣。
郝晨旭、曾亮慧。2015。猴頭菌屬真菌化學成分及藥理活性研究概述。科技經濟市場。8:95。
高雅、張春紅、韓艷秋、張銳、張良晨、張曉黎。2013。糙米的營養價值及加工利用現狀。農業科技與裝備。2:56-58
張虎成、楊國偉、楊軍、王曉杰、涂晨曉、賈希蒙。2012。猴頭菇提取液抑菌及抗氧化活性研究。中國食品添加劑。5:114-121。
張雅雯。2002。化學合成與天然浸液培養基及培養溫度對蓮花菌(Grifola frondosa)菌株間發酵產程菌絲體及多醣之影響。大葉大學食品工程研究所碩士論文。彰化。台灣。
張暉、姚惠源、姜元榮。2002。γ-氨基丁酸的功能性及其在稻米製品中的富集利用。糧食與飼料工業。8:41-43。
張碩、李明、李守勉、田景花、夏曉靜。2009。猴頭菌菌絲體與子實體多醣產量相關性分析。安徽農業科學。37 (15) : 6946-6947。
張鵬、包海鷹、圖利古爾。2012。猴頭菌屬真菌化學成分及藥理活性研究概述。吉林農業大學。中草藥。43(12):95。
張鵬、包海鷹。2011。猴頭菌屬真菌化學成分及藥理活性研究概述。菌物研究。1(9):54-62。
梁臣、陳忠。2015。γ-氨基丁酸及其受體功能的研究與應用現狀。動物醫學進展。36(4):108-112。
畢韜韜、吳廣輝。2015。猴頭菇營養價值及深加工研究進展。食品研究與開發。36 (9) :146-148。
莊荃與。2006。利用固態醱酵法生產超氧歧化酶之研究。國立屏東科技大學食品科學系碩士論文。屏東,台灣。
郭惠菁。2005。以固態發酵製備蟲草米及其品質與抗氧化性質。國立中興大學食品暨應用生物科技學系碩士論文。台中,台灣。
陳弘坤。1986。洋菇濃縮物呈味物質特性及粉末化之研究。國立中興大學食品科學系碩士論文。台中,台灣。
陳怡廷。2007。生長於含薑培養基之紅麴菌發酵產物的抗氧化力。實踐大學食品營養與保健生技研究所。台北,台灣。
陳怡霖。2014。金針菇熱水萃取物之呈味品質與其在鮮味調味料之應用。國立中興大學食品科學系碩士論文。台中,台灣。
陳榮、王學亮、徐環環、孫莉、郁章玉。2013。抗氧劑抗氧化活性研究進展。荷澤學院學報。35(5):44-49。
陳榮秀。2006。抗氧化中草藥化妝品之開發。嘉南大學專題研究。嘉義,台灣。
陳瑾歆、唐聰明。2004。氧自由基的研究進展。海南醫學院學報。10(3): 206-208。
麻兵繼、徐俊蕾、文春南、于海尤。2012。猴頭菌子實體化學成分研究。天然產物研究與開發。24:1165-1168。
湯國祥。2016。胺基酸對動物免疫功能的影響及調節機制研究進展。飼料飼養。8:65-68。
黃鈴娟。2000。樟芝與姬松茸之抗氧化性及其多醣組成分析。國立中興大學食品科學系碩士論文。台中。台灣。
楊依珊、邵彥春、陳福生。2012。工業真菌自溶的研究。中國科技論文。
楊彩秀。2000。白木耳多醣之製備及其理化性質之分析。國立中興大學食品暨應用生物科技學系碩士論文。台中,台灣。
楊揚、胡靜、杜金。2013。小刺猴頭菌絲體多醣的純化及性質。吉林農業大學學報。35(6):708-715。
楊焱、周峰、李巧珍、李玉。2014。猴頭菌不同發育階段鮮品中非揮發性呈味物質的研究。天然產物研究與開發。26:539-543。
葉展均。2009。以固態發酵製備白樺茸胚芽米及其呈味性質與生理活性。國立中興大學食品暨應用生物科技學系碩士論文。台中,台灣。
雷韶祺、張新超、郭麗瓊、林俊芳。2011。猴頭菌固體發酵基質的抗氧化活性成分研究。食品與機械。27(4) :43-47。
靳文斌、李克文、胥九兵、張友亮、肖兆玲。2015。海藻糖的特性、功能及應用。精細與專用化學品。23(1):30-33。
廖仁宏。2003。固態培養生產靈芝菌絲體之研究。東海大學化學工程學系碩士論文。台中。台灣。
廖日滔、郭靜科、李冰潔、饒平凡。2015。自由基相關細胞信號傳導的研究進展。中國細胞生物學學報。36(11):1573-1583。
廖春燕、鄭裕國。2005。固態發酵生物反應器。微生物學通報。32:99-103。
趙保路。2012。吸菸、自由基與健康。生物物理學報。28(4):332-340。
劉昆崙、李央、陳復生。2016。糙米、白米和米糠營養成分分析與評價。河南工業大學學報。37(3):7-12。
潘杭君、孫紅祥。2003。三萜皂苷的免疫調節作用。中國獸醫學雜誌。 2003(1) :42-45。
蔡淑瑤。2002。靈芝與柳松菇之抗氧化性質和其對腫瘤細胞之毒性及柳松菇之抗致性突變性質。國立中興大學食品科學系碩士論文。台中。台灣。
鄭林用、黃小琴、曾瑾、許曉燕。2007。不同靈芝菌株多醣、三萜化合物比較分析。四川大學學報。44(5):1122-1124。
鄭德樞、陳二云。2013。出生前人腦海馬結構含GABA神經元的分布與發育。神經解剖學雜誌。15(2):132-136。
錢李仁、黃越承、蔡建明。2009。幾類自由基清除劑的抗輻射作用研究進展。輻射研究與輻射工藝學報。27(6):321-324。
簡嘉、李平華。2006。活性氧清除劑對實驗性視神經炎作用的研究進展。國際眼科雜誌。7:469-471。
譚琦、潘偉、劉瑞娜、章爐軍。2012。猴頭菌提取物抗氧化活性研究。食用菌學報。19(2):95-99。
蘇山玉、馬瑞霞。2007。猴頭菇的生物學特性與栽培技術。河北農業科技。45~46。
Augustin, J. M., Kuzina, V., Andersen, S. B., & Bak, S. (2011). Molecular activities, biosynthesis and evolution of triterpenoid saponins. Phytochemistry, 72(6), 435-457.
Babitha, S., Soccol, C. R., & Pandey, A. (2007). Solid-state fermentation for the production of Monascus pigments from jackfruit seed. Bioresource Technology, 98(8), 1554-1560.
Bano, Z., & Rajarathnam, S. (1988). Pleurotus mushrooms. Part II. Chemical composition, nutritional value, post-harvest physiology, preservation, and role as human food. Critical Reviews in Food Science and Nutrition, 27(2), 87-158.
Bartosz, G. (2003). Generation of reactive oxygen species in biological systems. Comments on Toxicology, 9(1), 5-21.
Bazela, K., Solyga-Zurek, A., Debowska, R., Rogiewicz, K., Bartnik, E., & Eris, I. (2014). L-Ergothioneine protects skin cells against UV-induced damage—a preliminary study. Cosmetics, 1(1), 51-60.
Beckman, J. S. (2009). Understanding peroxynitrite biochemistry and its potential for treating human diseases. Archives of Biochemistry and Biophysics, 484(2), 114.
Beluhan, S., & Ranogajec, A. (2011). Chemical composition and non-volatile components of Croatian wild edible mushrooms. Food Chemistry, 124(3), 1076-1082.
Bouayed, J. (2010). Polyphenols: a potential new strategy for the prevention and treatment of anxiety and depression. Current Nutrition & Food Science, 6(1), 13-18.
Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28(1), 25-30.
Caiazzo, E., Maione, F., Morello, S., Lapucci, A., Paccosi, S., Steckel, B., Lavecchia, A., Parenti, A., Iuvone, T., Schrader, J., Ialenti, A., & Cicala, C. (2016). Adenosine signalling mediates the anti-inflammatory effects of the COX-2 inhibitor nimesulide. Biochemical Pharmacology, 112, 72-81.
Carrizalez, V., Rodriguez, H., & Sardina, I. (1981). Determination of the specific growth of molds on semi‐solid cultures. Biotechnology and Bioengineering, 23(2), 321-333.
Chang, C. H., Chen, Y., Yew, X. X., Chen, H. X., Kim, J. X., Chang, C. C., Peng, C. C., & Peng, R. Y. (2016). Improvement of erinacine A productivity in Hericium erinaceus mycelia and its neuroprotective bioactivity against the glutamate-insulted apoptosis. LWT - Food Science and Technology, 65, 1100-1108.
Chang, B. V., & Chang, Y. M. (2016). Biodegradation of toxic chemicals by Pleurotus eryngii in submerged fermentation and solid-state fermentation. Journal of Microbiology, Immunology and Infection, 49(2), 175-181.
Chang, S. T., & Miles, P. G. (1989). Edible mushrooms and their cultivation. Edible mushrooms and their cultivation.
Chen, S. Y., Ho, K. J., Hsieh, Y. J., Wang, L. T., & Mau, J. L. (2012). Contents of lovastatin, γ-aminobutyric acid and ergothioneine in mushroom fruiting bodies and mycelia. LWT-Food Science and Technology, 47(2), 274-278.
Chen, H. (2013). Modern solid state fermentation. Netherlands: Springer.
Cremades, O., Diaz-Herrero, M. M., Carbonero-Aguilar, P., Gutierrez-Gil, J. F., Fontiveros, E., & Bautista, J. (2015). White button mushroom ergothioneine aqueous extracts obtained by the application of enzymes and membrane technology. Food Bioscience, 10, 42-47.
Crisan, E. V., & Sands, A. (1978). In the biology and Cultivation of edible mushrooms. Nutritional value, 137-165.
Das, U. N. (2003). Can memory be improved? A discussion on the role of ras, GABA, acetylcholine, NO, insulin, TNF-alpha, and long-chain polyunsaturated fatty acids in memory formation and consolidation. Brain & Development, 25(4), 251-261.
Dinis, T. C., Madeira, V. M., & Almeida, L. M. (1994). Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Archives of Biochemistry and Biophysics, 315(1), 161-169.
Dringen, R. (2000). Metabolism and functions of glutathione in brain. Progress in Neurobiology, 62(6), 649-671.
Durand, A. (2003). Bioreactor designs for solid state fermentation. Biochemical Engineering Journal, 13(2–3), 113-125.
Ey, J., Schömig, E., & Taubert, D. (2007). Dietary Sources and Antioxidant Effects of Ergothioneine. Journal of Agricultural and Food Chemistry, 55(16), 6466-6474.
Faingold, C. L., Randall, M., & Kommajosyula, S. P. (2016). Susceptibility to seizure-induced sudden death in DBA/2 mice is altered by adenosine. Epilepsy Research, 124, 49-54.
Farmer, E., Bloomfield, G., Sundralingam, A., & Sutton, D. (1942). The course and mechanism of autoxidation reactions in olefinic and polyolefinic substances, including rubber. Transactions of the Faraday Society, 38, 348-356.
Friedman, M. (2015). Chemistry, nutrition, and health-promoting properties of Hericium erinaceus (lion’s mane) mushroom fruiting bodies and mycelia and their bioactive compounds. Journal of Agricultural and Food Chemistry, 63(32), 7108-7123.
Giese, J., (1996). Antioxidants: tools for preventing lipid oxidation. Food Technology, 11, 73–78.
Gioxari, A., Kogiannou, D. A. A., Kalogeropoulos, N., & Kaliora, A. C. (2016). Phenolic Compounds: Bioavailability and Health Effects. Encyclopedia of Food and Health, 339-345
Hölker, U., Höfer, M., & Lenz, J. (2004). Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Applied Microbiology and Biotechnology, 64(2), 175-186.
Hammond, J., & Nichols, R. (1976). Carbohydrate metabolism in Agaricus bisporus (Lange) Sing.: changes in soluble carbohydrates during growth of mycelium and sporophore. Microbiology, 93(2), 309-320.
Han, J., An, C., & Yuan, J. (2005). Solid‐state fermentation of cornmeal with the basidiomycete Ganoderma lucidum for degrading starch and upgrading nutritional value. Journal of applied microbiology, 99(4), 910-915.
Han, Z. H., Ye, J. M., & Wang, G. F. (2013). Evaluation of in vivo antioxidant activity of Hericium erinaceus polysaccharides. International Journal Biological Macromolecules, 52, 66-71.
Harborne, J. B., & Williams, C. A. (2001). Anthocyanins and other flavonoids. Natural Product Reports, 18(3), 310-333.
Harijith, A., Ebenezer, D. L., & Natarajan, V. (2014). Reactive oxygen species at the crossroads of inflammasome and inflammation. Frontiers in physiology, 5, 352.
Heleno, S. A., Barros, L., Martins, A., Queiroz, M. J. R. P., Morales, P., Fernández-Ruiz, V., & Ferreira, I. C. F. R. (2015). Chemical composition, antioxidant activity and bioaccessibility studies in phenolic extracts of two Hericium wild edible species. LWT - Food Science and Technology, 63(1), 475-481.
Hellenbrand, T., Hofner, G., Wein, T., & Wanner, K. T. (2016). Synthesis of 4-substituted nipecotic acid derivatives and their evaluation as potential GABA uptake inhibitors. Bioorganic & Medicinal Chemistry, 24(9), 2072-2096.
Herre, J. (2004). Dectin-1 and its role in the recognition of β-glucans by macrophages. Molecular Immunology, 40(12), 869-876.
Hiwatashi, K., Kosaka, Y., Suzuki, N., Hata, K., Mukaiyama, T., Sakamoto, K., Shirakawa, H., & Komai, M. (2010). Yamabushitake mushroom (Hericium erinaceus) improved lipid metabolism in mice fed a high-fat diet. Bioscience Biotechnology Biochemistry, 74(7), 1447-1451.
Hseu, Y. C., Lo, H. W., Korivi, M., Tsai, Y. C., Tang, M. J., & Yang, H. L. (2015). Dermato-protective properties of ergothioneine through induction of Nrf2/ARE-mediated antioxidant genes in UVA-irradiated Human keratinocytes. Free Radical Biology Medicine, 86, 102-117.
Hudson, E. A., Dinh, P. A., Kokubun, T., Simmonds, M. S., & Gescher, A. (2000). Characterization of potentially chemopreventive phenols in extracts of brown rice that inhibit the growth of human breast and colon cancer cells. Cancer Epidemiol Biomarkers Preview, 9(11), 1163-1170.
Ikeda, K. (1908). A production method of seasoning mainly consists of salt of L-glutamic acid. Japanese patent, 14804.
Isaka, M., Palasarn, S., Srikitikulchai, P., Vichai, V., & Komwijit, S. (2016). Astraeusins A–L, lanostane triterpenoids from the edible mushroom Astraeus odoratus. Tetrahedron, 72(23), 3288-3295.
Itoh, N., Takagi, S., Miki, A., & Kurokawa, J. (2016). Characterization and cloning of laccase gene from Hericium coralloides NBRC 7716 suitable for production of epitheaflagallin 3-O-gallate. Enzyme Microbial Technology, 82, 125-132.
Jacob, R. A. (1995). The integrated antioxidant system. Nutrition Research, 15(5), 755-766.
Jang, J. H., Aruoma, O. I., Jen, L. S., Chung, H. Y., & Surh, Y. J. (2004). Ergothioneine rescues PC12 cells from beta-amyloid-induced apoptotic death. Free Radical Biology Medicine, 36(3), 288-299.
Ji, C. Y., Kim, Y. H., Kim, H. S., Ke, Q., Kim, G. W., Park, S. C., Lee, H. S., Jeong, J. C., & Kwak, S. S. (2016). Molecular characterization of tocopherol biosynthetic genes in sweetpotato that respond to stress and activate the tocopherol production in tobacco. Plant Physiology and Biochemistry, 106, 118-128.
Jiang, Y., Wong, J. H., Fu, M., Ng, T. B., Liu, Z. K., Wang, C. R., Li, N., Qiao, W. T., Wen, T. Y., & Liu, F. (2011). Isolation of adenosine, iso-sinensetin and dimethylguanosine with antioxidant and HIV-1 protease inhibiting activities from fruiting bodies of Cordyceps militaris. Phytomedicine, 18(2-3), 189-193.
Jung, K. H., Lee, J. H., Quach, C. H. T., Paik, J. Y., Oh, H., Park, J. W., Lee, E. J., Moon, S. H., & Lee, K. H. (2013). Resveratrol suppresses cancer cell glucose uptake by targeting reactive oxygen species–mediated hypoxia-inducible factor-1α activation. Journal of Nuclear Medicine, 54(12), 2161-2167.
Kamal-Eldin, A., & Appelqvist, L. Å. (1996). The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids, 31(7), 671-701.
Kawagishi, H. (2005). Anti-MRSA Compounds from Hericium erinaceus (Bull.:Fr.) Pers. International Journal of Medicinal Mushrooms, 7(3), 350.
Kawagishi, H., Ando, M., & Mizuno, T. (1990). Hericenone A and B as cytotoxic principles from the mushroom Hericium erinaceum. Tetrahedron Letters, 31(3), 373-376.
Kawagishi, H., Ando, M., Sakamoto, H., Yoshida, S., Ojima, F., Ishiguro, Y., Ukai, N., & Furukawa, S. (1991). Hericenones C, D and E, stimulators of nerve growth factor (NGF)-synthesis, from the mushroom Hericium erinaceum. Tetrahedron Letters, 32(35), 4561-4564.
Kawagishi, H., Shimada, A., Shirai, R., Okamoto, K., Ojima, F., Sakamoto, H., Ishiguro, Y., & Furukawa, S. (1994). Erinacines A, B and C, strong stimulators of nerve growth factor (NGF)-synthesis, from the mycelia of Hericium erinaceum. Tetrahedron Letters, 35(10), 1569-1572.
Kawagishi, H., Simada, A., Shizuki, K., Ojima, F., Mori, H., Okamoto, K., Sakamoto, H., & Furukawa, S. (1996). Erinacine D, A Stimulator of NGF-synthesis, from the mycelia of Hericium erinaceum. Heterocyclic Communications, 2, 51.
Kenmoku, H., Kato, N., Shimada, M., Omoto, M., Mori, A., Mitsuhashi, W., & Sassa, T. (2001). Isolation of (−)-cyatha-3,12-diene, a common biosynthetic intermediate of cyathane diterpenoids, from an erinacine-producing basidiomycete, Hericium erinaceum, and its formation in a cell-free system. Tetrahedron Letters, 42(42), 7439-7442.
Kier, L. B. (1972). A molecular theory of sweet taste. Journal of Pharmaceutical Sciences, 61(9), 1394-1397.
Kim, M. Y., Chung, l. M., Lee, S. J., Ahn, J. K., Kim, E. H., Kim, M. J., Kim, S. L., Moon, H. I., Ro, H. M., Kang, E. Y., Seo, S. H., & Song, H. K. (2009). Comparison of free amino acid, carbohydrates concentrations in Korean edible and medicinal mushrooms. Food Chemistry, 113(2), 386-393.
Kim, D. M., Pyun, C. W., Ko, H. G., Park, W. M. (2000). Isolation of antimicrobial substances from Hericium erinaceum. Mycobiology 28,33-38.
Kim, Y. J., Park, J., Min, B. S., & Shim, S. H. (2011). Chemical constituents from the sclerotia of Inonotus obliquus. Journal of the Korean Society for Applied Biological Chemistry, 54(2), 287-294.
Kinuta, Y., Kimura, M., Itokawa, Y., Ishikawa, M., & Kikuchi, H. (1989). Changes in xanthine oxidase in ischemic rat brain. Journal of neurosurgery, 71(3), 417-420.
Komata, Y. (1990). Umami taste of seafoods. Food Reviews International, 6(4), 457-487.
Laguerre, M., Lecomte, J., & Villeneuve, P. (2007). Evaluation of the ability of antioxidants to counteract lipid oxidation: Existing methods, new trends and challenges. Progress in Lipid Research, 46(5), 244-282.
Laurenza, I., Colognato, R., Migliore, L., Del Prato, S., & Benzi, L. (2008). Modulation of palmitic acid-induced cell death by ergothioneine: evidence of an anti-inflammatory action. Biofactors, 33(4), 237-247.
Lee, K. F., Chen, J. H., Teng, C. C., Shen, C. H., Hsieh, M. C., Lu, C. C., Lee, K. C., Lee, L. Y., Chen, W. P., Chen, C. C., Huang, W. S., & Kuo, H. C. (2014). Protective effects of Hericium erinaceus mycelium and its isolated erinacine A against ischemia-injury-induced neuronal cell death via the inhibition of iNOS/p38 MAPK and nitrotyrosine. International Journal Molecular Sciences, 15(9), 15073-15089.
Lee, J. S. (2009). Study of Macrophage Activation and Structural Characteristics of Purified Polysaccharides from the Fruiting Body of Hericium erinaceus. Journal of Microbiology and Biotechnology, 19(9), 951-959.
Li, Q. Z., Wu, D., Zhou, S., Liu, Y. F., Li, Z. P., Feng, J., & Yang, Y. (2016). Structure elucidation of a bioactive polysaccharide from fruiting bodies of Hericium erinaceus in different maturation stages. Carbohydrate Polymers, 144, 196-204.
Li, W., Zhou, W., Kim, E. J., Shim, S. H., Kang, H. K., & Kim, Y. H. (2015). Isolation and identification of aromatic compounds in Lion's Mane Mushroom and their anticancer activities. Food Chemistry, 170, 336-342.
Li, Y., Zhang, G., Ng, T. B., & Wang, H. (2010). A novel lectin with antiproliferative and HIV-1 reverse transcriptase inhibitory activities from dried fruiting bodies of the monkey head mushroom Hericium erinaceum. Journal Biomedicine Biotechnology, 2010, 716515.
Liang, B., Guo, Z., Xie, F., & Zhao, A. (2013). Antihyperglycemic and antihyperlipidemic activities of aqueous extract of Hericium erinaceus in experimental diabetic rats. BMC complementary and alternative medicine, 13(1), 1.
Liu, J., Du, C., Wang, Y., & Yu, Z. (2015). Anti-fatigue activities of polysaccharides extracted from Hericium erinaceus. Experimental and therapeutic medicine, 9(2), 483-487.
Liu, J. H., Li, L., Shang, X. D., Zhang, J. L., & Tan, Q. (2016). Anti-Helicobacter pylori activity of bioactive components isolated from Hericium erinaceus. Journal of Ethnopharmacology, 183, 54-58.
Lu, C. C., Huang, W. S., Lee, K. F., Lee, K. C., Hsieh, M. C., Huang, C. Y., Lee, L. Y., Lee, B. O., Teng, C. C., Shen, C. H., Tung, S. Y., & Kuo, H. C. (2016). Inhibitory effect of Erinacines A on the growth of DLD-1 colorectal cancer cells is induced by generation of reactive oxygen species and activation of p70S6K and p21. Journal of Functional Foods, 21, 474-484.
Ma, B. J., Shen, H. Y., Yu, H. Y., Ruan, T. T., &Zhao, X. (2016). Hericenones and erinacines: stimulators of nerve growth factor (NGF) biosynthesis in Hericium erinaceus. Mycology, 1, 92-98.
Ma, T. W., Lai, Y., Chen, L. T., & Yang, F. C. (2016). The cultivation strategy of enhancing triterpenoid production in submerged cultures of Antrodia cinnamomea by adding monoterpenes. Journal of the Taiwan Institute of Chemical Engineers, 58, 210-218.
Ma, L., Chen, H., Dong, P., & Lu, X. (2013). Anti-inflammatory and anticancer activities of extracts and compounds from the mushroom Inonotus obliquus. Food Chemistry, 139(1–4), 503-508.
Machado, A. R. G., Teixeira, M. F. S., de Souza Kirsch, L., Campelo, M. d. C. L., & de Aguiar Oliveira, I. M. (2015). Nutritional value and proteases of Lentinus citrinus produced by solid state fermentation of lignocellulosic waste from tropical region. Saudi Journal of Biological Sciences, 23(5),621-627.
Malinowska, E., Krzyczkowski, W., Herold, F., Łapienis, G., Ślusarczyk, J., Suchocki, P., Kuraś, M., & Turło, J. (2009). Biosynthesis of selenium-containing polysaccharides with antioxidant activity in liquid culture of Hericium erinaceum. Enzyme and Microbial Technology, 44(5), 334-343.
Mannervik, B. (1985). Glutathione peroxidase. Methods in enzymology, 113,490-495.
Marnett, L. J. (1999). Lipid peroxidation—DNA damage by malondialdehyde. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 424(1–2), 83-95.
Matcham, S., Jordan, B., & Wood, D. (1985). Estimation of fungal biomass in a solid substrate by three independent methods. Applied Microbiology and Biotechnology, 21(1-2), 108-112.
Mau, J. L. (2005). The umami taste of edible and medicinal mushrooms. International Journal of Medicinal Mushrooms, 7(1/2), 119.
Mau, J. L., Lin, H. C., & Chen, C. C. (2001). Non-volatile components of several medicinal mushrooms. Food Research International, 34(6), 521-526.
Mau, J. L., Lin, H. C., & Song, S. F. (2002). Antioxidant properties of several specialty mushrooms. Food Research International, 35(6), 519-526.
Mau, J. L., & Tseng, Y. H. (1998). Nonvolatile taste components of three strains of Agrocybe cylindracea. Journal of Agricultural and Food Chemistry, 46(6), 2071-2074.
McCord, J. M., & Fridovich, I. (1969). Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). Journal of Biological Chemistry, 244(22), 6049-6055.
Mecocci, P., Fano, G., Fulle, S., MacGarvey, U., Shinobu, L., Polidori, M. C., Cherubini, A., Vecchiet, J., Senin, U., & Beal, M. F. (1999). Age-dependent increases in oxidative damage to DNA, lipids, and proteins in human skeletal muscle. Free Radical Biology and Medicine, 26(3), 303-308.
Mitchell, D. A., de Lima Luz, L. F., Krieger, N., & Berovič, M. (2011).Bioreactors for Solid-State Fermentation. Comprehensive Biotechnology (Second Edition), 347-360.
Miyazawa, T., Kawabata, T., Okazaki, K., Suzuki, T., Imai, D., Hamamoto, T., Matsumura, S., & Miyagawa, T. (2012). Oral administration of γ-aminobutyric acid affects heat production in a hot environment in resting humans. Journal of Physiological Anthropology, 31(1), 1-7.
Mizuno, T., Wasa, T., Ito, H., Suzuki, C., & Ukai, N. (1992). Antitumor-active polysaccharides isolated from the fruiting body of Hericium erinaceum, an edible and medicinal mushroom called yamabushitake or houtou. Bioscience Biotechnology Biochemistry, 56(2), 347-348.
Moradali, M. F., Mostafavi, H., Ghods, S., & Hedjaroude, G. A. (2007). Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrofungi). International Immunopharmacology, 7(6), 701-724.
Motohashi, N., Mori, I., Sugiura, Y., & Tanaka, H. (1977). Radioprotective effect of ergothioneine on gamma-irradiation of metmyoglobin: comparison with cysteine on sulfmyoglobin-formation. Chemical and Pharmaceutical Bulletin, 25(10), 2516-2523.
Murphy, M. P. (2009). How mitochondria produce reactive oxygen species. Biochemical Journal, 417(1), 1-13.
Nagai, K., Chiba, A., Nishino, T., Kubota, T., & Kawagishi, H. (2006). Dilinoleoyl-phosphatidylethanolamine from Hericium erinaceum protects against ER stress-dependent Neuro2a cell death via protein kinase C pathway. Journal of Nutritional Biochemistry, 17(8), 525-530.
Nakalembe, I., Kabasa, J. D., & Olila, D. (2015). Comparative nutrient composition of selected wild edible mushrooms from two agro-ecological zones, Uganda. SpringerPlus, 4, 433.
Nigam, P. S. N., & Pandey, A. (2009). Biotechnology for agro-industrial residues utilisation: utilisation of agro-residues.
Niksic, M., Klaus, A., & Argyropoulos, D. (2016). Safety of Foods Based on Mushrooms .Regulating Safety of Traditional and Ethnic Foods, 421-439.
Ogasawara, M., Katsumata, T., & Egi, M. (2006). Taste properties of Maillard-reaction products prepared from 1000 to 5000Da peptide. Food Chemistry, 99(3), 600-604.
Okamura, H., Anno, N., Tsuda, A., Inokuchi, T., Uchimura, N., & Inanaga, K. (2015). The effects of Hericium erinaceus (Amyloban® 3399) on sleep quality and subjective well-being among female undergraduate students: A pilot study. Personalized Medicine Universe, 4, 76-78.
Okazaki, N., Sugama, S., & Tanaka, T. (1980). Mathematical model for surface culture of koji mold: Growth of koji mold on the surface of steamed rice grains (IX). Journal of fermentation technology, 58(5), 471-476.
Ooijkaas, L., Tramper, J., & Buitelaar, R. (1998). Biomass estimation of Coniothyrium minitans in solid-state fermentation. Enzyme and Microbial Technology, 22(6), 480-486.
Osmolovskiy, A. A., Baranova, N. A., Kreier, V. G., Kurakov, A. V., & Egorov, N. S. (2014). Solid-state and membrane-surface liquid cultures of micromycetes: Specific features of their development and enzyme production (a Review). Applied Biochemistry and Microbiology, 50(3), 219-227.
Oyaizu, M. (1988). Antioxidative activities of browning products of glucosamine fractionated by organic solvent and thin-layer chromatography. Nippon Shokuhin Kogyo Gakkaishi, 35(11), 771-775.
Pandey, A. (1992). Recent process developments in solid-state fermentation. Process Biochemistry, 27(2), 109-117.
Pandey, A. (2003). Solid-state fermentation. Biochemical Engineering Journal, 13(2), 81-84.
Panlasigui, L. N., & Thompson, L. U. (2006). Blood glucose lowering effects of brown rice in normal and diabetic subjects. International journal of food sciences and nutrition, 57(3-4), 151-158.
Pham-Huy, L. A., He, H., & Pham-Huy, C. (2008). Free radicals, antioxidants in disease and health. International Journal Biomedicine Sciences, 4(2), 89-96.
Phan, C. W., Lee, G. S., Hong, S. L., Wong, Y. T., Brkljaca, R., Urban, S., Abd Malek, S. N., & Sabaratnam, V. (2014). Hericium erinaceus (Bull.: Fr) Pers. cultivated under tropical conditions: isolation of hericenones and demonstration of NGF-mediated neurite outgrowth in PC12 cells via MEK/ERK and PI3K-Akt signaling pathways. Food Function, 5(12), 3160-3169.
Prieto-Simón, B., Cortina, M., Campàs, M., & Calas-Blanchard, C. (2008). Electrochemical biosensors as a tool for antioxidant capacity assessment. Sensors and Actuators B: Chemical, 129(1), 459-466.
Puri, M., Banerjee, A., & Banerjee, U. C. (2005). Optimization of process parameters for the production of naringinase by Aspergillus niger MTCC 1344. Process Biochemistry, 40(1), 195-201.
Qi, L. W., Wang, C. Z., & Yuan, C. S. (2010). American ginseng: potential structure–function relationship in cancer chemoprevention. Biochemical pharmacology, 80(7), 947-954.
Quagliariello, V., Iaffaioli, R. V., Falcone, M., Ferrari, G., Pataro, G., & Donsì, F. (2016). Effect of pulsed electric fields – assisted extraction on anti-inflammatory and cytotoxic activity of brown rice bioactive compounds. Food Research International, 87, 115-124.
Rammal, H., Bouayed, J., & Soulimani, R. (2010). A direct relationship between aggressive behavior in the resident/intruder test and cell oxidative status in adult male mice. European Journal of Pharmacology, 627(1-3), 173-176.
Randhawa, P. K., & Jaggi, A. S. (2016). Unraveling the role of adenosine in remote ischemic preconditioning-induced cardioprotection. Life Sciences, 155, 140-146.
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C. (1999).Antioxidant activity applying an improved ABTS radical cation decolotization assay.Free Radical Biology & Medicine. 26 (9-10), 1231-1237.
Robinson, T., McMullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource technology, 77(3), 247-255.
Saha, B. C. (2003). Production of Mannitol by Fermentation. Fermentation Biotechnology, 862,67-85.
Salminen, A., Jouhten, P., Sarajärvi, T., Haapasalo, A., & Hiltunen, M. (2016). Hypoxia and GABA shunt activation in the pathogenesis of Alzheimer's disease. Neurochemistry International, 92, 13-24.
Sato, K., Nakamura, K., & Sato, S. (1985). Solid‐state ethanol fermentation by means of inert gas circulation. Biotechnology and bioengineering, 27(9), 1312-1319.
Schreck, R., & Baeuerle, P. A. (1994). Assessing oxygen radicals as mediators in activation of inducible eukaryotic transcription factor NF-κB. Methods in enzymology, 234, 151-163.
Shahidi, F., Janitha, P. K., & Wanasundara, P. D. (1992). Phenolic antioxidants. Critical Reviews in Food Science and Nutrition, 32(1), 67-103.
Shang, H. M., Song, H., Wang, L. N., Wu, B., Ding, G. D., Jiang, Y. Y., Yao, X., & Shen, S. J. (2014). Effects of dietary polysaccharides from the submerged fermentation concentrate of Hericium caput-medusae (Bull.:Fr.) Pers. on performance, gut microflora, and cholesterol metabolism in broiler chickens. Livestock Science, 167, 276-285.
Shawkat, H., Westwood, M.-M., & Mortimer, A. (2012). Mannitol: a review of its clinical uses. Continuing Education in Anaesthesia, Critical Care & Pain, 12(2), 82-85.
Shen, T., Morlock, G., & Zorn, H. (2015). Production of cyathane type secondary metabolites by submerged cultures of Hericium erinaceus and evaluation of their antibacterial activity by direct bioautography. Fungal Biology and Biotechnology, 2(1), 1-7.
Sheu, S. C., Lyu, Y., Lee, M. S., & Cheng, J. H. (2013). Immunomodulatory effects of polysaccharides isolated from Hericium erinaceus on dendritic cells. Process Biochemistry, 48(9), 1402-1408.
Shiah, I. S., & Yatham, L. N. (1998). GABA function in mood disorders: An update and critical review. Life Sciences, 63(15), 1289-1303.
Shimbo, M., Kawagishi, H., & Yokogoshi, H. (2005). Erinacine A increases catecholamine and nerve growth factor content in the central nervous system of rats. Nutrition Research, 25(6), 617-623.
Tan, H., Ashour, A., Katakura, Y., & Shimizu, K. (2015). A structure-activity relationship study on antiosteoclastogenesis effect of triterpenoids from the leaves of loquat (Eriobotrya japonica). Phytomedicine, 22(4), 498-503.
Taofiq, O., González-Paramás, A. M., Martins, A., Barreiro, M. F., & Ferreira, I. C. F. R. (2016). Mushrooms extracts and compounds in cosmetics, cosmeceuticals and nutricosmetics—A review. Industrial Crops and Products, 90, 38-48.
Taurhesia, S., & McNeil, B. (1994). Physicochemical factors affecting the formation of the biological response modifier scleroglucan. Journal of chemical technology and biotechnology, 59(2), 157-163.
Thongbai, B., Rapior, S., Hyde, K. D., Wittstein, K., & Stadler, M. (2015). Hericium erinaceus, an amazing medicinal mushroom. Mycological Progress, 14(10), 1-23.
Tian, J., Lu, Y., Zhang, H., Chau, C. H., Dang, H. N., & Kaufman, D. L. (2004). Gamma-aminobutyric acid inhibits T cell autoimmunity and the development of inflammatory responses in a mouse type 1 diabetes model. J Immunol, 173(8), 5298-5304.
Tsai, S. Y., Tsai, H. L., & Mau, J. L. (2008). Non-volatile taste components of Agaricus blazei, Agrocybe cylindracea and Boletus edulis. Food Chemistry, 107(3), 977-983.
Tseng, Y. H., & Mau, J. L. (1999). 5'-nucleotides in mushrooms, Agaricus bisporus, during post-harvest storage. Journal of the Science of Food and Agriculture, 79, 1519-1523.
Tsuchiya, A., Kanno, T., & Nishizaki, T. (2014). Adenosine exerts potent anticancer effects through diverse signaling pathways. Personalized Medicine Universe, 3, 35-37.
Ueda, K., Tsujimori, M., Kodani, S., Chiba, A., Kubo, M., Masuno, K., Sekiya, A., Nagai, K., & Kawagishi, H. (2008). An endoplasmic reticulum (ER) stress-suppressive compound and its analogues from the mushroom Hericium erinaceum. Bioorganic & Medicine Chemistry, 16(21), 9467-9470.
Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T. D., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology, 39(1), 44-84.
Valko, M., Rhodes, C. J., Moncol, J., Izakovic, M., & Mazur, M. (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions, 160(1), 1-40.
Wang, Z. J. (2004). Structure of polysaccharides from the fruiting body of Hericium erinaceus Pers. Carbohydrate Polymers, 57(3), 241-247.
Wang, X. L., Xu, K. P., Long, H. P., Zou, H., Cao, X. Z., Zhang, K., Hu, J. Z., He, S. J., Zhu, G. Z., He, X. A., Xu, P. S., & Tan, G. S. (2016). New isoindolinones from the fruiting bodies of Hericium erinaceum. Fitoterapia, 111, 58-65.
Wang, J. C., Hu, H. S., Su C. H., Lee T. M. (2001). Antitumor and immunoenhancing activities of polysaccharide from culture broth of Hericium spp. Kaohsiung J Med Sci, 17, 461–467.
Wang, M., Gao, Y., Xu, D., & Gao, Q. (2015). A polysaccharide from cultured mycelium of Hericium erinaceus and its anti-chronic atrophic gastritis activity. International Journal of Biological Macromolecules, 81, 656-661.
Wei, C. J., Tanner, R., & Woodward, J. (1981). Elucidating the transition between submerged culture and solid-State bakers' yeast fermentations. Biotechnology & Bioengeneering, 11.
Weidner, C., Rousseau, M., Plauth, A., Wowro, S., Fischer, C., Abdel-Aziz, H., & Sauer, S. (2015). Melissa officinalis extract induces apoptosis and inhibits proliferation in colon cancer cells through formation of reactive oxygen species. Phytomedicine, 22(2), 262-270.
Wiemken, A. (1990). Trehalose in yeast, stress protectant rather than reserve carbohydrate. Antonie van Leeuwenhoek, 58(3), 209-217.
Willcox, J. K., Ash, S. L., & Catignani, G. L. (2004). Antioxidants and prevention of chronic disease. Critical Reviews in Food Science and Nutrition, 44(4), 275-295.
Wingler, A. (2002). The function of trehalose biosynthesis in plants. Phytochemistry, 60(5), 437-440.
Wong, K. H., Sabaratnam, V., Abdullah, N., Kuppusamy, U. R., & Naidu, M. (2009). Effects of cultivation techniques and processing on antimicrobial and antioxidant activities of Hericium erinaceus (Bull.: Fr.) Pers. Extracts. Food Technology and Biotechnology, 47(1), 47-55.
Wong, J. Y., Abdulla, M. A., Raman, J., Phan, C. W., Kuppusamy, U. R., Golbabapour, S., & Sabaratnam, V. (2013). Gastroprotective effects of lion's mane mushroom Hericium erinaceus (Bull.:Fr.) Pers. (aphyllophoromycetideae) extract against ethanol-induced ulcer in rats. Evidence-Based Complementary and Alternative Medicine, 2013, 492976.
Wong , S. V., Abdullah N, Kuppusamy UR, Naidu M. (2009). Effects of cultivation techniques and processing on antimicrobial and antioxidant activities of Hericium erinaceus (Bull.:Fr.) Pers. Extracts. Food Technology and Biotechnology, 47,47–55.
Wood, D. (1979). A method for estimating biomass of Agaricus bisporus in a solid substrate, composted wheat straw. Biotechnology Letters, 1(6), 255-260.
Wu, N., Kong, Y., Fu, Y., Zu, Y., Yang, Z., Yang, M., Peng, X., & Efferth, T. (2011). In vitro antioxidant properties, DNA damage protective activity, and xanthine oxidase inhibitory effect of cajaninstilbene acid, a stilbene compound derived from pigeon pea [Cajanus cajan (L.) Millsp.] leaves. Journal of Agricultural and Food Chemistry, 59(1), 437-443.
Xia, Q., Wang, L., Xu, C., Mei, J., & Li, Y. (2017). Effects of germination and high hydrostatic pressure processing on mineral elements, amino acids and antioxidants in vitro bioaccessibility, as well as starch digestibility in brown rice (Oryza sativa L.). Food Chemistry, 214, 533-542.
Xiao, J. H., Qi, Y., & Xiong, Q. (2013). Nucleosides, a valuable chemical marker for quality control in traditional Chinese Medicine Cordyceps. Recent Patents on Biotechnology, 999(999), 1-6.
Xu, X., Zhang, X., & Chen, C. (2016). Stimulated production of triterpenoids of Inonotus obliquus using methyl jasmonate and fatty acids. Industrial Crops and Products, 85, 49-57.
Xu, H., Wu, P. r., Shen, Z. y., & Chen, X. d. (2010). Chemical analysis of Hericium erinaceum polysaccharides and effect of the polysaccharides on derma antioxidant enzymes, MMP-1 and TIMP-1 activities. International Journal of Biological Macromolecules, 47(1), 33-36.
Yamaguchi, S. (1967). The synergistic taste effect of monosodium glutamate and disodium 5'‐inosinate. Journal of Food Science, 32(4), 473-478.
Yamaguchi, S., Yoshikawa, T., Ikeda, S., & Ninomiya, T. (1971). Measurement of the relative taste intensity of some l‐α‐amino acids and 5'‐nucleotides. Journal of Food Science, 36(6), 846-849.
Yamauchi, R., Matsui, T., Kato, K., & Ueno, Y. (1990). Reaction products of γ-tocopherol with an alkylperoxyl radical in benzene. Agricultural and biological chemistry, 54(10), 2703-2709.
Yang,H. J., Lin, H. C., & Mau, J. L. (2001). Non-volatile taste components of several commercial mushrooms. Food Chemistry, 72(4), 465-471.
Yang, F. C., Ma, T. W., & Lee, Y. H. (2013). Reuse of citrus peel to enhance the formation of bioactive metabolite-triterpenoid in solid-state fermentation of A. cinnamomea. Biochemical Engineering Journal, 78, 59-66.
Yang, B. K., Park, J. B., & Song, C. H. (2003). Hypolipidemic Effect of an Exo-biopolymer Produced from a Submerged Mycelial Culture of Hericium erinaceus. Bioscience, Biotechnology, and Biochemistry, 67(6), 1292-1298.
Yao, W., Zhang, J. C., Dong, C., Zhuang, C., Hirota, S., Inanaga, K., & Hashimoto, K. (2015). Effects of amycenone on serum levels of tumor necrosis factor-α, interleukin-10, and depression-like behavior in mice after lipopolysaccharide administration. Pharmacology Biochemistry and Behavior, 136, 7-12.
Yoshida, H., Sugahara, T., & Hayashi, J. (1987). Changes in carbohydrates and organic acids during development of mycelia and fruit-bodies of Shiitake mushroom [Lentinus edodes (Berk.) Sing.]. Nippon Shokuhin Kagaku Kogaku Kaishi, 34(5), 274-281.
Yoshinaga, K., Yoshioka, H., Kurosaki, H., Hirasawa, M., Uritani, M., & Hasegawa, K. (1997). Protection by trehalose of DNA from radiation damage. Bioscience, Biotechnology, and Biochemistry, 61(1), 160-161.
Zan, X., Cui, F., Li, Y., Yang, Y., Wu, D., Sun, W., & Ping, L. (2015). Hericium erinaceus polysaccharide-protein HEG-5 inhibits SGC-7901 cell growth via cell cycle arrest and apoptosis. International Journal of Biological Macromolecules, 76, 242-253.
Zeinali, F., Homaei, A., & Kamrani, E. (2015). Sources of marine superoxide dismutases: Characteristics and applications. International Journal of Biological Macromolecules, 79, 627-637.
Zhang, L., Li, H. Z., Gong, X., Luo, F. L., Wang, B., Hu, N., Wang, C. D., Zhang, Z., & Wan, J. Y. (2010). Protective effects of Asiaticoside on acute liver injury induced by lipopolysaccharide/D-galactosamine in mice. Phytomedicine, 17(10), 811-819.
Zhang, C. C., Yin, X., Cao, C. Y., Wei, J., Zhang, Q., & Gao, J. M. (2015). Chemical constituents from Hericium erinaceus and their ability to stimulate NGF-mediated neurite outgrowth on PC12 cells. Bioorganic & Medicinal Chemistry Letters, 25(22), 5078-5082.
Zhang, H., Tang, M., & Chen, H. (2010). Growth promotion of Suillus luteus by adenosine in vitro. Mycoscience, 51(2), 139-143.
Zhang, M., Zou, X. T., Li, H., Dong, X. Y., & Zhao, W. (2012). Effect of dietary gamma-aminobutyric acid on laying performance, egg quality, immune activity and endocrine hormone in heat-stressed Roman hens. Animal Science Journal, 83(2), 141-147.
Zhu, B. Z., Mao, L., Fan, R. M., Zhu, J. G., Zhang, Y. N., Wang, J., Kalyanaraman, B., & Frei, B. (2011). Ergothioneine prevents copper-induced oxidative damage to DNA and protein by forming a redox-inactive ergothioneine-copper complex. Chemical Research in Toxicology, 24(1), 30-34.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top