跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/12 16:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭智成
研究生(外文):Jeng, Jyh-Cheng
論文名稱:控制系統之性能評估與線上監控
論文名稱(外文):Performance Assessment and On-line Monitoring of Control Systems
指導教授:黃孝平黃孝平引用關係
指導教授(外文):Huang, Hsiao-Ping
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:91
語文別:中文
論文頁數:162
中文關鍵詞:性能評估線上性能監控PI/PID控制器自動調諧多環路系統IAE
外文關鍵詞:Performance AssessmentOn-line Performance MonitoringPI/PID ControllersAutotuningMulti-loop SystemsIAE
相關次數:
  • 被引用被引用:2
  • 點閱點閱:544
  • 評分評分:
  • 下載下載:53
  • 收藏至我的研究室書目清單書目收藏:0
控制系統的性能評估與監控在最近十餘年來吸引了許多學者投入這方
面的研究,主要原因為此技術對改進工業中控制環路之性能有很大的幫助
,但是研究的方向偏重於隨機型性能評估與監控,而本論文則是提出一種
確定型性能評估與監控的方法。首先討論單環路的情況,之後再推廣到多
環路系統中。
在單環路系統中,對於設定點追蹤部分,考慮的控制器包括含積分作
用之一般控制器與PI/PID控制器,分別找出簡單回饋控制系統可達到的極
限最小IAE值與最適上昇時間,以此做為評估之基準,任何系統的性能便
可由其對階梯設定點改變所觀察到的IAE值與上昇時間來評估。假設開環
程序之動態可用FOPDT或SOPDT模式來代表,根據這些模式,計算出最適可
達到IAE值與相對應之上昇時間,同時定義用以評估之定量性能指標。最
適設定點追蹤性能之系統亦具有合理程度的穩定韌性。對於負荷干擾消除
部分,考慮的系統為FOPDT程序以PI/PID控制,此時,系統性能與穩定韌
性存有強烈的衝突,故IAE值之下限與系統的增益邊限有關,定義三個評
估指標用以評估系統的性能與穩定韌性以及兩者間之妥協是否有效運用。
在結合兩控制目的之評估時,計算出最適性能指標曲線以表示系統對兩種
性能之最佳組合情形,然後以系統指標落點偏離最適曲線的程度來評估整
體性能,並討論控制器設計之準則。
至於線上性能監控方面,由PI/PID控制系統對於設定點追蹤之IAE值
與相對應上昇時間所形成的最適軌跡區域,可使評估在程序模式未知的情
況下進行,此外,為了不使系統輸出偏離其正常操作點,引入系統一擾動
輸入可用來估計其對設定點階梯輸入之應答,藉以線上監控性能。為了要
更準確的進行評估或是控制器最適調諧,本文提出利用回饋繼電器測試來
識別程序FOPDT與SOPDT模式之新方法,由識別出之模式不僅可計算系統之
性能下限,更可用來進行控制器的自動調諧,結合此兩者可整合系統性能
之評估與改善。
對於多環路系統之性能評估,藉由對等開環程序(equivalent open-
loop process,EOP)之定義,可將多環路系統分解成數個對等單環路系
統。若程序轉移函數矩陣為未知,EOP之模式除了利用回饋繼電器測試來
識別之外,本文另外提出EOP程序脈衝響應序列模式之閉環路識別法,之
後再將其轉換為低階轉移函數模式,用以計算評估之標準。於是,前述單
環路系統之性能評估與監控方法便可應用至多環路系統中。
Assessment and monitoring of control systems have been an
active area of research for the last decade because these
techniques can be used to improve the loop performance.
However, most research works were focused on stochastic
performance assessment and monitoring. In this thesis, a new
methodology is presented for deterministic performance
assessment and monitoring. This method is first developed for
single-loop systems and then extended to multi-loop systems as
applications.
In the single-loop control system with set-point tracking
as its control task, the controller of general structure having
integral action and of PI/PID structure are studied. The
limiting achievable minimal IAE value and the associated rise
time of a simple feedback system are searched to be the basis
for assessment. Performance of a given system is assessed with
its IAE value and rise time observed from the response of the
system to a step set-point change. Assume that the dynamics of
open-loop processes can be represented by models of FOPDT or
SOPDT. Based on these models, the optimal IAEs and rise times
are computed. An index is thus defined for this quantitative
assessment. The optimal systems for set-point tracking also
have reasonable degree of stability robustness. For the system
to reject the load disturbance, the FOPDT process model
controlled with PI or PID controller is considered. In this
case, the trade-off between performance and robustness is
necessary and, hence, the achievable minimal IAE depends on
gain margin of the system. Three indices are defined to assess
both performance and robustness as well as if the trade-off has
been appropriately made. Furthermore, for combined assessment
of two control objectives, the optimal curve of two performance
indices is computed to characterize the optimal trade-off
between set-point tracking and load disturbance rejection.
The overall performance can be assessed through the deviation
of performance indices from its optimal curve. Besides, the
guidelines on design of controllers are also discussed.
To be free of a process model for assessment, envelopes of
optimal IAE and the rise time are prepared. A method to
estimate the step response for set-point tracking by making use
of the response of the system to dither inputs is presented. By
introduction of dither inputs intermittently to the system, the
performance of the single loop can be monitored on-line. If
more accurate assessment and PI/PID optimal tuning are desired,
a novel method to identify the process model in terms of FOPDT
or SOPDT using relay feedback tests is also proposed. As a
result, the assessment and improvement of performance can be
integrated.
A multi-loop system can be separated into several
equivalent single loops by the definition of equivalent open-
loop process (EOP). The approximation formulas of EOPs are
presented. In the case of open-loop process with unknown
transfer function matrix, the model of EOP can be identified
using relay feedback tests. In addition, the EOP can also be
obtained from proposed closed-loop identification method of
impulse response model. Then, it is converted to reduced low-
order transfer function model to compute the lower bound of
control performance. Therefore, the methodology for single-loop
systems mentioned previously can be directly applied to multi-
loop systems.
誌 謝................................................... I
中文摘要................................................... III
英文摘要................................................... V
目 錄................................................... VII
附圖目錄................................................... XI
附表目錄................................................... XIII
1 緒論 1
1.1 前言.................................................. 1
1.2 文獻回顧.............................................. 2
1.3 研究動機與目的........................................ 10
1.4 章節組織.............................................. 11
2 單環路控制系統之性能評估 - 設定點追蹤 13
2.1 前言.................................................. 13
2.2 單環路控制系統可達到之極限最小IAE值 -- 一般控制器..... 14
2.3 單環路控制系統可達到之極限最小IAE值 -- PI/PID控制器... 28
2.4 控制性能的評估方法.................................... 41
3 單環路控制系統之性能評估 -- 負荷干擾消除 49
3.1 前言.................................................. 49
3.2 控制系統對負荷消除之性能與穩定韌性關係................ 49
3.3 PI/PID控制系統之性能與穩定韌性........................ 53
3.4 控制系統對負荷干擾消除之性能評估...................... 57
3.5 結合設定點追蹤與負荷消除之性能評估.................... 63
4 控制系統之線上性能監控與自動調諧 71
4.1 前言.................................................. 71
4.2 控制性能的線上監控.................................... 71
4.3 線上監控之範例說明.................................... 76
4.4 利用模式識別來進行性能監控與PI/PID自動調諧............ 81
4.5 識別與自動調諧之範例說明.............................. 95
5 多環路控制系統之性能評估 103
5.1 前言..................................................103
5.2 環路配對之可控制性與整體性............................104
5.3 多環路控制系統之對等單環路近似分解....................107
5.4 多環路系統EOPs之標準近似式............................113
5.5 多環路控制系統之性能評估與監控........................117
5.6 程序轉移函數矩陣未知時之性能評估......................124
6 結論與未來展望 135
6.1 結論..................................................135
6.2 未來展望..............................................137
附錄A 最小變異量控制(MVC) 139
附錄B 文中使用到之PI/PID調諧公式 145
附錄C 線性部分轉換(LFT) 149
參考文獻 153
作者簡歷 159
作者著作 161
[1] Astrom, K. J. “Computer Control of a Paper Machine - An
Application of Linear Stochastic Control Theory,” IBM J. Res.
Dev., vol. 11, pp. 389—405, 1967.
[2] Astrom, K. J. Introduction to Stochastic Control Theory,
Academic Press, 1970.
[3] Astrom, K. J. “Assessment of Achieviable Performance of
Simple Feedback Loops,” Int. J. Adaptive Control and Signal
Processing, vol. 5, no. 1, pp. 3—19, 1991.
[4] Astrom, K. J., Hang, C. C., Persson, P., and Ho, W. K.
“Towards Intelligent PID Control,”Automatica, vol. 28, no. 1,
pp. 1—9, 1992.
[5] Basilevsky, A. Applied Matrix Algebra in the Statistical
Science, Elsevier Science, North-Holland, 1983 , p. 88.
[6] Campo, P. J., and Morari, M. “Achievable Closed-Loop
Properties of System Under Decentralized Control: Conditions
Involving the Steady-State Gain,” IEEE Trans. Automatic
Control, vol. 39, no. 5, pp. 932—943, 1994.
[7] Chen, D., and Seborg, D. E. “PI/PID Controller Design
Based on Direct Synthesis and Disturbance Rejection,” Ind.
Eng. Chem. Res., vol. 41, pp. 4807—4822, 2002.
[8] Chiang, R. C., and Yu, C. C. “Monitoring Procedure for
Intelligent Control: On-Line Identification of Maximum Closed-
Loop Log Modulus,” Ind. Eng. Chem. Res., vol. 32, no. 1,
pp. 90—99, 1993.
[9] Chien, I. L. “IMC-PID Controller Design - an Extension,”
In Proc. IFAC Adaptive Control of Chemical Processes Conference
(Copenhagen, Denmark, 1988), pp. 147—152.
[10] Chien, I. L., and Fruehauf, P. S. “Consider IMC Tuning to
Improve Controller Performance,”Chem. Eng. Prog., vol. 86, no.
10, pp. 33—41, 1990.
[11] Chien, I. L., Huang, H. P., and Yang, J. C. “A Simple
Multiloop Tuning for PID Controllers with No Proportional
Kick,” Ind. Eng. Chem. Res., vol. 38, pp. 1456—1468, 1999.
[12] Chien, I. L., Huang, H. P., and Yang, J. C. “A Simple
TITO PI Tuning Method Suitable for Industrial Application,”
Chem. Eng. Comm., vol. 182, pp. 181—196, 2000.
[13] Cohen, G. H., and Coon, G. A. “Theoritical Considerations
of Retarded Control,” Trans. ASME, pp. 827—834, May 1953.
[14] Desborough, L., and Harris, T. J. “Performance Assessment
Measures for Univariate Feedback Control,” Can. J. Chem.
Engng., vol. 70, pp. 1186—1197, 1993.
[15] Desborough, L., and Harris, T. J. “Performance Assessment
Measures for Univariate Feedforward/Feedback Control,” Can. J.
Chem. Engng., vol. 71, pp. 605—616, 1993.
[16] DeVries,W. R., andWu, S. M. “Evaluation of Process
Control Effectiveness and Diagnosis of Variation in Paper Basis
Weight via Multivariate Time-Series Analysis,” IEEE Trans.
Automatic Control, vol. 23, pp. 702—708, 1978.
[17] Doyle, J. C. “Lecture Notes on Advances in Multivariable
Control,” In ONR/Honeywell Workshop (Minneapolis, October 1984).
[18] Ender, D. “Process Control Performance: Not as Good as
You Think,” Control Eng., vol. 40, no. 10, pp. 180, 1993.
[19] Eriksson, P. G., and Isaksson, A. J. “Some Aspects of
Control Loop Performance Monitoring,”In Proc. The 3rd IEEE
Conference on Control Applications (Glasgow, Scotland, 1994),
pp. 1029—1034.
[20] Franklin, G. F., Powell, J. D., and Baeini, A. E. Feedback
Control of Dynamic Systems, Addison-Wesley, Reading, MA, 1986.
[21] Hang, C. C., °Astrom, K. J., and Wang, Q. G. “Relay
Feedback Auto-Tuning of Process Controllers - A Tutorial
Review,” J. Process Control, vol. 12, pp. 143—462, 2002.
[22] Harris, T. J. “Assessment of Control Loop Performance,”
Can. J. Chem. Engng., vol. 67, no. 10, pp. 856—861, 1989.
[23] Harris, T. J., Boudreau, F., and MacGregor, J. F.
“Performance Assessment of Multivariable Feedback
Controllers,” Automatica, vol. 32, no. 11, pp. 1505—1518,
1996.
[24] Harris, T. J., Seppala, C. T., and Desborough, L. D.
“Review of Performance Monitoring and Assessment Techniques
for Univariate and Multivariate Control Systems,” J. of Process Control, vol. 9, no. 1, pp. 1—17, 1999.
[25] H¨agglund, T. “A Control-Loop Performance Monitor,”
Control Eng. Practice, vol. 3, no. 11, pp. 1543—1551, 1995.
[26] Ho,W. K., Gan, O. P., Tay, E. B., and Ang, E. L.
“Performance and Gain and Phase Margins of Well-Known PID
Tuning Formulas,” IEEE Transactions on Control Systems Technology, vol. 4, no. 4, pp. 473—477, 1996.
[27] Ho,W. K., Hang, C. C., and Cao, L. S. “Tuning of PID
Controllers Based on Gain and Phase Margin Specifications,”
Automatica, vol. 31, no. 3, pp. 497—502, 1995.
[28] Ho,W. K., Hang, C. C., and Zhou, J. H. “Performance and
Gain and Phase Margins ofWell-Known PI Tuning Formulas,” IEEE
Transactions on Control Systems Technology, vol. 3, no. 2, pp.
245—248, 1995.
[29] Ho, W. K., Lim, K. W., Hang, C. C., and Ni, L. Y. “Getting More Phase Margin and Performance out of PID
Controllers,” Automatica, vol. 35, pp. 1579—1585, 1999.
[30] Ho, W. K., Lim, K. W., and Xu, W. “Optimal Gain and Phase
Margin Tuning for PID Controllers,” Automatica, vol. 34, no.
8, pp. 1009—1014, 1998.
[31] Holt, B. R., and Morari, M. “Design of Resilient
Processing Plants - VI. The Effect of Right-Half-Plane Zeros on
Dynamic Resilience,” Chem. Eng. Sci., vol. 40, no. 1, pp. 59—
74, 1985.
[32] Horch, A., and Isaksson, A. J. “A Modified Index for
Control Performance Assessment,” J. Process Control, vol. 9,
pp. 475—483, 1999.
[33] Hsia, T. C. System Identification : Least-Squares Methods,
Lexington Books, 1977.
[34] Huang, B., and Shah, S. L. “Performance Limits: Practical
Control Loop Performance Assessment,”In Proc. AICHE Annual
Meeting (Chicago, 1996).
[35] Huang, B., and Shah, S. L. “Feedback Control Performance
Assessment of Non-Minimum Phase MIMO Systems,” In Proc. AICHE
Annual Meeting (Los Angeles, 1997).
[36] Huang, B., and Shah, S. L. “Practical Issues in
Multivariable Feedback Control Performance Assessment,” J. of
Process Control, vol. 8, no. 5-6, pp. 421—430, 1998.
[37] Huang, B., and Shah, S. L. Performance Assessment of
Control Loops, Springer-Verlag, London, 1999.
[38] Huang, B., Shah, S. L., and Kwok, E. K. “Good, Bad or
Optimal? Performance Assessment of Multivariable Processes ,”
Automatica, vol. 33, no. 6, pp. 1175—1183, 1997.
[39] Huang, H. P., Lee, M.W., and Chien, I. L. “Identification
of Transfer Function Models from the Relay Feedback Tests,”
Chem. Eng. Comm., vol. 180, pp. 231—253, 2000.
[40] Hwang, S. H., and Wang, L. W. “On the Identification of
Stable, Integrating, and Unstable Processes with Unknown Orders
and Delays,” J. Chem. Eng. Japan, vol. 35, no. 8, pp. 794—
805, 2002.
[41] Ingimundarson, A., and H¨agglund, T. “Performance
Comparison Between PID and Deadtime Compensating Controllers,”
J. of Process Control, vol. 12, pp. 887—895, 2002.
[42] Ju, J., and Chiu, M. S. “Relay-Bsaed On-Line Monitoring
Procedures for 2 × 2 and 3 × 3 Multiloop Control Systems,”
Ind. Eng. Chem. Res., vol. 36, pp. 2225—2230, 1997.
[43] Ju, J., and Chiu, M. S. “A Fast Fourier Transform Approach for On-Line Monitoring of the Maximum Closed-Loop
Log Modulus,” Ind. Eng. Chem. Res., vol. 37, pp. 1045—1050,
1998.
[44] Kendra, S. J., and Cinar, A. “Controller Performance
Asssessment by Frequency Domain Techniques,” J. Process
Control, vol. 7, no. 3, pp. 181—194, 1997.
[45] Ko, B., and Edgar, T. F. “Assessment of Achievable PI
Control Performance for Linear Processes with Dead Time,” In
Proc. American Control Conf. (Philadelphia, PA, 1998).
[46] Ko, B., and Edgar, T. F. “Performance Assessment of
Cascade Control Loops,” AIChE Journal, vol. 46, no. 2, pp.
281—291, 2000.
[47] Kozub, D. J. “Controller Performance Monitoring and
Diagnosis: Experiences and Challenges,” AICHE Symposium
Series, vol. 93, no. 316, pp. 83—96, 1997.
[48] Kozub, D. J., and Garcia, C. E. “Monitoring and Diagnosis
of Automated Controllers in the Chemical Process Industries,”
In Proc. AICHE Annual Meeting (St. Louis, MO, 1993).
[49] Li,W., Eskinat, E., and Luyben,W. L. “An Improved
Autotune IdenfificationMethod,” Ind. Eng. Chem. Res., vol. 30,
pp. 1530—1541, 1991.
[50] Loh, A. P., Hang, C. C., Quek, C. K., and Vasnani, V. U.
“Autotuning of Multiloop Proportional-Integral Controllers
Using Relay Feedback,” Ind. Eng. Chem. Res., vol. 32,
pp. 1102—1107, 1993.
[51] Lopez, A. M., Murrill, P. W., and Smith, C. L.
“Controller Tuning Relationships Based on Integral Performance
Criteria,” Instrumentation Technology, vol. 14, pp. 57, 1967.
[52] Luyben,W. L. “SimpleMethod for Tuning SISO Controllers in
Multivariable Systems,” Ind. Eng. Chem. Proc. Des. Dev., vol.
25, pp. 654—660, 1986.
[53] Luyben, W. L. “Getting More Information from Relay-
Feedback Tests,” Ind. Eng. Chem. Res., vol. 40, pp. 4391—
4402, 2001.
[54] Lynch, C. B., and Dumont, G. A. “Control Loop Performance
Monitoring,” IEEE Trans. Control Systems Technology, vol. 4,
no. 2, pp. 185—192, 1996.
[55] MacGregor, J. F., Harris, T. J., and Wright, J. D.
“Duality Between the Control of Processes Subject to Randomly
Occurring Deterministic Disturbances and ARIMA Stochastic
Disturbances,” Technometrics, vol. 26, no. 4, pp. 389—397,
1984.
[56] Monica, T. J., Yu, C. C., and Luyben, W. L. “Improved
Multiloop Single-Input/Single-Output(SISO) Controllers
for Multivariable Process,” Ind. Eng. Chem. Res., vol. 27, pp.
969—973, 1988.
[57] Morari, M., and Zafiriou, E. Robust Process Control,
Prentice-Hall, Upper Saddle River, NJ, 1989.
[58] Overschee, P. V., and Moor, B. D. “N4SID:Subspace
Algorithms for the Identification of Combined Deterministic-
Stochastic Systems,” Automatica, vol. 30, no. 1, pp. 75—93,
1994.
[59] Palmor, Z. J., Halevi, Y., and Krasney, N. “Automatic
Tuning of Decentralized PID Controllers for TITO Process,”
Automatica, vol. 31, pp. 1001—1010, 1995.
[60] Qin, S. J. “Control Performance Monitoring - A Review and
Assessment,” Computers & Chemical Engineering, vol. 23, no. 2,
pp. 173—186, 1998.
[61] Rivera, D. E., Morari, M., and Skogestad, S. “Internal
Model Control 4. PID Controller Design,” Ind. Eng. Chem. Proc.
Des. Dev., vol. 25, no. 1, pp. 252—265, 1986.
[62] Rovira, A. A., Murrill, P. W., and Smith, C. L. “Tuning
Controllers for Setpoint Changes,” Instruments and Control
Systems, vol. 42, pp. 67—69, December 1969.
[63] Scali, C., Marchetti, G., and Semino, D. “Relay with
Additional Delay for Identification and Autotuning of
Completely Unknown Processes,” Ind. Eng. Chem. Res., vol. 38,
pp. 1987—1997, 1999.
[64] Shen, S. H., and Yu, C. C. “Use of Relay-Feedback Test
for Automatic Tuning of Multivariable Systems,” AIChE Journal,
vol. 40, no. 4, pp. 627—646, 1994.
[65] Shinskey, F. “How Good are Our Controllers in Absolute
Performance and Robustness,” Measurement + Control, vol. 23,
pp. 114—121, 1990.
[66] Shinskey, F. G. Feedback Controllers for the Process
Industries, McGraw-Hill, New York, 1994.
[67] Skogestad, S., and Postlethwaite, I. Multivariable
Feedback Control-Analysis and Design, JohnWiley & Sons, 1996.
[68] Smith, C. A., and Corripio, A. B. Principles and Practices
of Automatic Process Control, 2nd ed. John Wiley & Sons, 1997.
[69] Stanfelj, N., Marlin, T. E., and MacGregor, J. F.
“Monitoring and Diagnosis of Process Control Performance: The
Single-Loop Case,” Ind. Eng. Chem. Res., vol. 67, no. 10, pp.
856—861, 1993.
[70] Sung, S. W., Jungmin, O., Lee, I. B., Lee, J., and Yi, S.
H. “Automatic Tuning of PID Controller Using Second-Order Plus
Time Delay Model,” J. Chem. Eng. Japan, vol. 29, no. 6, pp.
990—999, 1996.
[71] Swanda, A. P., and Seborg, D. E. “Controller Performance
Assessment Based on Setpoint Response Data,” In Proc. American
Control Conf. (San Diego, CA, June 1999), pp. 3863—3867.
[72] Tan, K. K., Lee, T. H., and Jiang, X. “On-Line Relay
Identification, Assessment and Tuning of PID Controllers,” J.
Process Control, vol. 11, pp. 483—496, 2001.
[73] Thornhill, N. F., and H¨agglund, T. “Detection and
Diagnosis of Oscillation in Control Loops,” Control Eng.
Practice, vol. 5, no. 110, pp. 1343—1354, 1997.
[74] Thornhill, N. F., Sadowski, R., Davis, J. R., Fedenczuk,
P., Knight, M. J., Prichard, P., and Rothenberg, D. “Practical
Experiences in Refinery Control Loop Performance Assessment,”
In Proc. UKACC’96 (1996).
[75] Tylor, M. L., and Morari, M. “Performance Monitorung of
Control Systems Using Likelihood Methods,” Automatica, vol.
32, no. 8, pp. 1145—1162, 1996.
[76] Vinante, C. D., and Luyben, W. L. Kem. Teollisuus, vol.
29, pp. 499, 1972.
[77] Wang, Y. G., and Shao, H. H. “PID Autotuner Based on Gain-
and Phase-Margin Specifications,” Ind. Eng. Chem. Res., vol.
38, no. 8, pp. 3007—3012, 1999.
[78] Weng, K. H., Chang, C. H., and Cao, L. S. “Tuning of PID
Controllers Based on Gain and Phase Margin Specifications,”
Automatica, vol. 31, no. 3, pp. 497—502, 1995.
[79] Wood, R. K., and Berry, M. W. “Terminal Composition
Control of A Binary Distillation Column,” Chem. Eng. Sci.,
vol. 28, pp. 1707—1717, 1973.
[80] Yu, C. C. Autotuning of PID Controllers, Springer-Verlag,
London, 1999.
[81] Zhuang, M., and Atherton, D. P. “Automatic Tuning of
Optimum PID Controllers,” IEE Proceedings, vol. 140, no. 3,
pp. 216—224, 1993.
[82] Ziegler, J. G., and Nichols, N. B. “Optimum Settings for
Automatic Controllers,” Trans. ASME, pp. 759—768, November
1942.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top