1. Paul E., Horn J., and Babu S.V., A model of pad–abrasive interactions in chemical mechanical polishing, ECS Journal of Solid State Science and Technology, 10, 1099-2023 (2007).
2. Chen P.L., Chen J.H., Tsai M.S., Dai B.T., and Yeh C.F., Post-Cu CMP cleaning for colloidal silica abrasive removal, Microelectronic Engineering, 75, 352-360 (2004)。
3. Park J.G., and Kim T.G., Post-CMP cleaning: interaction between particles and surfaces, International Conference on Planarization/CMP Technology, Dresden (2007).。
4. Ng D.D., Kundu S., Kulkarni M., and Liang H., Role of Surfactant Molecules in Post-CMP Cleaning, Journal of The Electrochemical Society, 155(2), H64-H68 (2008)
5. Derjaguin B. and Landau L., Theory of stability of strongly charged lyophobic sols and the adhesion of strongly charged particles in solutions of electrolytes, Acta Physicochimca URSS, 14, 733-762 (1941).
6. Climent E., MaxeyR., and Karniadakis G.E., Dynamics of self-assembled chaining in magnetorheological fluids, Langmuir, ECS Journal of Solid State Science and Technology 20,507-513 (2003).
7. 秦靜如、蕭凱文,「磁性顆粒在磁場中之運動軌跡」,碩士論文,國立中央大學環境工程研究所 (2001)。8. 土肥俊郎,「CMP技術的基礎介紹與應用」,最新CMP技術基礎與應用國際研討會,台灣 (2015)。
9. 土肥俊郎,「超精密研磨CMP技術的定位技術的定位必要性和應用」,應用單晶基板的LED CMP技術國際研討會,台灣 (2015)。
10. Lu Z., Lee S.H.,Babu S.V., and Matijevi´E., The use of monodispersed colloids in the polishing of copper and tantalum, Journal of Colloid and Interface Science, 261, 55-64 (2003).
11. Lin F., Nolan L., and Cadien K., A study of the colloidal stability of mixed abrasive slurries and their role in CMP,ECS Journal of Solid State Science and Technology, 159,44-57 (2012).
12. Doering R.andNishi Y., Handbook of semiconductor manufacturing techtechnology,CRC Press, 14,68-77 (2007).
13. Li Y., Microelectronic applications of chemical mechanical planarization,Wiley Interscience, New Jersey (2007).
14. KangY.J., Kang B.K., and Park J.G.,Effect of slurry pH on poly siliconCMP,ICPT 2007-International Conference on Planarization/CMP Technology,New Jersey (2007).
15. Amanokura J., Mabuchi K., Sakurada T., Nomura Y., Habiro M., and Akahoshi H., Development of planarity improved abrasive-free copperCMP slurry and practical non-selective barrier cmp slurry based on electrochemical study,ICPT 2007-International Conference on Planarization/CMP Technology, Germany (2007).
16. Kim H. J.,Choi J.K., HongM.K., andLee K.,Contact behavior and chemical mechanical polishing (CMP)performance of hole-type polishing pad,ECS Journal of Solid State Science and Technology,1, 204-209 (2012).
17. Hooper B.J., Byrne G., and Galligan S.,Pad conditioning in chemical mechanical polishing, Journal of Materials Processing Technology,123, 107-113 (2002).
18. Yang J.C., Kim H.,Lee C.G., Lee H.D., and Kim T., Optimization of cmp pad surface by laser induced micro hole, Journal of The Electrochemical Society, 158, 15-20 (2011).
19. McGrath J. and Davis C., Study on pad conditioning parameters in silicon wafer cmp process, Journal of Materials Processing Technology, 666,153-154, (2004).
20. John M. and Chris D., Polishing pad surface characterisation in chemical mechanical planarisation, Journal of Materials Processing Technology, 666, 153–154 (2004).
21. Hoffmann M. R., Martin S. T., Choi W., and Bahnemann D. W., Environmental applications of semiconductor photocatalysis, Chem. Review., 95, 69-96 (1995).
22. Vinodgopal K., Hotchandani S., and Kamat P. V., Electrochemically assisted photocatalysis. TiO2 particulate film electrodes for photocatalytic, J. Phys. Chem., 97, 9040-9145 (1993).
23. Rao C. N. R., Satishkumar B. C., Govindaraj A., and Nath M., Nanotubes, Chem. Phys. Chem., 2, 78-105 (2001).
24. Lopez N., Illas F., and Pacchioni G., Adsorption of Cu, Pd, and Cs atoms on regular and defect sites of the SiO2 surface, J. Am. Chem. Soc., 121, 813-821 (1999).
25. Bagshaw S. A. and Pinnavaia T. J., Mesoporous alumina molecular sieves, Angew. Chem., 35(10), 1102-1105 (1996).
26. Feng X., Fryxell G. E., Wang L. Q., Kim A. Y., Liu J., and Kemner K. M., Functionalized monolayers on ordered mesoporous supports, Science, 276, 923-926 (1997).
27. Spahr M. E., Bitterli P., Nesper R., Müller M., Krumeich F., and Nissen H. U., Redox-active nanotubes of vanadium oxide, Angew. Chem., 37, 1263-1265 (1998).
28. Chemseddine A. and Moritz T., Nanostructuring titania: control over nanocrystal structure, size, shape, and organization, Eur. Journal Inor Chemistry. 12, 235-245 (1999).
29. Moon S. C., Mametsuka H., Tabata S., and Suzuki E., Photocatalytic production of hydrogen from water using TiO2 and B/TiO2, Journal of the Chemical Society-Perkin Translation, 58, 125-132 (2000).
30. Crooks J.E. and Donnellan J.P., Kinetics and mechanism of the reaction between carbon dioxide and amines in aqueous solution, Journal of the Chemical Society-Perkin Translation, 2, 331-333 (1989).
31. Li Z., Borucki L., Koshiyama I., and Philipossian A., Effect of slurry flow rate on tribological, thermal, and removal rate attributes of copper CMP, Journal of the Electrochemical Society,151(7), 482-487 (2004).
32. Jordan K., Michael S., Patrick C., Patrick L., and Jason J., Role of abrasive type and media surface energy on nanoparticle adsorption,ICPT 2012, France (2012).
33. Schade V.T., Connor P., Levy P., and Keleher J.J., Abrasive nanoparticle/filtermedia interactions-international conference on planarization technologies, ICPT 2011, Korea (2011).
34. Wojtczak W.A., Seijo M.F., Bernhard D., Nguyen L., Post-CMP formulation having improved barrier layer compatibility and cleaning performance, United States Patent, 20150045277 (2015).
35. Lee S.H., Do K.B., Kim D.J., An K.S., and Jung Y.C., CMP slurry composition for metal wiring and polishing method using the same, United States Patent, 20170166779 (2017).
36. Reichardt R., Siebert M., lauter M. and Golzarian R., A chemical mechanical polishing composition, United States Patent, 2016008896 (2016).
37. Ho Y.L., Lee C.C., Ho M.C., Lu M.H., and Chang S.Y., Polishing composition, United States Patent, 20160208141 (2016).
38. Fukasawa M., Koyama N., Kurata Y., Haga K., Akutsu T., and Ootsuki Y., CMP polishing slurry and method of polishing substrate, United States Patent, 9293344 (2016).
39. Roh H.S., Kim D.J., Park Y.S., Kim Y.K., and Jung Y.C., CMP slurry composition and polishing method using the same, United States Patent, 8828266 (2014).
40. Otake A., Kuroda A., Cleaning composition and method for cleaning a semiconductor device substrate after chemical mechanical polishing, United States Patent, 20140076365 (2014).
41. Barnes J., Walker E., Peters D., Bartosh K., Oldak E., Yanders K., Copper passivating post-chemical mechanical polishing cleaning composition and method of use, European Patent, 2687589 (2014).
42. Chen K.W., Kuo H.W., Chang S.C., Wang Y.L., Chemical mechanical polishing slurry system and method, United States Patent, 20120264303 (2012).
43. Kanamaru M., Shimada T., and Shinoda T., CMP polishing liquid and polishing method, United States Patent, 20120094491 (2012).
44. Wu A.P., Rao M.B., Baryschpolec E.C., Wet clean compositions for CoWP and porous dielectrics, United States Patent, 8361237 (2013).
45. Hattoro M., Yuji N., Nobuo K., Cleaning composition for semiconductor components, and process for manufacturing semiconductor device, Taiwan patent, I381418 (2013).
46. Tamboli D.C., Rao M.B., Banerjee G., and Fabregas K.R., Formulations and method for post-cmp cleaning, 中華人民共和國國家知識產權局, 101942667B (2012).
47. Fisher M.L. and Misra A.M., Post CMP cleaning composition and the method thereof, Taiwan patent, I367941 (2012).
48. Mizuta H., Kakizawa M., and Hayashida I., Novel detergent and cleaning method for cleaning, Taiwan patent, I362415 (2012).
49. Wojtczak W.A., Seijo M.F., Bernhard D., Nguyen L., Aqueous cleaning composition containing copper-specific corrosion inhibitor for cleaning inorganic residues on semiconductor substrates, United States Patent, 7662762 (2010)
50. Takamiya S., Inaba T., Mizutani A., KatoT., and Saie T., Metal polishing composition and chemical mechanical polishing method, United States Patent, 20090246956 (2009).
51. Tatsuhiko H., Hiroshi M., Takahiro U., Polishing composition, United States Patent, 20090179172 (2009).
52. Robert L. R., Paul J. Y. , Dewatered CMP polishing compositions and methods for using same, United States Patent, 6572449 B2 (2003).
53. Little R.J., Versteeg G.F., and Swaaij W.P., Solubility and diffusivity data for the absorption of COS, CO2 and N2O in amine solutions, Journal of Chemical & Engineering Data, 3749-3755 (2002).
54. Paik U. andSeo J., Preparation and characterization of slurry for chemical mechanical planarization, Advances in Chemical Mechanical Planarization, 273-298 (2016).
55. Borucki L., A novel slurry injection system for CMP, Advances in Chemical Mechanical Planarization, 397-415 (2016).
56. Pate K. andSafier P., Chemical metrology methods for CMP quality, Advances in Chemical Mechanical Planarization, 299-325 (2016).
57. Penta N.K.,9-Abrasive-free and ultra-low abrasive chemical mechanical polishing processes, Advances in Chemical Mechanical Planarization, Journal of the Chemical Society-Perkin Translation , 213-227 (2016).
58. Xiaodong L., Yuling L., Chenwei W., and Guilin L., Stability of weakly alkaline barrier slurry with the high selectivity, Microelectronic Engineering, 130, 28-34 (2014).
59. Testa F., Coetsier C., Carretier E., Ennahali M., Laborie E., and Moulin P.,Stability of weakly alkaline barrier slurry with the high selectivity,Microelectronic Engineering, 113, 114-122 (2014).
60. Basim G.B., Adler J.J., Mahajan U.,Singh R.K., and Moudgilz B.M.,Effect of particle size of chemical mechanical polishing slurries for enhanced polishing with minimal defects, Journal of The Electrochemical Society, 147, 9, 2523-2528 (2000).
61. Paul E., Frank K., Vlasta B., Jian Z., Fred S., and Robert V., A model of copper CMP, Journal of The Electrochemical Society, 152, 322-328 (2005).
62. Paul E., A model of chemical mechanical polishing, Journal of The Electrochemical Society, 355-358 (2001).
63. Desmond T., Aqueouspotential-pH equilibriaincopper-benzotriazole systems, Journal of The Electrochemical Society, 145, 355-358 (1998).
64. Serdar A. and Fiona M., The role of glycine in the chemical mechanical planarization of copper, Journal of The Electrochemical Society, 149, 352-361 (2002).
65. Paul E., Kaufman F.,BrusicV., and ZhangJ.,A model of copper CMP, Journal of The Electrochemical Society, 322-328 (2005).
66. HariharaputhiranM., Zhang J., RamarajanS., KeleherJ. J.,Yuzhuo M.,and Babua S.V.,Hydroxyl radical formation in H2O2-amino acid mixtures and chemical mechanical polishing of copper, Journal of The Electrochemical Society, 3820-3826 (2000).
67. PatrickW.J., Guthrie W.L., Standley C.L,and Schiable P.M., Initial study on copper CMP slurry chemistries, Journal of The Electrochemical Society, 138, 1778 (1991).
68. Zhong M.G., Venkataraman S.S., Lan Y.Q., Li Y.Z., and Shipp D.A., Role of 1,2,4-triazole as a passivating agent for cobalt during post-chemical mechanical planarization cleaning, Journal of The Electrochemical Society, 161(3), 138-144 (2014).
69. Kaanta C.W., Bombardier S.G., Cote W.J., Hill W.R, Kerszykowski G., Landis H.S., Poindexter D.J., Pollard C.W., Ross G.H., Ryan J.G., Wolff S., and Cronnin J.E., Wolff S., and Cronnin J.E., Dual dama-scene: a ULSI wiring technology,Proceedings of the 8th International IEEE VLSI Multilevel Interconnection Conference, USA (1991).
70. Babu S.V., Hariharaputhiran Li Y., M., Ramarajan S., Zhang J., Her Y.S., and Prendergast J.E.,Investigation of Cu and Ta Polishing Using Hydrogen Peroxide, Glycine and A Metallic Catalyst, In proceedings of the 15th VLSI multilevel Interconnection Conference,443-448 (1998).
71. Gu Z.B., Liu Y.L., , Gao B.H., Wang C.W., and Deng H.W., A novel compound cleaning solution for benzotriazole removal after copper CMP, Journal of Semiconductors, 36(10), 106001(1)-106001(6) (2015).
72. Babu S.V., Li Y., Hariharaputhiran M., Ramarajan S., Zhang J., Her Y.S., and Prendergast J.E., In proceedings of the 15th VLSI multilevel Interconnection Conference, USA (1998).
73. Tanwar K.J., Canaperi D., Lofaro M., Tseng W.T., Patlolla R., Penny C., and Waskiewicz C., BEOL Cu CMP process evaluation for advanced technology nodes, Journal of The Electrochemical Society, 160(12), D3247-D3254 (2013).
74. IkedaH., Akagami Y., Highly efficient polishing technology for glass substrates using tribo-chemical polishing with electrically controlled slurry Microelectron, Journal of Manufacturing Processes, 33, 259, 102-107 (1997).
75. Hoffmann M.R., Martin S.T., Choi W., and Bahnemann D.W., Environmentaln applicationsof semiconductor photocatalysis, Chemical Reviews, 95, 69-96 (1995).
76. Chenwei W., Yuling L., Jianying T., Baohong G., and Xinhuan N.,A study on the comparison of CMP performance between a novel alkaline slurry and a commercial slurry for barrier removal, Microelectronic Engineering, 98, 29-33 (2005).
77. NguyenV. H., Daamen,R., van KranenburgH.,van der VeldenP., and WoerleedP. H.,A Physical Model for Dishing during Metal CMP, Journal of The Electrochemical Society,689-693 (2003).
78. Wrschka P.,HernandezJ., Oehrlein,G. S, and. King.J,Chemical Mechanical Planarization of Copper Damascene Structures, Journal of The Electrochemical Society, 147, 706-712 (2000).
79. Kaufman F. B., Thompson D. B., Broadie R. E, Jaso, Guthrie W. L., Pearson D. J., and Small M. B.,Chemical-Mechanical Polishing for Fabricating PatternedW Metal Features as Chip Interconnects, J. Electrochem. Society, 106-112 (1991).
80. GorantlV. R. K., Assiongbon K. A., Babu S. V., and Roy D., CitricAcid as a Complexing Agent in CMP of CopperInvestigation of Surface Reactions Using Impedance Spectroscopy, Journal of The Electrochemical Society, 404-410 (2005).
81. BrusicV., Frisch M. A., Eldridge B. N., Novak F. P.,. Kaufman F. B, Rush B. M., and Frankel G. S.,Copper Corrosion With and Without Inhibitors, Journal of The Electrochemical Society,138-144 ( 1991).
82. Wrschka P., Hernandez J.,Oehrlein G. S., Negrych J. A., Haag G.,Development of a Slurry Employing a Unique Silica Abrasivefor the CMP of Cu Damascene Structures., Journal of The Electrochemical Society, 321-325 (2001).
83. Serdar A., Ling W., and Fiona M.Effect of Hydrogen Peroxide on Oxidation of Copper in CMPSlurries Containing Glycine, Journal of The Electrochemical Society, 718-723 (2003).
84. Jindala A. and Babu S. V.,Effect of pH on CMP of Copper and Tantalum, Journal of The Electrochemical Society, 709-716 (2004).
85. Ein-Eli Y., Abelev E., Starosvetsky D.,Electrochemical Aspects of Copper Chemical Mechanical Planarizationin Peroxide Based Slurries Containing BTA and Glycine,Electrochimica Acta, 1499–1503 (2004).
86. Melvin K. C. and Robert S.,Electrochemical Measurements of Passivation Bilayerson Copper in a CMP System, Journal of The Electrochemical Society, 563-571 (2004).
87. Du T., Tamboli D., Desai V.,Seal S.,Mechanism of Copper Removal during CMP in AcidicH2O2 Slurry, Journal of the Electrochemical Society, 230-235 (2004).
88. Hernandez J., Wrschk P., and Oehrlein G. S., Surface Chemistry Studies of Copper Chemical Mechanical Planarization, Journal of The Electrochemical Society, 389-397 (2001).
89. Srinivasa C., MurthyD.,BeaudoinS.P., BibbyT., Holland K., Cale T.S., Stress Distribution in Chemical Mechanical Polishing, ThinSolid Films 308–309 (1997).
90. RunnelsS.R.,EymanL.M, Tribology Analysisof Chemical Mechanical Polishing, J. Electrochem, Soc. 141 (1994).
91. Serdar A.,Fiona D.M.,TheRole of Glycine in the Chemical Mechanical Planarizationof Copper, Journal of The Electrochemical Society, 352-361 (2002).
92. Han J.H.,. Hah S.R, Kang Y.J.,Park J.G.,Effect of Polish By-Products on Copper Chemical Mechanical Polishing Behavior, Journal of The Electrochemical Society, 525-529 (2007).
93. Ruth F.V. Villamil, Paola C., Joel C., Rubim , Silvia M.L., Agostinho, Effect of Sodium Dodecylsulfate on Copper Corrosion in Sulfuric Acid Media in the Absence and Presence of Benzotriazole, Journal of Electroanalytical Chemistry 112–119 (1999).
94. Subramanian T., Huang W., Raghavan S.,and Small R.,Potential-pH Diagrams of Interest to Chemical Mechanical Planarization of Copper, Journal of The Electrochemical Society, 638-642 (2002).
95. Chena K.W. and Wang Y. L.,Studyof NonPreston Phenomena Inducedfrom the PassivatedAdditivesinCopperCMP, Journal of The Electrochemical Society, 41-47 (2007).
96. Park K.Y. and. Jeong H.D.,Investigation of Pad Surface Topography Distributionfor Material Removal Uniformity in CMP Process, Journal of The Electrochemical Society,595-602 (2008).
97. Seiichi K., Noriyuki S., Yoshio H., Yasushi G.o, Naofumi O.,Hizuru Y., and Nobuo O., Abrasive-Free Polishing for Copper Damascene Interconnection, Journal of The Electrochemical Society, 3907-3913 (2000).
98. Chang S.Y, Lu M.H ,Tseng Y.T , Ho M. C., Li T.C, Model of CMP: Cu Removal Rate Profile Shape Journal of The Electrochemical Society, 52-36 (2012).
99. Zantye P.B., Kumar A., Sikder A.K., Chemical mechanical planarization for microelectronics applications, Journal of Solid State Science and Technology, 45 ,89–97 (2004)
100. Wrschka P., Hernandez J., Oehrlein G.S., King J., Chemical mechanical planarization of copper damascene structures, Journal of The Electrochemical.,13,147 706–712 (2000).
101. Gorantla V.R.K., Assiongbon K.A., Babu S.V., Roy D., Citric acid as a complexing agent in chemical-mechanical planarization of copper: investigation of surface reactions using impedance spectroscopy, Journal of The Electrochemical. 404–410 (2005).
102. Du T., Luo Y., Desai V., The combinatorial effect of complexing agent and inhibitor on chemical–mechanical planarization of copper, Microelectron. Journal of Semiconductors. 70–97 (2004).
103. Eom D.H., Kim I.K., Han J.H., Park J.G., The effect of hydrogen peroxide in a citric acid based copper slurry on Cu polishing, Journal of Machine Tools & Manufactu,. 154 38–44 (2007).
104. Lee H., , Jeong H., A wafer-scale material removal rate profile model for copper chemical mechanical planarization, International Journal of Machine Tools & Manufacture, 51395-403 (2011).
105. Castillo M. D., S. Beaudoin, A locally relevant Prestonian model for wafer polishing, Journal of the Electrochemical Society, 150 96–102 (2003).
106. Stephen A. Campbell, "The Science and Engineering of Microelectronic Fabrication, Oxford University Press, 411-421 (1996).
107. Koester S. J., Young A. M., Yu R. R., S. Purushothaman, K.-N. Chen, ET AL. "Wafer-level 3D integration technology Journal of The Electrochemical Society., 52, 583-597 (2008).
108. Sivaram S., Bath H., Lee E., Legett R., and Tolles R., Advanced Metallization for ULSI Applications, Material Research Society, 511-519 (1992).
109. Nguyen L., Viet H. and Daamen, Roel and Kranenburg, Herma van and Velden, Peter van der and Woerlee, Pierre H., A Physical Model for Dishing during Metal CMP, Journal of the Electrochemical Society, 150,689-698 (2003).
110. Paul E, John H, Li Y and Babu S.V., A Model of Pad–Abrasive Interactions in Chemical Mechanical Polishing, Electrochemical and Solid State Letters, 10, 131-140 (2007).
111. Lirong G., Shankar R., Mechanical Removal in CMP of Copper Using Alumina Abrasives, Journal of TheElectrohemical Society, 151, 104-109 (2004).
112. 蔡子萱,化學機械研磨銅之研磨液與研磨模式研究,國立臺灣大學化學工程學研究所碩士論文,.15, 中華民國九十一年113. Hymes S., Smekalin K., Brown T., Yeung H., Joffe M., Banet M., Park T., Tugbawa T., Boning D., Nguyen J., West T., Sands W., Determination of the Planarization Distance for Copper CMP Process, Surface and Interface Analysis., 566,.211-219 (2000).
114. Sikder A. K., Kumar A., rfanI. M. I, Belyaev A., Ostapenko S., M.Calves, Harmon J. P., and Anthony J. M., Evaluation of mechanical and tribological behavior, and surface characteristics of CMP pads, Materials Research Society. Proc., 671, 8-11 (2001).
115. Jindal A., Narayanan S. and Babu S. V., Slurry Retention and transport during chemical-mechanical polishing of Copper, Materials Research Society, 671, 10-18 (2001).
116. Hegde S., Patri U. B., Jindal A., Babu S. V., Study of Slurry Composition Transition in a Rotary Copper CMP Process, Materials Research Society, 767, 27-34 (2003).
117. Guo Y., Lee H., Lee Y., Haedo J., Effect of pad groove geometry on material removal characteristics in chemical mechanical polishing, International Journal of Precision Engineering and Manufacturing, 303- 307 (2012).
118. Shoutian L., Greg G. and Jayakrishnan N., ILD CMP with Silica Abrasive Particles: Effect of Pore Size of CMP Pad on Removal Rate Profiles, Journal of Precision Engineering and Manufacturing., 97-105 (2013).
119. Teigerwald J. M., Murarka S. P., Gutmann R. J., Chemical Mechanical Planarization of Microelectronic Material, John Wiley & Sons, 117 (1997).
120. Castillo-Mejia D., Kelchner J., and Beaudoin S., Polishing Pad Surface Morphology and Chemical Mechanical Planarization, Journal of the Electrochemical Society, 151-271 (2004).
121. McGrath J., Davis C., Polishing pad surface characterisation in chemical mechanical planarization, Journal of Materials Processing Technology, 16 -23(2003).
122. Miyashita N., Uekusa S., Nishioka T., Iwami S., A New Poly-Si CMP Process with Small Erosion for Advanced Trench Isolation Process, Journal of The Electrochemical Society, 613-616 (2000).
123. Park J.-G., Lee S.-H., Kim H.-G., Jeong H.-D., Moon D.-K., Electrical Characterization of Slurry Particles and their Interactions with Wafer Surfaces, Journal of The Electrochemical Society, 56-173 (2000).