跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.103) 您好!臺灣時間:2026/01/16 09:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王彥皓
研究生(外文):Yen-Hao Wang
論文名稱:化學機械研磨製程中研磨顆粒及操作参數對移除效率影響之研究
論文名稱(外文):Effects of Abrasives and Operation on Removal Efficiency in Chemical Mechanical Polishing Process
指導教授:林錕松
指導教授(外文):Kuen-Song Lin
口試委員:楊逸涵何雲龍
口試委員(外文):Yi-Han YangYun-Lung Ho
口試日期:20170711
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:108
中文關鍵詞:化學機械研磨研磨液銅移除率顆粒表面電位研磨顆粒
外文關鍵詞:Chemical mechanical planarizationSlurryCu Removal rateAbrasivesZeta potential
相關次數:
  • 被引用被引用:0
  • 點閱點閱:3171
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
近代化學機械研磨(Chemical mechanical planarization, CMP)製程已普遍使用在半導體晶圓的製造業,CMP技術初期主要應用於玻璃的研磨和晶圓的研磨,對於晶圓表面平坦化是非常有效的製程。雖然化學機械研磨製程是現代半導體業晶圓製造的重要技術,CMP製程在用於在超大規模積體電路(ULSI)裝置已被證明有顯著技術為實現晶片表面的均勻性。然而,CMP製程中研磨液(Slurry)扮演了重大的角色,一般而言,研磨液主要成份有1 ~ 15%的20 ~ 150奈米(nm)的SiO2(細微研磨顆粒)與其他化學物質。這些化學物質包含:(1)界面活性劑;(2)螯合劑;(3)抑制劑;(4)pH緩衝劑(例如:HNO3、KOH、NH4OH或有機酸…等);(5)氧化劑(例如:雙氧水、碘酸鉀、硝酸鐵…等)。一般而言,抑制劑能產生保護層防止金屬被過度蝕刻;螯合劑和氧化劑可與表面金屬產生化學作用提升移除效率;界面活性劑的添加可以有效改善細微研磨顆粒在溶液中之懸浮穩定性,抑制其團聚或膠凝,使晶圓表面的缺陷降至最低、獲得更好的平坦性(Planarization)及使CMP後續的洗淨能力提高。在研磨過程以研磨銅晶圓所測量得到的銅移除率,藉由公式化的模組,可推測於研磨液中已知研磨顆粒濃度及pH值變化之關係,再以實驗數據驗證。
實驗主要部分包括:研究在銅晶圓、二氧化矽pH值及化學機械研磨處理期間,二氧化矽濃度在研磨液中對銅移除率的影響。發現在銅化學機械拋光處理的銅移除率影響最大,而且銅移除率會隨二氧化矽濃度的增加而增加,但到達一定的濃度時,研磨率將會持平,但顆粒間的排斥作用會隨著pH值有所變化,使移除率減緩。減少的銅移除率之pH值為7.5及9.5。在銅化學機械拋光處理期間,於二氧化矽的濃度曲線中,移除率隨著二氧化矽的濃度的增加而增加。本實驗在加入顆粒之間的排斥效應,發現在反應機制中,研磨率在超過一定濃度後有下降的趨勢,在顆粒表面含有帶電量使顆粒間的相互作用有所變化,導致在研磨墊上的顆粒吸附與脫附對研磨率有更大的影響。從Zeta potential分析中知,顆粒表面電位隨著pH值改變,表面電位與pH值有關。因此,研磨液中二氧化矽濃度的增加所產生變化使研磨率增加,但二氧化矽隨pH值的變化使濃度過高的研磨液中,顆粒相互排斥造成有效研磨顆粒及顆粒在研磨墊上的吸附作用減少使移除率下降。使用75 nm與30 nm的二氧化矽研磨顆粒,在含二氧化矽濃度的研磨液中研磨後,粒徑大的二氧化矽研磨顆粒在高濃度下銅移除率比粒徑小的下降趨勢略為明顯,平坦化效能評估值達23.7%,顯示二氧化矽濃度及pH值可控制薄膜移除之效應及平坦化效能。
Chemical mechanical planarization (CMP) process has been widely used in the manufacturing of semiconductors. CMP technology is mainly used in the early polishing of the lens and wafer polishing; wafer surface planarization is a very effective process. Although the CMP process is an important technology in the manufacturing of modern semiconductor, the CMP process used in ultra-large-scale integrated circuit (ULSI) devices is proven to have significant technology for achieving wafer surface uniformity. However, slurry plays an important role in the CMP process. In general, the main components of the slurry are (1) 1-to-15 percent SiO2 (fine abrasive particles) of 20-to-150 nm and other chemicals; (2) inhibitors; (3) pH buffers (e.g. HNO3, KOH, NH4OH or organic acids, etc.); (4) oxidizing agents (e.g. hydrogen peroxide, potassium iodate, ferric nitrate, etc.). In general, inhibitors can produce a protective layer to prevent metal over-etching; chelating agents and oxidants can produce chemical interaction with the surface metal to enhance the removal efficiency; the addition of surfactants can effectively improve the fine grinding particles in solution suspension stability, inhibit agglomeration, minimize defects on the wafer surface, achieve better planarity, and improve subsequent CMP cleaning capability. The copper removal rate measured by polishing copper wafers during the CMP process can be deduced from the relationship between the concentration of the abrasive particles and the change of pH value in the slurry by using the formula, and then verified by the experimental data. According to Paul et al.’s model [1], the behavior of CMP slurry abrasives during polishing was modeled as an adsorption/desorption reaction on sites of polishing pads. The model showed a saturation relationship between removal rate and abrasive concentration. In this study, we extended this concept to include repulsive force between abrasives since it might result in reduction of effective sites on the pad and reduce removal rate. A kinetic mechanism is developed to illustrate this repulsive effect between abrasives. Our experimental results show higher charged abrasive makes removal rate lower at high concentration. Abrasive size also influences the static electric flux on the particle surface. Smaller size abrasives will cause more significant repulsive effects than larger ones. Abrasives play an important role during the chemical mechanical planarization (CMP) process. It has a great impact on the material removal rate, uniformity, smoothness of finishing, and defect. Thus, the removal rate (R.R.) becomes a key index associated to abrasive for characterization of a CMP process. Intuitively, the R.R. should be proportional to the abrasive concentration. According to the abrasive adsorption behavior on the pad proposed in Paul et al.’s model [1], R.R. would increase with abrasive concentration and reach a plateau. However, the repulsive force between abrasives was not included into Paul’s consideration. It is worth it to re-theorize Paul’s model. In this study, we will re-examine the repulsive force into their model. A modified mechanism will be proposed to simulate the behavior of charged abrasives during polishing.
摘要 I
ABSTRACT III
致謝 V
目錄 VI
圖目錄 VIII
表目錄 XI
第1章 前言 1
1.1 研究緣起 1
1.2 晶圓製程簡介 3
1.2.1 IC設計流程簡介 3
1.2.2 氧化與膜附著 4
1.2.3 擴散與離子植入 7
1.2.4 IC 封裝簡介 10
1.3 研究內容及流程圖 11
1.4 化學機械研磨(CMP)技術 11
第2章 文獻回顧 16
2.1 CMP製程與應用 16
2.2 CMP研磨液應用 22
2.2.1 何謂研磨液 22
2.2.2 各種CMP研磨液之開發 23
2.2.3 磨粒凝集改質 24
2.2.4 磨粒表面電性改質 25
2.2.5 淺溝隔離層研磨液用研磨顆粒之開發 25
2.2.6 銅製程CMP研磨液開發 26
2.2.7 低應力拋光CMP研磨液開發 30
2.3 SiO2奈米矽溶膠(Colloidal Silica) 32
2.3.1 SiO2的基本介紹 32
2.3.2 SiO2奈米矽溶膠及物理化學特性 33
2.3.3 SiO2奈米矽溶膠製作 33
第3章 實驗設備及流程 40
3.1 實驗藥品 40
3.2 實驗儀器 41
3.3 研磨液之製備 42
3.3.1 研磨液製備實驗流程 42
3.3.2 化學機械研磨實驗流程 43
3.4 測試設備之介紹 44
3.4.1 化學機械晶圓研磨機製程設備 44
3.5 特性分析與性質測試 52
3.5.1 粒徑分析儀 52
3.5.2 場發射掃描式電子顯微鏡 53
3.5.3 界面電位儀 55
第4章 結果與討論 57
4.1 研磨顆粒分佈及電性分析 57
4.1.1 粒徑分佈 57
4.1.2 FE-SME and TEM外觀觀測 58
4.1.3 表面電位分析 61
4.2 電化學之影響 63
4.2.1 pH值對電化學之影響 63
4.2.2 pH值對研磨顆粒濃度之影響 67
4.2.3 研磨率比較 73
4.2.4 動態腐蝕與靜態腐蝕 74
4.2.5 粒徑與研磨顆粒濃度之影響 83
第5章 結論及未來研究方向 94
5.1 結論 94
5.2 未來研究方向 95
參考文獻 96
1. Paul E., Horn J., and Babu S.V., A model of pad–abrasive interactions in chemical mechanical polishing, ECS Journal of Solid State Science and Technology, 10, 1099-2023 (2007).
2. Chen P.L., Chen J.H., Tsai M.S., Dai B.T., and Yeh C.F., Post-Cu CMP cleaning for colloidal silica abrasive removal, Microelectronic Engineering, 75, 352-360 (2004)。
3. Park J.G., and Kim T.G., Post-CMP cleaning: interaction between particles and surfaces, International Conference on Planarization/CMP Technology, Dresden (2007).。
4. Ng D.D., Kundu S., Kulkarni M., and Liang H., Role of Surfactant Molecules in Post-CMP Cleaning, Journal of The Electrochemical Society, 155(2), H64-H68 (2008)
5. Derjaguin B. and Landau L., Theory of stability of strongly charged lyophobic sols and the adhesion of strongly charged particles in solutions of electrolytes, Acta Physicochimca URSS, 14, 733-762 (1941).
6. Climent E., MaxeyR., and Karniadakis G.E., Dynamics of self-assembled chaining in magnetorheological fluids, Langmuir, ECS Journal of Solid State Science and Technology 20,507-513 (2003).
7. 秦靜如、蕭凱文,「磁性顆粒在磁場中之運動軌跡」,碩士論文,國立中央大學環境工程研究所 (2001)。
8. 土肥俊郎,「CMP技術的基礎介紹與應用」,最新CMP技術基礎與應用國際研討會,台灣 (2015)。
9. 土肥俊郎,「超精密研磨CMP技術的定位技術的定位必要性和應用」,應用單晶基板的LED CMP技術國際研討會,台灣 (2015)。
10. Lu Z., Lee S.H.,Babu S.V., and Matijevi´E., The use of monodispersed colloids in the polishing of copper and tantalum, Journal of Colloid and Interface Science, 261, 55-64 (2003).
11. Lin F., Nolan L., and Cadien K., A study of the colloidal stability of mixed abrasive slurries and their role in CMP,ECS Journal of Solid State Science and Technology, 159,44-57 (2012).
12. Doering R.andNishi Y., Handbook of semiconductor manufacturing techtechnology,CRC Press, 14,68-77 (2007).
13. Li Y., Microelectronic applications of chemical mechanical planarization,Wiley Interscience, New Jersey (2007).
14. KangY.J., Kang B.K., and Park J.G.,Effect of slurry pH on poly siliconCMP,ICPT 2007-International Conference on Planarization/CMP Technology,New Jersey (2007).
15. Amanokura J., Mabuchi K., Sakurada T., Nomura Y., Habiro M., and Akahoshi H., Development of planarity improved abrasive-free copperCMP slurry and practical non-selective barrier cmp slurry based on electrochemical study,ICPT 2007-International Conference on Planarization/CMP Technology, Germany (2007).
16. Kim H. J.,Choi J.K., HongM.K., andLee K.,Contact behavior and chemical mechanical polishing (CMP)performance of hole-type polishing pad,ECS Journal of Solid State Science and Technology,1, 204-209 (2012).
17. Hooper B.J., Byrne G., and Galligan S.,Pad conditioning in chemical mechanical polishing, Journal of Materials Processing Technology,123, 107-113 (2002).
18. Yang J.C., Kim H.,Lee C.G., Lee H.D., and Kim T., Optimization of cmp pad surface by laser induced micro hole, Journal of The Electrochemical Society, 158, 15-20 (2011).
19. McGrath J. and Davis C., Study on pad conditioning parameters in silicon wafer cmp process, Journal of Materials Processing Technology, 666,153-154, (2004).
20. John M. and Chris D., Polishing pad surface characterisation in chemical mechanical planarisation, Journal of Materials Processing Technology, 666, 153–154 (2004).
21. Hoffmann M. R., Martin S. T., Choi W., and Bahnemann D. W., Environmental applications of semiconductor photocatalysis, Chem. Review., 95, 69-96 (1995).
22. Vinodgopal K., Hotchandani S., and Kamat P. V., Electrochemically assisted photocatalysis. TiO2 particulate film electrodes for photocatalytic, J. Phys. Chem., 97, 9040-9145 (1993).
23. Rao C. N. R., Satishkumar B. C., Govindaraj A., and Nath M., Nanotubes, Chem. Phys. Chem., 2, 78-105 (2001).
24. Lopez N., Illas F., and Pacchioni G., Adsorption of Cu, Pd, and Cs atoms on regular and defect sites of the SiO2 surface, J. Am. Chem. Soc., 121, 813-821 (1999).
25. Bagshaw S. A. and Pinnavaia T. J., Mesoporous alumina molecular sieves, Angew. Chem., 35(10), 1102-1105 (1996).
26. Feng X., Fryxell G. E., Wang L. Q., Kim A. Y., Liu J., and Kemner K. M., Functionalized monolayers on ordered mesoporous supports, Science, 276, 923-926 (1997).
27. Spahr M. E., Bitterli P., Nesper R., Müller M., Krumeich F., and Nissen H. U., Redox-active nanotubes of vanadium oxide, Angew. Chem., 37, 1263-1265 (1998).
28. Chemseddine A. and Moritz T., Nanostructuring titania: control over nanocrystal structure, size, shape, and organization, Eur. Journal Inor Chemistry. 12, 235-245 (1999).
29. Moon S. C., Mametsuka H., Tabata S., and Suzuki E., Photocatalytic production of hydrogen from water using TiO2 and B/TiO2, Journal of the Chemical Society-Perkin Translation, 58, 125-132 (2000).
30. Crooks J.E. and Donnellan J.P., Kinetics and mechanism of the reaction between carbon dioxide and amines in aqueous solution, Journal of the Chemical Society-Perkin Translation, 2, 331-333 (1989).
31. Li Z., Borucki L., Koshiyama I., and Philipossian A., Effect of slurry flow rate on tribological, thermal, and removal rate attributes of copper CMP, Journal of the Electrochemical Society,151(7), 482-487 (2004).
32. Jordan K., Michael S., Patrick C., Patrick L., and Jason J., Role of abrasive type and media surface energy on nanoparticle adsorption,ICPT 2012, France (2012).
33. Schade V.T., Connor P., Levy P., and Keleher J.J., Abrasive nanoparticle/filtermedia interactions-international conference on planarization technologies, ICPT 2011, Korea (2011).
34. Wojtczak W.A., Seijo M.F., Bernhard D., Nguyen L., Post-CMP formulation having improved barrier layer compatibility and cleaning performance, United States Patent, 20150045277 (2015).
35. Lee S.H., Do K.B., Kim D.J., An K.S., and Jung Y.C., CMP slurry composition for metal wiring and polishing method using the same, United States Patent, 20170166779 (2017).
36. Reichardt R., Siebert M., lauter M. and Golzarian R., A chemical mechanical polishing composition, United States Patent, 2016008896 (2016).
37. Ho Y.L., Lee C.C., Ho M.C., Lu M.H., and Chang S.Y., Polishing composition, United States Patent, 20160208141 (2016).
38. Fukasawa M., Koyama N., Kurata Y., Haga K., Akutsu T., and Ootsuki Y., CMP polishing slurry and method of polishing substrate, United States Patent, 9293344 (2016).
39. Roh H.S., Kim D.J., Park Y.S., Kim Y.K., and Jung Y.C., CMP slurry composition and polishing method using the same, United States Patent, 8828266 (2014).
40. Otake A., Kuroda A., Cleaning composition and method for cleaning a semiconductor device substrate after chemical mechanical polishing, United States Patent, 20140076365 (2014).
41. Barnes J., Walker E., Peters D., Bartosh K., Oldak E., Yanders K., Copper passivating post-chemical mechanical polishing cleaning composition and method of use, European Patent, 2687589 (2014).
42. Chen K.W., Kuo H.W., Chang S.C., Wang Y.L., Chemical mechanical polishing slurry system and method, United States Patent, 20120264303 (2012).
43. Kanamaru M., Shimada T., and Shinoda T., CMP polishing liquid and polishing method, United States Patent, 20120094491 (2012).
44. Wu A.P., Rao M.B., Baryschpolec E.C., Wet clean compositions for CoWP and porous dielectrics, United States Patent, 8361237 (2013).
45. Hattoro M., Yuji N., Nobuo K., Cleaning composition for semiconductor components, and process for manufacturing semiconductor device, Taiwan patent, I381418 (2013).
46. Tamboli D.C., Rao M.B., Banerjee G., and Fabregas K.R., Formulations and method for post-cmp cleaning, 中華人民共和國國家知識產權局, 101942667B (2012).
47. Fisher M.L. and Misra A.M., Post CMP cleaning composition and the method thereof, Taiwan patent, I367941 (2012).
48. Mizuta H., Kakizawa M., and Hayashida I., Novel detergent and cleaning method for cleaning, Taiwan patent, I362415 (2012).
49. Wojtczak W.A., Seijo M.F., Bernhard D., Nguyen L., Aqueous cleaning composition containing copper-specific corrosion inhibitor for cleaning inorganic residues on semiconductor substrates, United States Patent, 7662762 (2010)
50. Takamiya S., Inaba T., Mizutani A., KatoT., and Saie T., Metal polishing composition and chemical mechanical polishing method, United States Patent, 20090246956 (2009).
51. Tatsuhiko H., Hiroshi M., Takahiro U., Polishing composition, United States Patent, 20090179172 (2009).
52. Robert L. R., Paul J. Y. , Dewatered CMP polishing compositions and methods for using same, United States Patent, 6572449 B2 (2003).
53. Little R.J., Versteeg G.F., and Swaaij W.P., Solubility and diffusivity data for the absorption of COS, CO2 and N2O in amine solutions, Journal of Chemical & Engineering Data, 3749-3755 (2002).
54. Paik U. andSeo J., Preparation and characterization of slurry for chemical mechanical planarization, Advances in Chemical Mechanical Planarization, 273-298 (2016).
55. Borucki L., A novel slurry injection system for CMP, Advances in Chemical Mechanical Planarization, 397-415 (2016).
56. Pate K. andSafier P., Chemical metrology methods for CMP quality, Advances in Chemical Mechanical Planarization, 299-325 (2016).
57. Penta N.K.,9-Abrasive-free and ultra-low abrasive chemical mechanical polishing processes, Advances in Chemical Mechanical Planarization, Journal of the Chemical Society-Perkin Translation , 213-227 (2016).
58. Xiaodong L., Yuling L., Chenwei W., and Guilin L., Stability of weakly alkaline barrier slurry with the high selectivity, Microelectronic Engineering, 130, 28-34 (2014).
59. Testa F., Coetsier C., Carretier E., Ennahali M., Laborie E., and Moulin P.,Stability of weakly alkaline barrier slurry with the high selectivity,Microelectronic Engineering, 113, 114-122 (2014).
60. Basim G.B., Adler J.J., Mahajan U.,Singh R.K., and Moudgilz B.M.,Effect of particle size of chemical mechanical polishing slurries for enhanced polishing with minimal defects, Journal of The Electrochemical Society, 147, 9, 2523-2528 (2000).
61. Paul E., Frank K., Vlasta B., Jian Z., Fred S., and Robert V., A model of copper CMP, Journal of The Electrochemical Society, 152, 322-328 (2005).
62. Paul E., A model of chemical mechanical polishing, Journal of The Electrochemical Society, 355-358 (2001).
63. Desmond T., Aqueouspotential-pH equilibriaincopper-benzotriazole systems, Journal of The Electrochemical Society, 145, 355-358 (1998).
64. Serdar A. and Fiona M., The role of glycine in the chemical mechanical planarization of copper, Journal of The Electrochemical Society, 149, 352-361 (2002).
65. Paul E., Kaufman F.,BrusicV., and ZhangJ.,A model of copper CMP, Journal of The Electrochemical Society, 322-328 (2005).
66. HariharaputhiranM., Zhang J., RamarajanS., KeleherJ. J.,Yuzhuo M.,and Babua S.V.,Hydroxyl radical formation in H2O2-amino acid mixtures and chemical mechanical polishing of copper, Journal of The Electrochemical Society, 3820-3826 (2000).
67. PatrickW.J., Guthrie W.L., Standley C.L,and Schiable P.M., Initial study on copper CMP slurry chemistries, Journal of The Electrochemical Society, 138, 1778 (1991).
68. Zhong M.G., Venkataraman S.S., Lan Y.Q., Li Y.Z., and Shipp D.A., Role of 1,2,4-triazole as a passivating agent for cobalt during post-chemical mechanical planarization cleaning, Journal of The Electrochemical Society, 161(3), 138-144 (2014).
69. Kaanta C.W., Bombardier S.G., Cote W.J., Hill W.R, Kerszykowski G., Landis H.S., Poindexter D.J., Pollard C.W., Ross G.H., Ryan J.G., Wolff S., and Cronnin J.E., Wolff S., and Cronnin J.E., Dual dama-scene: a ULSI wiring technology,Proceedings of the 8th International IEEE VLSI Multilevel Interconnection Conference, USA (1991).
70. Babu S.V., Hariharaputhiran Li Y., M., Ramarajan S., Zhang J., Her Y.S., and Prendergast J.E.,Investigation of Cu and Ta Polishing Using Hydrogen Peroxide, Glycine and A Metallic Catalyst, In proceedings of the 15th VLSI multilevel Interconnection Conference,443-448 (1998).
71. Gu Z.B., Liu Y.L., , Gao B.H., Wang C.W., and Deng H.W., A novel compound cleaning solution for benzotriazole removal after copper CMP, Journal of Semiconductors, 36(10), 106001(1)-106001(6) (2015).
72. Babu S.V., Li Y., Hariharaputhiran M., Ramarajan S., Zhang J., Her Y.S., and Prendergast J.E., In proceedings of the 15th VLSI multilevel Interconnection Conference, USA (1998).
73. Tanwar K.J., Canaperi D., Lofaro M., Tseng W.T., Patlolla R., Penny C., and Waskiewicz C., BEOL Cu CMP process evaluation for advanced technology nodes, Journal of The Electrochemical Society, 160(12), D3247-D3254 (2013).

74. IkedaH., Akagami Y., Highly efficient polishing technology for glass substrates using tribo-chemical polishing with electrically controlled slurry Microelectron, Journal of Manufacturing Processes, 33, 259, 102-107 (1997).
75. Hoffmann M.R., Martin S.T., Choi W., and Bahnemann D.W., Environmentaln applicationsof semiconductor photocatalysis, Chemical Reviews, 95, 69-96 (1995).
76. Chenwei W., Yuling L., Jianying T., Baohong G., and Xinhuan N.,A study on the comparison of CMP performance between a novel alkaline slurry and a commercial slurry for barrier removal, Microelectronic Engineering, 98, 29-33 (2005).
77. NguyenV. H., Daamen,R., van KranenburgH.,van der VeldenP., and WoerleedP. H.,A Physical Model for Dishing during Metal CMP, Journal of The Electrochemical Society,689-693 (2003).
78. Wrschka P.,HernandezJ., Oehrlein,G. S, and. King.J,Chemical Mechanical Planarization of Copper Damascene Structures, Journal of The Electrochemical Society, 147, 706-712 (2000).
79. Kaufman F. B., Thompson D. B., Broadie R. E, Jaso, Guthrie W. L., Pearson D. J., and Small M. B.,Chemical-Mechanical Polishing for Fabricating PatternedW Metal Features as Chip Interconnects, J. Electrochem. Society, 106-112 (1991).
80. GorantlV. R. K., Assiongbon K. A., Babu S. V., and Roy D., CitricAcid as a Complexing Agent in CMP of CopperInvestigation of Surface Reactions Using Impedance Spectroscopy, Journal of The Electrochemical Society, 404-410 (2005).
81. BrusicV., Frisch M. A., Eldridge B. N., Novak F. P.,. Kaufman F. B, Rush B. M., and Frankel G. S.,Copper Corrosion With and Without Inhibitors, Journal of The Electrochemical Society,138-144 ( 1991).
82. Wrschka P., Hernandez J.,Oehrlein G. S., Negrych J. A., Haag G.,Development of a Slurry Employing a Unique Silica Abrasivefor the CMP of Cu Damascene Structures., Journal of The Electrochemical Society, 321-325 (2001).
83. Serdar A., Ling W., and Fiona M.Effect of Hydrogen Peroxide on Oxidation of Copper in CMPSlurries Containing Glycine, Journal of The Electrochemical Society, 718-723 (2003).
84. Jindala A. and Babu S. V.,Effect of pH on CMP of Copper and Tantalum, Journal of The Electrochemical Society, 709-716 (2004).
85. Ein-Eli Y., Abelev E., Starosvetsky D.,Electrochemical Aspects of Copper Chemical Mechanical Planarizationin Peroxide Based Slurries Containing BTA and Glycine,Electrochimica Acta, 1499–1503 (2004).
86. Melvin K. C. and Robert S.,Electrochemical Measurements of Passivation Bilayerson Copper in a CMP System, Journal of The Electrochemical Society, 563-571 (2004).
87. Du T., Tamboli D., Desai V.,Seal S.,Mechanism of Copper Removal during CMP in AcidicH2O2 Slurry, Journal of the Electrochemical Society, 230-235 (2004).
88. Hernandez J., Wrschk P., and Oehrlein G. S., Surface Chemistry Studies of Copper Chemical Mechanical Planarization, Journal of The Electrochemical Society, 389-397 (2001).
89. Srinivasa C., MurthyD.,BeaudoinS.P., BibbyT., Holland K., Cale T.S., Stress Distribution in Chemical Mechanical Polishing, ThinSolid Films 308–309 (1997).
90. RunnelsS.R.,EymanL.M, Tribology Analysisof Chemical Mechanical Polishing, J. Electrochem, Soc. 141 (1994).
91. Serdar A.,Fiona D.M.,TheRole of Glycine in the Chemical Mechanical Planarizationof Copper, Journal of The Electrochemical Society, 352-361 (2002).
92. Han J.H.,. Hah S.R, Kang Y.J.,Park J.G.,Effect of Polish By-Products on Copper Chemical Mechanical Polishing Behavior, Journal of The Electrochemical Society, 525-529 (2007).
93. Ruth F.V. Villamil, Paola C., Joel C., Rubim , Silvia M.L., Agostinho, Effect of Sodium Dodecylsulfate on Copper Corrosion in Sulfuric Acid Media in the Absence and Presence of Benzotriazole, Journal of Electroanalytical Chemistry 112–119 (1999).
94. Subramanian T., Huang W., Raghavan S.,and Small R.,Potential-pH Diagrams of Interest to Chemical Mechanical Planarization of Copper, Journal of The Electrochemical Society, 638-642 (2002).
95. Chena K.W. and Wang Y. L.,Studyof NonPreston Phenomena Inducedfrom the PassivatedAdditivesinCopperCMP, Journal of The Electrochemical Society, 41-47 (2007).
96. Park K.Y. and. Jeong H.D.,Investigation of Pad Surface Topography Distributionfor Material Removal Uniformity in CMP Process, Journal of The Electrochemical Society,595-602 (2008).
97. Seiichi K., Noriyuki S., Yoshio H., Yasushi G.o, Naofumi O.,Hizuru Y., and Nobuo O., Abrasive-Free Polishing for Copper Damascene Interconnection, Journal of The Electrochemical Society, 3907-3913 (2000).
98. Chang S.Y, Lu M.H ,Tseng Y.T , Ho M. C., Li T.C, Model of CMP: Cu Removal Rate Profile Shape Journal of The Electrochemical Society, 52-36 (2012).
99. Zantye P.B., Kumar A., Sikder A.K., Chemical mechanical planarization for microelectronics applications, Journal of Solid State Science and Technology, 45 ,89–97 (2004)
100. Wrschka P., Hernandez J., Oehrlein G.S., King J., Chemical mechanical planarization of copper damascene structures, Journal of The Electrochemical.,13,147 706–712 (2000).
101. Gorantla V.R.K., Assiongbon K.A., Babu S.V., Roy D., Citric acid as a complexing agent in chemical-mechanical planarization of copper: investigation of surface reactions using impedance spectroscopy, Journal of The Electrochemical. 404–410 (2005).
102. Du T., Luo Y., Desai V., The combinatorial effect of complexing agent and inhibitor on chemical–mechanical planarization of copper, Microelectron. Journal of Semiconductors. 70–97 (2004).
103. Eom D.H., Kim I.K., Han J.H., Park J.G., The effect of hydrogen peroxide in a citric acid based copper slurry on Cu polishing, Journal of Machine Tools & Manufactu,. 154 38–44 (2007).
104. Lee H., , Jeong H., A wafer-scale material removal rate profile model for copper chemical mechanical planarization, International Journal of Machine Tools & Manufacture, 51395-403 (2011).
105. Castillo M. D., S. Beaudoin, A locally relevant Prestonian model for wafer polishing, Journal of the Electrochemical Society, 150 96–102 (2003).
106. Stephen A. Campbell, "The Science and Engineering of Microelectronic Fabrication, Oxford University Press, 411-421 (1996).
107. Koester S. J., Young A. M., Yu R. R., S. Purushothaman, K.-N. Chen, ET AL. "Wafer-level 3D integration technology Journal of The Electrochemical Society., 52, 583-597 (2008).
108. Sivaram S., Bath H., Lee E., Legett R., and Tolles R., Advanced Metallization for ULSI Applications, Material Research Society, 511-519 (1992).
109. Nguyen L., Viet H. and Daamen, Roel and Kranenburg, Herma van and Velden, Peter van der and Woerlee, Pierre H., A Physical Model for Dishing during Metal CMP, Journal of the Electrochemical Society, 150,689-698 (2003).
110. Paul E, John H, Li Y and Babu S.V., A Model of Pad–Abrasive Interactions in Chemical Mechanical Polishing, Electrochemical and Solid State Letters, 10, 131-140 (2007).
111. Lirong G., Shankar R., Mechanical Removal in CMP of Copper Using Alumina Abrasives, Journal of TheElectrohemical Society, 151, 104-109 (2004).
112. 蔡子萱,化學機械研磨銅之研磨液與研磨模式研究,國立臺灣大學化學工程學研究所碩士論文,.15, 中華民國九十一年
113. Hymes S., Smekalin K., Brown T., Yeung H., Joffe M., Banet M., Park T., Tugbawa T., Boning D., Nguyen J., West T., Sands W., Determination of the Planarization Distance for Copper CMP Process, Surface and Interface Analysis., 566,.211-219 (2000).
114. Sikder A. K., Kumar A., rfanI. M. I, Belyaev A., Ostapenko S., M.Calves, Harmon J. P., and Anthony J. M., Evaluation of mechanical and tribological behavior, and surface characteristics of CMP pads, Materials Research Society. Proc., 671, 8-11 (2001).
115. Jindal A., Narayanan S. and Babu S. V., Slurry Retention and transport during chemical-mechanical polishing of Copper, Materials Research Society, 671, 10-18 (2001).
116. Hegde S., Patri U. B., Jindal A., Babu S. V., Study of Slurry Composition Transition in a Rotary Copper CMP Process, Materials Research Society, 767, 27-34 (2003).
117. Guo Y., Lee H., Lee Y., Haedo J., Effect of pad groove geometry on material removal characteristics in chemical mechanical polishing, International Journal of Precision Engineering and Manufacturing, 303- 307 (2012).
118. Shoutian L., Greg G. and Jayakrishnan N., ILD CMP with Silica Abrasive Particles: Effect of Pore Size of CMP Pad on Removal Rate Profiles, Journal of Precision Engineering and Manufacturing., 97-105 (2013).
119. Teigerwald J. M., Murarka S. P., Gutmann R. J., Chemical Mechanical Planarization of Microelectronic Material, John Wiley & Sons, 117 (1997).
120. Castillo-Mejia D., Kelchner J., and Beaudoin S., Polishing Pad Surface Morphology and Chemical Mechanical Planarization, Journal of the Electrochemical Society, 151-271 (2004).
121. McGrath J., Davis C., Polishing pad surface characterisation in chemical mechanical planarization, Journal of Materials Processing Technology, 16 -23(2003).
122. Miyashita N., Uekusa S., Nishioka T., Iwami S., A New Poly-Si CMP Process with Small Erosion for Advanced Trench Isolation Process, Journal of The Electrochemical Society, 613-616 (2000).
123. Park J.-G., Lee S.-H., Kim H.-G., Jeong H.-D., Moon D.-K., Electrical Characterization of Slurry Particles and their Interactions with Wafer Surfaces, Journal of The Electrochemical Society, 56-173 (2000).
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊